[Skip to Content]
[Skip to Content Landing]

Will This Hemodynamically Unstable Patient Respond to a Bolus of Intravenous Fluids?

Educational Objective To learn about factors associated with fluid responsiveness in hemodynamically unstable adults.
1 Credit CME
Abstract

Importance  Fluid overload occurring as a consequence of overly aggressive fluid resuscitation may adversely affect outcome in hemodynamically unstable critically ill patients. Therefore, following the initial fluid resuscitation, it is important to identify which patients will benefit from further fluid administration.

Objective  To identify predictors of fluid responsiveness in hemodynamically unstable patients with signs of inadequate organ perfusion.

Data Sources and Study Selection  Search of MEDLINE and EMBASE (1966 to June 2016) and reference lists from retrieved articles, previous reviews, and physical examination textbooks for studies that evaluated the diagnostic accuracy of tests to predict fluid responsiveness in hemodynamically unstable adult patients who were defined as having refractory hypotension, signs of organ hypoperfusion, or both. Fluid responsiveness was defined as an increase in cardiac output following intravenous fluid administration.

Data Extraction  Two authors independently abstracted data (sensitivity, specificity, and likelihood ratios [LRs]) and assessed methodological quality. A bivariate mixed-effects binary regression model was used to pool the sensitivities, specificities, and LRs across studies.

Results  A total of 50 studies (N = 2260 patients) were analyzed. In all studies, indices were measured before assessment of fluid responsiveness. The mean prevalence of fluid responsiveness was 50% (95% CI, 42%-56%). Findings on physical examination were not predictive of fluid responsiveness with LRs and 95% CIs for each finding crossing 1.0. A low central venous pressure (CVP) (mean threshold <8 mm Hg) was associated with fluid responsiveness (positive LR, 2.6 [95% CI, 1.4-4.6]; pooled specificity, 76%), but a CVP greater than the threshold made fluid responsiveness less likely (negative LR, 0.50 [95% CI, 0.39-0.65]; pooled sensitivity, 62%). Respiratory variation in vena cava diameter measured by ultrasound (distensibility index >15%) predicted fluid responsiveness in a subgroup of patients without spontaneous respiratory efforts (positive LR, 5.3 [95% CI, 1.1-27]; pooled specificity, 85%). Patients with less vena cava distensibility were not as likely to be fluid responsive (negative LR, 0.27 [95% CI, 0.08-0.87]; pooled sensitivity, 77%). Augmentation of cardiac output or related parameters following passive leg raising predicted fluid responsiveness (positive LR, 11 [95% CI, 7.6-17]; pooled specificity, 92%). Conversely, the lack of an increase in cardiac output with passive leg raising identified patients unlikely to be fluid responsive (negative LR, 0.13 [95% CI, 0.07-0.22]; pooled sensitivity, 88%).

Conclusions and Relevance  Passive leg raising followed by measurement of cardiac output or related parameters may be the most useful test for predicting fluid responsiveness in hemodynamically unstable adults. The usefulness of respiratory variation in the vena cava requires confirmatory studies.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ from JAMA Network is your new home for CME and MOC from a source you trust. Earn AMA PRA Category 1 CME Credit™ from relevant articles, audio, and Clinical Challenge image quizzes, explore interactives and videos, and – depending on your specialty or state – have your MOC points automatically transferred to the relevant board. Learn more about CME

Article Information

Corresponding Author: Najib T. Ayas, MD, MPH, Division of Critical Care Medicine, St. Paul’s Hospital, 1081 Burrard St, Vancouver, BC, Canada V6Z 1Y6 (nayas@providencehealth.bc.ca).

Author Contributions: Drs Ayas and Bentzer had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of all the data analysis.

Study concept and design: Bentzer, Boyd, Sirounis, Ayas.

Acquisition, analysis, or interpretation of data: Bentzer, Griesdale, MacLean, Sirounis, Ayas.

