[Skip to Content]
[Skip to Content Landing]

Making Molecular Imaging a Clinical Tool for Precision OncologyA Review

Educational Objective
To learn the role of molecular imaging in oncology and be aware of barriers to its clinical application.
1 Credit CME
Abstract

Importance  Individualized cancer treatment, tailored to a particular patient and the tumor’s biological features (precision oncology), requires a detailed knowledge of tumor biology. Biological characterization is typically performed on biopsy material, but this approach can present challenges for widespread and/or heterogeneous disease and for performing serial assays to infer changes in response to therapy. Molecular imaging is a complementary approach that provides noninvasive and quantitative measures of the in vivo biology of the full disease burden and is well suited to serial assay.

Observations  Molecular imaging can provide unique information to guide precision oncology that includes measuring the regional expression of therapeutic targets, measuring drug pharmacokinetics, measuring therapy pharmacodynamics, and providing a marker of therapeutic efficacy that is highly indicative of outcome. Thus far, most trials of novel molecular imaging in oncology have been small, single-center trials. Only a few methods have progressed to multicenter trials and even fewer have become part of clinical practice.

Conclusions and Relevance  Molecular imaging holds great promise for precision oncology, complementing tissue-based markers to guide more effective, less toxic, and more cost-effective cancer treatments. Beyond logistical and technical challenges, moving new imaging tests from the laboratory to the clinic requires a compelling use case that will benefit patients and/or improve cost-effectiveness, and it requires the collaboration of imagers, oncologists, and industry to reach its true clinical potential.

Sign in to take quiz and track your certificates

Buy This Activity
Article Information

Corresponding Author: David A. Mankoff, MD, PhD, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104 (david.mankoff@uphs.upenn.edu).

Accepted for Publication: September 17, 2016.

Published Online: December 29, 2016. doi:10.1001/jamaoncol.2016.5084

Author Contributions: Dr Mankoff had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: All authors.

Acquisition, analysis, or interpretation of data: Mankoff.

Drafting of the manuscript: Mankoff.

Critical revision of the manuscript for important intellectual content: All authors.

Obtained funding: Mankoff.

Administrative, technical, or material support: Mankoff, Clark.

Conflict of Interest Disclosures: None reported.

Funding/Support: Manuscript writing was supported in part by grant SAC140060 from the Susan G. Komen Foundation, grant DE-SC0012476 from the Department of Energy, funding from the University of Pennsylvania Health System Breast Cancer Translational Center of Excellence, and Cancer Center Support grant P30CA016520 from the National Institutes of Health.

Role of the Funder/Sponsor: The support provided relevant research funding for the authors but did not have any influence on the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