Drafting of the manuscript: Bentzer, Boyd, Sirounis, Ayas.

Critical revision of the manuscript for important intellectual content: Bentzer, Griesdale, MacLean, Ayas.

Statistical analysis: Bentzer, Griesdale, Sirounis, Ayas.

Obtained funding: Bentzer.

Administrative, technical, or material support: Sirounis, Ayas.

Supervision: Boyd, Ayas.

Other (analyzing the original articles: MacLean.

Conflict of Interest Disclosures: All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Unrelated to the present article, Dr Ayas reports receipt of fees from RHS Medical for a presentation to family physicians. No other disclosures were reported.

Funding/Support: Dr Bentzer reports receipt of funding from ALF (Swedish [government funding to university hospitals for physician research and education]) (18401) and The Anna and Edwin Berger Foundation. Dr Griesdale reports receipt of funding from Vancouver General Hospital and the University of British Columbia Hospital Foundation Best of Health Fund. Dr Ayas reports receipt of funding from an established clinician scientist award from the Vancouver Coastal Health Research Institute.

Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript, and decision to submit the manuscript for publication.

Additional Contributions: We would like to acknowledge the following individuals who provided helpful advice on earlier versions of the manuscript: Charles Brudney, MB, CHB, and Martha Sue Carraway, MD, Durham VA Medical Center and Duke University, Durham, North Carolina; Alexander Fanaroff, MD, L. Kristin Newby, MD, and Cara O’Brien, MD, Duke University Medical Center, Durham, North Carolina. None of these individuals received compensation for their roles in the study.

References
1.
Finfer  S, Liu  B, Taylor  C,  et al; SAFE TRIPS Investigators.  Resuscitation fluid use in critically ill adults: an international cross-sectional study in 391 intensive care units.  Crit Care. 2010;14(5):R185.PubMedGoogle ScholarCrossref
2.
Arikan  AA, Zappitelli  M, Goldstein  SL, Naipaul  A, Jefferson  LS, Loftis  LL.  Fluid overload is associated with impaired oxygenation and morbidity in critically ill children.  Pediatr Crit Care Med. 2012;13(3):253-258.PubMedGoogle ScholarCrossref
3.
Boyd  JH, Forbes  J, Nakada  TA, Walley  KR, Russell  JA.  Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality.  Crit Care Med. 2011;39(2):259-265.PubMedGoogle ScholarCrossref
4.
Holodinsky  JK, Roberts  DJ, Ball  CG,  et al.  Risk factors for intra-abdominal hypertension and abdominal compartment syndrome among adult intensive care unit patients: a systematic review and meta-analysis.  Crit Care. 2013;17(5):R249.PubMedGoogle ScholarCrossref
5.
Mitchell  JP, Schuller  D, Calandrino  FS, Schuster  DP.  Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization.  Am Rev Respir Dis. 1992;145(5):990-998.PubMedGoogle ScholarCrossref
6.
Murphy  CV, Schramm  GE, Doherty  JA,  et al.  The importance of fluid management in acute lung injury secondary to septic shock.  Chest. 2009;136(1):102-109.PubMedGoogle ScholarCrossref
7.
Payen  D, de Pont  AC, Sakr  Y, Spies  C, Reinhart  K, Vincent  JL; Sepsis Occurrence in Acutely Ill Patients (SOAP) Investigators.  A positive fluid balance is associated with a worse outcome in patients with acute renal failure.  Crit Care. 2008;12(3):R74.PubMedGoogle ScholarCrossref
8.
Wiedemann  HP, Wheeler  AP, Bernard  GR,  et al; National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network.  Comparison of two fluid-management strategies in acute lung injury.  N Engl J Med. 2006;354(24):2564-2575.PubMedGoogle ScholarCrossref
9.
Singer  M, Deutschman  CS, Seymour  CW,  et al.  The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).  JAMA. 2016;315(8):801-810.PubMedGoogle ScholarCrossref
10.
Shankar-Hari  M, Phillips  GS, Levy  ML,  et al; Sepsis Definitions Task Force.  Developing a new definition and assessing new clinical criteria for septic shock: for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).  JAMA. 2016;315(8):775-787.PubMedGoogle ScholarCrossref
11.
Seymour  CW, Liu  VX, Iwashyna  TJ,  et al.  Assessment of clinical criteria for sepsis: for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).  JAMA. 2016;315(8):762-774.PubMedGoogle ScholarCrossref
12.
Patterson  SW, Starling  EH.  On the mechanical factors which determine the output of the ventricles.  J Physiol. 1914;48(5):357-379.PubMedGoogle ScholarCrossref
13.
Levy  B, Collin  S, Sennoun  N,  et al.  Vascular hyporesponsiveness to vasopressors in septic shock: from bench to bedside.  Intensive Care Med. 2010;36(12):2019-2029.PubMedGoogle ScholarCrossref
14.
Rudiger  A, Singer  M.  Mechanisms of sepsis-induced cardiac dysfunction.  Crit Care Med. 2007;35(6):1599-1608.PubMedGoogle ScholarCrossref
15.
Rivers  E, Nguyen  B, Havstad  S,  et al; Early Goal-Directed Therapy Collaborative Group.  Early goal-directed therapy in the treatment of severe sepsis and septic shock.  N Engl J Med. 2001;345(19):1368-1377.PubMedGoogle ScholarCrossref
16.
Weil  MH, Henning  RJ.  New concepts in the diagnosis and fluid treatment of circulatory shock: thirteenth annual Becton, Dickinson and Co Oscar Schwidetsky Memorial Lecture.  Anesth Analg. 1979;58(2):124-132.PubMedGoogle ScholarCrossref
17.
Michard  F, Teboul  JL.  Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence.  Chest. 2002;121(6):2000-2008.PubMedGoogle ScholarCrossref