References
1.
Schmidt  KT, Chau  CH, Price  DK, Figg  WD.  Precision oncology medicine: the clinical relevance of patient specific biomarkers used to optimize cancer treatment.  J Clin Pharmacol. 2016;(5):16.PubMedGoogle Scholar
2.
Henry  NL, Hayes  DF.  Cancer biomarkers.  Mol Oncol. 2012;6(2):140-146.PubMedGoogle ScholarCrossref
3.
Hartwell  L, Mankoff  D, Paulovich  A, Ramsey  S, Swisher  E.  Cancer biomarkers: a systems approach.  Nat Biotechnol. 2006;24(8):905-908.PubMedGoogle ScholarCrossref
4.
Lamlertthon  W, Hayward  MC, Hayes  DN.  Emerging technologies for improved stratification of cancer patients: a review of opportunities, challenges, and tools.  Cancer J. 2011;17(6):451-464.PubMedGoogle ScholarCrossref
5.
Müller  B, Wilcke  A, Boulesteix  AL,  et al.  Improved prediction of complex diseases by common genetic markers: state of the art and further perspectives.  Hum Genet. 2016;135(3):259-272.PubMedGoogle ScholarCrossref
6.
Wahl  RL, Jacene  H, Kasamon  Y, Lodge  MA.  From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors.  J Nucl Med. 2009;50(suppl 1):122S-150S.PubMedGoogle ScholarCrossref
7.
James  ML, Gambhir  SS.  A molecular imaging primer: modalities, imaging agents, and applications.  Physiol Rev. 2012;92(2):897-965.PubMedGoogle ScholarCrossref
8.
Mankoff  DA.  A definition of molecular imaging.  J Nucl Med. 2007;48(6):18N, 21N.PubMedGoogle Scholar
9.
Lanza  GM, Moonen  C, Baker  JR  Jr,  et al.  Assessing the barriers to image-guided drug delivery.  Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014;6(1):1-14.PubMedGoogle ScholarCrossref
10.
Zackrisson  S, van de Ven  SM, Gambhir  SS.  Light in and sound out: emerging translational strategies for photoacoustic imaging.  Cancer Res. 2014;74(4):979-1004.PubMedGoogle ScholarCrossref
11.
Ashraf  AB, Daye  D, Gavenonis  S,  et al.  Identification of intrinsic imaging phenotypes for breast cancer tumors: preliminary associations with gene expression profiles.  Radiology. 2014;272(2):374-384.PubMedGoogle ScholarCrossref
12.
Gillies  RJ, Kinahan  PE, Hricak  H.  Radiomics: images are more than pictures, they are data.  Radiology. 2016;278(2):563-577.PubMedGoogle ScholarCrossref
13.
Cook  GJ, O’Brien  ME, Siddique  M,  et al.  Non–small cell lung cancer treated with erlotinib: heterogeneity of 18F-FDG uptake at PET—association with treatment response and prognosis.  Radiology. 2015;276(3):883-893.PubMedGoogle ScholarCrossref
14.
Groheux  D, Cochet  A, Humbert  O, Alberini  JL, Hindié  E, Mankoff  D.  18F-FDG PET/CT for staging and restaging of breast cancer.  J Nucl Med. 2016;57(suppl 1):17S-26S.PubMedGoogle ScholarCrossref
15.
Mankoff  DA, Edmonds  CE, Farwell  MD, Pryma  DA.  Development of companion diagnostics.  Semin Nucl Med. 2016;46(1):47-56.PubMedGoogle ScholarCrossref
16.
Kurland  BF, Peterson  LM, Lee  JH,  et al.  Between-patient and within-patient (site-to-site) variability in estrogen receptor binding, measured in vivo by 18F-fluoroestradiol PET.  J Nucl Med. 2011;52(10):1541-1549.PubMedGoogle ScholarCrossref
17.
Shankar  LK, Van den Abbeele  A, Yap  J, Benjamin  R, Scheutze  S, Fitzgerald  TJ.  Considerations for the use of imaging tools for phase II treatment trials in oncology.  Clin Cancer Res. 2009;15(6):1891-1897.PubMedGoogle ScholarCrossref
18.
Linden  HM, Stekhova  SA, Link  JM,  et al.  Quantitative fluoroestradiol positron emission tomography imaging predicts response to endocrine treatment in breast cancer.  J Clin Oncol. 2006;24(18):2793-2799.PubMedGoogle ScholarCrossref