18.
Badgett  RG, Lucey  CR, Mulrow  CD.  Can the clinical examination diagnose left-sided heart failure in adults?  JAMA. 1997;277(21):1712-1719.PubMedGoogle ScholarCrossref
19.
Reeves  RA.  The rational clinical examination: does this patient have hypertension? how to measure blood pressure.  JAMA. 1995;273(15):1211-1218.PubMedGoogle ScholarCrossref
20.
Cook  DJ, Simel  DL.  The Rational Clinical Examination: does this patient have abnormal central venous pressure?  JAMA. 1996;275(8):630-634.PubMedGoogle ScholarCrossref
21.
Swan  HJ, Ganz  W, Forrester  J, Marcus  H, Diamond  G, Chonette  D.  Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter.  N Engl J Med. 1970;283(9):447-451.PubMedGoogle ScholarCrossref
22.
Magder  S.  Central venous pressure monitoring.  Curr Opin Crit Care. 2006;12(3):219-227.PubMedGoogle ScholarCrossref
23.
Rutlen  DL, Wackers  FJ, Zaret  BL.  Radionuclide assessment of peripheral intravascular capacity: a technique to measure intravascular volume changes in the capacitance circulation in man.  Circulation. 1981;64(1):146-152.PubMedGoogle ScholarCrossref
24.
Monnet  X, Rienzo  M, Osman  D,  et al.  Passive leg raising predicts fluid responsiveness in the critically ill.  Crit Care Med. 2006;34(5):1402-1407.PubMedGoogle ScholarCrossref
25.
Marik  PE, Monnet  X, Teboul  JL.  Hemodynamic parameters to guide fluid therapy.  Ann Intensive Care. 2011;1(1):1.PubMedGoogle ScholarCrossref
26.
Monnet  X, Teboul  JL.  Assessment of volume responsiveness during mechanical ventilation: recent advances.  Crit Care. 2013;17(2):217.PubMedGoogle Scholar
27.
Barbier  C, Loubières  Y, Schmit  C,  et al.  Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients.  Intensive Care Med. 2004;30(9):1740-1746.PubMedGoogle Scholar
28.
Feissel  M, Michard  F, Faller  JP, Teboul  JL.  The respiratory variation in inferior vena cava diameter as a guide to fluid therapy.  Intensive Care Med. 2004;30(9):1834-1837.PubMedGoogle ScholarCrossref
29.
Simel  DL. JAMA evidence A Primer on the Precision and Accuracy of the Clinical Examination. Update. In: Simel  DL, Rennie  D, eds.  The Rational Clinical Examination. New York: McGraw-Hill; 2009.
30.
Whiting  P, Rutjes  AW, Reitsma  JB, Bossuyt  PM, Kleijnen  J.  The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews.  BMC Med Res Methodol. 2003;3:25.PubMedGoogle ScholarCrossref
31.
Higgins  JP, Thompson  SG.  Quantifying heterogeneity in a meta-analysis.  Stat Med. 2002;21(11):1539-1558.PubMedGoogle ScholarCrossref
32.
Deeks  JJ, Macaskill  P, Irwig  L.  The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed.  J Clin Epidemiol. 2005;58(9):882-893.PubMedGoogle ScholarCrossref
33.
CochraneHandbook. 10.4.3.1 Recommendations on testing for funnel plot asymmetry. http://handbook.cochrane.org/chapter_10/10_4_3_1_recommendations_on_testing_for_funnel_plot_asymmetry.htm
34.
Biais  M, Nouette-Gaulain  K, Cottenceau  V, Revel  P, Sztark  F.  Uncalibrated pulse contour-derived stroke volume variation predicts fluid responsiveness in mechanically ventilated patients undergoing liver transplantation.  Br J Anaesth. 2008;101(6):761-768.PubMedGoogle ScholarCrossref
35.
Biais  M, Vidil  L, Sarrabay  P, Cottenceau  V, Revel  P, Sztark  F.  Changes in stroke volume induced by passive leg raising in spontaneously breathing patients: comparison between echocardiography and Vigileo/FloTrac device.  Crit Care. 2009;13(6):R195.PubMedGoogle ScholarCrossref
36.
Biais  M, Cottenceau  V, Stecken  L,  et al.  Evaluation of stroke volume variations obtained with the pressure recording analytic method.  Crit Care Med. 2012;40(4):1186-1191.PubMedGoogle ScholarCrossref