19.
Mortimer  JE, Dehdashti  F, Siegel  BA, Trinkaus  K, Katzenellenbogen  JA, Welch  MJ.  Metabolic flare: indicator of hormone responsiveness in advanced breast cancer.  J Clin Oncol. 2001;19(11):2797-2803.PubMedGoogle ScholarCrossref
20.
Dijkers  EC, Oude Munnink  TH, Kosterink  JG,  et al.  Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer.  Clin Pharmacol Ther. 2010;87(5):586-592.PubMedGoogle ScholarCrossref
21.
Gebhart  G, Lamberts  LE, Wimana  Z,  et al.  Molecular imaging as a tool to investigate heterogeneity of advanced HER2-positive breast cancer and to predict patient outcome under trastuzumab emtansine (T-DM1): the ZEPHIR trial.  Ann Oncol. 2016;27(4):619-624.PubMedGoogle ScholarCrossref
22.
Eary  JF, Link  JM, Muzi  M,  et al.  Multiagent PET for risk characterization in sarcoma.  J Nucl Med. 2011;52(4):541-546.PubMedGoogle ScholarCrossref
23.
Elsinga  PH, Hendrikse  NH, Bart  J, Vaalburg  W, van Waarde  A.  PET studies on P-glycoprotein function in the blood-brain barrier: how it affects uptake and binding of drugs within the CNS.  Curr Pharm Des. 2004;10(13):1493-1503.PubMedGoogle ScholarCrossref
24.
Sohn  HJ, Yang  YJ, Ryu  JS,  et al.  [18F]Fluorothymidine positron emission tomography before and 7 days after gefitinib treatment predicts response in patients with advanced adenocarcinoma of the lung.  Clin Cancer Res. 2008;14(22):7423-7429.PubMedGoogle ScholarCrossref
25.
Kostakoglu  L, Duan  F, Idowu  MO,  et al; ACRIN 668 Investigative Team.  A phase II study of 3′-deoxy-3′-18f-fluorothymidine PET in the assessment of early response of breast cancer to neoadjuvant chemotherapy: results from ACRIN 6688.  J Nucl Med. 2015;56(11):1681-1689.PubMedGoogle ScholarCrossref
26.
Moghbel  MC, Kostakoglu  L, Zukotynski  K,  et al.  Response assessment criteria and their applications in lymphoma: part 1.  J Nucl Med. 2016;57(6):928-935.PubMedGoogle ScholarCrossref
27.
Specht  JM, Tam  SL, Kurland  BF,  et al.  Serial 2-[18F] fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) to monitor treatment of bone-dominant metastatic breast cancer predicts time to progression (TTP).  Breast Cancer Res Treat. 2007;105(1):87-94.PubMedGoogle ScholarCrossref
28.
Farwell  MD, Clark  AS, Mankoff  DA.  How imaging biomarkers can inform clinical trials and clinical practice in the era of targeted cancer therapy.  JAMA Oncol. 2015;1(4):421-422.PubMedGoogle ScholarCrossref
29.
Pantel  AR, Mankoff  DA.  Molecular imaging to guide systemic cancer therapy: illustrative examples of PET imaging cancer biomarkers.  Cancer Lett. 2016;(May):16.PubMedGoogle Scholar
30.
Jadvar  H.  Positron emission tomography in imaging evaluation of staging, restaging, treatment response, and prognosis in prostate cancer.  Abdom Radiol (NY). 2016;41(5):889-898.PubMedGoogle ScholarCrossref
31.
Kenny  LM, Aboagye  EO.  Clinical translation of molecular imaging agents used in PET studies of cancer.  Adv Cancer Res. 2014;124:329-374.PubMedGoogle Scholar
32.
Van Poznak  C, Somerfield  MR, Bast  RC,  et al.  Use of biomarkers to guide decisions on systemic therapy for women with metastatic breast cancer: American Society of Clinical Oncology clinical practice guideline.  J Clin Oncol. 2015;33(24):2695-2704.PubMedGoogle ScholarCrossref
33.
Wolff  AC, Hammond  ME, Hicks  DG,  et al; American Society of Clinical Oncology; College of American Pathologists.  Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update.  J Clin Oncol. 2013;31(31):3997-4013.PubMedGoogle ScholarCrossref
34.