37.
Freitas  FG, Bafi  AT, Nascente  AP,  et al.  Predictive value of pulse pressure variation for fluid responsiveness in septic patients using lung-protective ventilation strategies.  Br J Anaesth. 2013;110(3):402-408.PubMedGoogle ScholarCrossref
38.
Lakhal  K, Ehrmann  S, Runge  I,  et al.  Central venous pressure measurements improve the accuracy of leg raising-induced change in pulse pressure to predict fluid responsiveness.  Intensive Care Med. 2010;36(6):940-948.PubMedGoogle ScholarCrossref
39.
Maizel  J, Airapetian  N, Lorne  E, Tribouilloy  C, Massy  Z, Slama  M.  Diagnosis of central hypovolemia by using passive leg raising.  Intensive Care Med. 2007;33(7):1133-1138.PubMedGoogle ScholarCrossref
40.
Monge García  MI, Gil Cano  A, Díaz Monrové  JC; MongeGarcía MI.  Brachial artery peak velocity variation to predict fluid responsiveness in mechanically ventilated patients.  Crit Care. 2009;13(5):R142.PubMedGoogle ScholarCrossref
41.
Monge García  MI, Gil Cano  A, Gracia Romero  M, Monterroso Pintado  R, Pérez Madueño  V, Díaz Monrové  JC.  Non-invasive assessment of fluid responsiveness by changes in partial end-tidal CO2 pressure during a passive leg-raising maneuver.  Ann Intensive Care. 2012; 26(2):9.PubMedGoogle ScholarCrossref
42.
Wagner  JG, Leatherman  JW.  Right ventricular end-diastolic volume as a predictor of the hemodynamic response to a fluid challenge.  Chest. 1998;113(4):1048-1054.PubMedGoogle ScholarCrossref
43.
Préau  S, Saulnier  F, Dewavrin  F, Durocher  A, Chagnon  JL.  Passive leg raising is predictive of fluid responsiveness in spontaneously breathing patients with severe sepsis or acute pancreatitis.  Crit Care Med. 2010;38(3):819-825.PubMedGoogle ScholarCrossref
44.
Hanson  J, Lam  SW, Alam  S,  et al.  The reliability of the physical examination to guide fluid therapy in adults with severe falciparum malaria: an observational study.  Malar J. 2013;12:348.PubMedGoogle ScholarCrossref
45.
Saugel  B, Kirsche  SV, Hapfelmeier  A,  et al.  Prediction of fluid responsiveness in patients admitted to the medical intensive care unit.  J Crit Care. 2013;28(4):537.e1-537.e9.PubMedGoogle ScholarCrossref
46.
De Backer  D, Heenen  S, Piagnerelli  M, Koch  M, Vincent  JL.  Pulse pressure variations to predict fluid responsiveness: influence of tidal volume.  Intensive Care Med. 2005;31(4):517-523.PubMedGoogle ScholarCrossref
47.
Heenen  S, De Backer  D, Vincent  JL.  How can the response to volume expansion in patients with spontaneous respiratory movements be predicted?  Crit Care. 2006;10(4):R102.PubMedGoogle ScholarCrossref
48.
Monnet  X, Osman  D, Ridel  C, Lamia  B, Richard  C, Teboul  JL.  Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients.  Crit Care Med. 2009;37(3):951-956.PubMedGoogle ScholarCrossref
49.
Perner  A, Faber  T.  Stroke volume variation does not predict fluid responsiveness in patients with septic shock on pressure support ventilation.  Acta Anaesthesiol Scand. 2006;50(9):1068-1073.PubMedGoogle ScholarCrossref
50.
Charbonneau  H, Riu  B, Faron  M,  et al.  Predicting preload responsiveness using simultaneous recordings of inferior and superior vena cavae diameters.  Crit Care. 2014;18(5):473.PubMedGoogle ScholarCrossref
51.
Moretti  R, Pizzi  B.  Inferior vena cava distensibility as a predictor of fluid responsiveness in patients with subarachnoid hemorrhage.  Neurocrit Care. 2010;13(1):3-9.PubMedGoogle ScholarCrossref
52.
Muller  L, Bobbia  X, Toumi  M,  et al; AzuRea group.  Respiratory variations of inferior vena cava diameter to predict fluid responsiveness in spontaneously breathing patients with acute circulatory failure: need for a cautious use.  Crit Care. 2012;16(5):R188.PubMedGoogle ScholarCrossref
53.
Airapetian  N, Maizel  J, Alyamani  O,  et al.  Does inferior vena cava respiratory variability predict fluid responsiveness in spontaneously breathing patients?  Crit Care. 2015;19:400.PubMedGoogle ScholarCrossref
54.
Sakka  SG, Reinhart  K, Meier-Hellmann  A.  Comparison of pulmonary artery and arterial thermodilution cardiac output in critically ill patients.  Intensive Care Med. 1999;25(8):843-846.PubMedGoogle ScholarCrossref
55.
Rubenfeld  GD, McNamara-Aslin  E, Rubinson  L.  The pulmonary artery catheter, 1967-2007: rest in peace?  JAMA. 2007;298(4):458-461.PubMedGoogle ScholarCrossref
56.
Feinberg  MS, Hopkins  WE, Davila-Roman  VG, Barzilai  B.  Multiplane transesophageal echocardiographic doppler imaging accurately determines cardiac output measurements in critically ill patients.  Chest. 1995;107(3):769-773.PubMedGoogle ScholarCrossref
57.
Huntsman  LL, Stewart  DK, Barnes  SR, Franklin  SB, Colocousis  JS, Hessel  EA.  Noninvasive Doppler determination of cardiac output in man: clinical validation.  Circulation. 1983;67(3):593-602.PubMedGoogle ScholarCrossref
58.
Marcelino  P, Germano  N, Marum  S, Fernandes  AP, Ribeiro  P, Lopes  MG.  Haemodynamic parameters obtained by transthoracic echocardiography and Swan-Ganz catheter: a comparative study in liver transplant patients.  Acta Med Port. 2006;19(3):197-205.PubMedGoogle Scholar
59.
Sakka  SG, Kozieras  J, Thuemer  O, van Hout  N.  Measurement of cardiac output: a comparison between transpulmonary thermodilution and uncalibrated pulse contour analysis.  Br J Anaesth. 2007;99(3):337-342.PubMedGoogle ScholarCrossref
60.
Kupersztych-Hagege  E, Teboul  JL, Artigas  A,  et al.  Bioreactance is not reliable for estimating cardiac output and the effects of passive leg raising in critically ill patients.  Br J Anaesth. 2013;111(6):961-966.PubMedGoogle ScholarCrossref
61.
Vincent  JL, Weil  MH.  Fluid challenge revisited.  Crit Care Med. 2006;34(5):1333-1337.PubMedGoogle ScholarCrossref
62.
Eskesen  TG, Wetterslev  M, Perner  A.  Systematic review including re-analyses of 1148 individual data sets of central venous pressure as a predictor of fluid responsiveness.  Intensive Care Med. 2016;42(3):324-332.PubMedGoogle ScholarCrossref
63.
Marik  PE, Cavallazzi  R.  Does the central venous pressure predict fluid responsiveness? an updated meta-analysis and a plea for some common sense.  Crit Care Med. 2013;41(7):1774-1781.PubMedGoogle ScholarCrossref
64.
Wyler von Ballmoos  M, Takala  J, Roeck  M,  et al.  Pulse-pressure variation and hemodynamic response in patients with elevated pulmonary artery pressure: a clinical study.  Crit Care. 2010;14(3):R111.PubMedGoogle ScholarCrossref
65.
De Backer  D, Taccone  FS, Holsten  R, Ibrahimi  F, Vincent  JL.  Influence of respiratory rate on stroke volume variation in mechanically ventilated patients.  Anesthesiology. 2009;110(5):1092-1097.PubMedGoogle ScholarCrossref
66.
Liu  Y, Wei  LQ, Li  GQ, Yu  X, Li  GF, Li  YM.  Pulse pressure variation adjusted by respiratory changes in pleural pressure, rather than by tidal volume, reliably predicts fluid responsiveness in patients with acute respiratory distress syndrome.  Crit Care Med. 2016;44(2):342-351.PubMedGoogle ScholarCrossref
67.
Lansdorp  B, Hofhuizen  C, van Lavieren  M,  et al.  Mechanical ventilation-induced intrathoracic pressure distribution and heart-lung interactions.  Crit Care Med. 2014;42(9):1983-1990.PubMedGoogle ScholarCrossref
68.
Lakhal  K, Ehrmann  S, Benzekri-Lefèvre  D,  et al.  Brachial cuff measurements of blood pressure during passive leg raising for fluid responsiveness prediction.  Ann Fr Anesth Reanim. 2012;31(5):e67-e72.PubMedGoogle ScholarCrossref
69.
Mahjoub  Y, Touzeau  J, Airapetian  N,  et al.  The passive leg-raising maneuver cannot accurately predict fluid responsiveness in patients with intra-abdominal hypertension.  Crit Care Med. 2010;38(9):1824-1829.PubMedGoogle ScholarCrossref
70.
Kirkpatrick  AW, Roberts  DJ, De Waele  J,  et al; Pediatric Guidelines Sub-Committee for the World Society of the Abdominal Compartment Syndrome.  Intra-abdominal hypertension and the abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the World Society of the Abdominal Compartment Syndrome.  Intensive Care Med. 2013;39(7):1190-1206.PubMedGoogle ScholarCrossref
71.
Muller  L, Louart  G, Teboul  JL,  et al.  Could B-type Natriuretic Peptide (BNP) plasma concentration be useful to predict fluid responsiveness [corrected] in critically ill patients with acute circulatory failure?  Ann Fr Anesth Reanim. 2009;28(6):531-536.PubMedGoogle ScholarCrossref
72.
Muller  L, Louart  G, Bousquet  PJ,  et al.  The influence of the airway driving pressure on pulsed pressure variation as a predictor of fluid responsiveness.  Intensive Care Med. 2010;36(3):496-503.PubMedGoogle ScholarCrossref
73.
Muller  L, Louart  G, Bengler  C,  et al.  The intrathoracic blood volume index as an indicator of fluid responsiveness in critically ill patients with acute circulatory failure: a comparison with central venous pressure.  Anesth Analg. 2008;107(2):607-613.PubMedGoogle ScholarCrossref
74.
Osman  D, Ridel  C, Ray  P,  et al.  Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge.  Crit Care Med. 2007;35(1):64-68.PubMedGoogle ScholarCrossref
75.
Michard  F, Boussat  S, Chemla  D,  et al.  Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure.  Am J Respir Crit Care Med. 2000;162(1):134-138.PubMedGoogle ScholarCrossref
76.
Vieillard-Baron  A, Chergui  K, Rabiller  A,  et al.  Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients.  Intensive Care Med. 2004;30(9):1734-1739.PubMedGoogle ScholarCrossref
77.
Charron  C, Fessenmeyer  C, Cosson  C,  et al.  The influence of tidal volume on the dynamic variables of fluid responsiveness in critically ill patients.  Anesth Analg. 2006;102(5):1511-1517.PubMedGoogle ScholarCrossref
78.
Khwannimit  B, Bhurayanontachai  R.  Prediction of fluid responsiveness in septic shock patients: comparing stroke volume variation by FloTrac/Vigileo and automated pulse pressure variation.  Eur J Anaesthesiol. 2012;29(2):64-69.PubMedGoogle ScholarCrossref
79.
Feissel  M, Teboul  JL, Merlani  P, Badie  J, Faller  JP, Bendjelid  K.  Plethysmographic dynamic indices predict fluid responsiveness in septic ventilated patients.  Intensive Care Med. 2007;33(6):993-999.PubMedGoogle ScholarCrossref
80.
Cecconi  M, Monti  G, Hamilton  MA,  et al.  Efficacy of functional hemodynamic parameters in predicting fluid responsiveness with pulse power analysis in surgical patients.  Minerva Anestesiol. 2012;78(5):527-533.PubMedGoogle Scholar
81.
Trepte  CJ, Eichhorn  V, Haas  SA,  et al.  Comparison of an automated respiratory systolic variation test with dynamic preload indicators to predict fluid responsiveness after major surgery.  Br J Anaesth. 2013;111(5):736-742.PubMedGoogle ScholarCrossref
82.
De Backer  D, Heenen  S, Piagnerelli  M, Koch  M, Vincent  JL.  Pulse pressure variations to predict fluid responsiveness: influence of tidal volume.  Intensive Care Med. 2005;31(4):517-523.PubMedGoogle ScholarCrossref
83.
Vallée  F, Richard  JC, Mari  A,  et al.  Pulse pressure variations adjusted by alveolar driving pressure to assess fluid responsiveness.  Intensive Care Med. 2009;35(6):1004-1010.PubMedGoogle ScholarCrossref
84.
Oliveira-Costa  CD, Friedman  G, Vieira  SR, Fialkow  L.  Pulse pressure variation and prediction of fluid responsiveness in patients ventilated with low tidal volumes.  Clinics (Sao Paulo). 2012;67(7):773-778.PubMedGoogle ScholarCrossref
85.
Huang  CC, Fu  JY, Hu  HC,  et al.  Prediction of fluid responsiveness in acute respiratory distress syndrome patients ventilated with low tidal volume and high positive end-expiratory pressure.  Crit Care Med. 2008;36(10):2810-2816.PubMedGoogle ScholarCrossref
86.
Muller  L, Louart  G, Bousquet  PJ,  et al.  The influence of the airway driving pressure on pulsed pressure variation as a predictor of fluid responsiveness.  Intensive Care Med. 2010;36(3):496-503.PubMedGoogle ScholarCrossref
87.
Lakhal  K, Ehrmann  S, Benzekri-Lefèvre  D,  et al.  Respiratory pulse pressure variation fails to predict fluid responsiveness in acute respiratory distress syndrome.  Crit Care. 2011;15(2):R85.PubMedGoogle ScholarCrossref
88.
Monnet  X, Rienzo  M, Osman  D,  et al.  Esophageal Doppler monitoring predicts fluid responsiveness in critically ill ventilated patients.  Intensive Care Med. 2005;31(9):1195-1201.PubMedGoogle ScholarCrossref
89.
Angappan  S, Parida  S, Vasudevan  A, Badhe  AS.  The comparison of stroke volume variation with central venous pressure in predicting fluid responsiveness in septic patients with acute circulatory failure.  Indian J Crit Care Med. 2015;19(7):394-400.PubMedGoogle ScholarCrossref
90.
Machare-Delgado  E, Decaro  M, Marik  PE.  Inferior vena cava variation compared to pulse contour analysis as predictors of fluid responsiveness: a prospective cohort study.  J Intensive Care Med. 2011;26(2):116-124.PubMedGoogle ScholarCrossref
91.
Marik  PE, Levitov  A, Young  A, Andrews  L.  The use of bioreactance and carotid Doppler to determine volume responsiveness and blood flow redistribution following passive leg raising in hemodynamically unstable patients.  Chest. 2013;143(2):364-370.PubMedGoogle ScholarCrossref
92.
Monnet  X, Bleibtreu  A, Ferré  A,  et al.  Passive leg-raising and end-expiratory occlusion tests perform better than pulse pressure variation in patients with low respiratory system compliance.  Crit Care Med. 2012;40(1):152-157.PubMedGoogle ScholarCrossref
93.
Monnet  X, Bataille  A, Magalhaes  E,  et al.  End-tidal carbon dioxide is better than arterial pressure for predicting volume responsiveness by the passive leg raising test.  Intensive Care Med. 2013;39(1):93-100.PubMedGoogle ScholarCrossref
94.
Lamia  B, Ochagavia  A, Monnet  X, Chemla  D, Richard  C, Teboul  JL.  Echocardiographic prediction of volume responsiveness in critically ill patients with spontaneously breathing activity.  Intensive Care Med. 2007;33(7):1125-1132.PubMedGoogle ScholarCrossref
95.
Thiel  SW, Kollef  MH, Isakow  W.  Non-invasive stroke volume measurement and passive leg raising predict volume responsiveness in medical ICU patients: an observational cohort study.  Crit Care. 2009;13(4):R111.PubMedGoogle ScholarCrossref
96.
Monnet  X, Dres  M, Ferré  A,  et al.  Prediction of fluid responsiveness by a continuous non-invasive assessment of arterial pressure in critically ill patients: comparison with four other dynamic indices.  Br J Anaesth. 2012;109(3):330-338.PubMedGoogle ScholarCrossref
97.
Lafanechère  A, Pène  F, Goulenok  C,  et al.  Changes in aortic blood flow induced by passive leg raising predict fluid responsiveness in critically ill patients.  Crit Care. 2006;10(5):R132.PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Topics
State Requirements