Sledge  GW  Jr, Jotwani  AC, Mina  L.  Targeted therapies in early-stage breast cancer: achievements and promises.  Surg Oncol Clin N Am. 2010;19(3):669-679.PubMedGoogle ScholarCrossref
35.
Mintun  MA, Welch  MJ, Siegel  BA,  et al.  Breast cancer: PET imaging of estrogen receptors.  Radiology. 1988;169(1):45-48.PubMedGoogle ScholarCrossref
36.
Peterson  LM, Mankoff  DA, Lawton  T,  et al.  Quantitative imaging of estrogen receptor expression in breast cancer with PET and 18F-fluoroestradiol.  J Nucl Med. 2008;49(3):367-374.PubMedGoogle ScholarCrossref
37.
Liao  GJ, Clark  AS, Schubert  EK, Mankoff  DA.  18F-Fluoroestradiol PET: current status and potential future clinical applications.  J Nucl Med. 2016;57(8):1269-1275.PubMedGoogle ScholarCrossref
38.
van Kruchten  M, de Vries  EG, Brown  M,  et al.  PET imaging of oestrogen receptors in patients with breast cancer.  Lancet Oncol. 2013;14(11):e465-e475.PubMedGoogle ScholarCrossref
39.
Peterson  LM, Kurland  BF, Schubert  EK,  et al.  A phase 2 study of 16α-[18F]-fluoro-17β-estradiol positron emission tomography (FES-PET) as a marker of hormone sensitivity in metastatic breast cancer (MBC).  Mol Imaging Biol. 2014;16(3):431-440.PubMedGoogle ScholarCrossref
40.
Jeraj  R, Bradshaw  T, Simončič  U.  Molecular imaging to plan radiotherapy and evaluate its efficacy.  J Nucl Med. 2015;56(11):1752-1765.PubMedGoogle ScholarCrossref
41.
Ling  CC, Humm  J, Larson  S,  et al.  Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality.  Int J Radiat Oncol Biol Phys. 2000;47(3):551-560.PubMedGoogle ScholarCrossref
42.
Sharma  R, Aboagye  E.  Development of radiotracers for oncology—the interface with pharmacology.  Br J Pharmacol. 2011;163(8):1565-1585.PubMedGoogle ScholarCrossref
43.
Linden  HM, Kurland  BF, Peterson  LM,  et al.  Fluoroestradiol positron emission tomography reveals differences in pharmacodynamics of aromatase inhibitors, tamoxifen, and fulvestrant in patients with metastatic breast cancer.  Clin Cancer Res. 2011;17(14):4799-4805.PubMedGoogle ScholarCrossref
44.
Wang  Y, Ulaner  G, Manning  HC,  et al.  Validation of target engagement using 18F-fluoroestradiol PET in patients undergoing therapy with selective estrogen receptor degrader, ARN-810 (GDC-0810) [abstract].  J Nucl Med. 2015;56:565. http://jnm.snmjournals.org/content/56/supplement_3/565.abstract?sid=ec77c285-068e-4aca-9cce-96dfd27347bb. Accessed November 21, 2016.Google ScholarCrossref
45.
van der Veldt  AA, Lammertsma  AA.  In vivo imaging as a pharmacodynamic marker.  Clin Cancer Res. 2014;20(10):2569-2577.PubMedGoogle ScholarCrossref
46.
Weber  WA.  Assessing tumor response to therapy.  J Nucl Med. 2009;50(suppl 1):1S-10S.PubMedGoogle ScholarCrossref
47.
Stroobants  S, Goeminne  J, Seegers  M,  et al.  18FDG-Positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec).  Eur J Cancer. 2003;39(14):2012-2020.PubMedGoogle ScholarCrossref
48.
Dehdashti  F, Laforest  R, Gao  F,  et al.  Assessment of cellular proliferation in tumors by PET using 18F-ISO-1 [published correction appears in J Nucl Med. 2013;54(5):827].  J Nucl Med. 2013;54(3):350-357.PubMedGoogle ScholarCrossref
49.
Tateishi  U, Gamez  C, Dawood  S, Yeung  HW, Cristofanilli  M, Macapinlac  HA.  Bone metastases in patients with metastatic breast cancer: morphologic and metabolic monitoring of response to systemic therapy with integrated PET/CT.  Radiology. 2008;247(1):189-196.PubMedGoogle ScholarCrossref
50.
Kurland  BF, Peterson  LM, Lee  JH,  et al.  Estrogen receptor binding (FES PET) and glycolytic activity (FDG PET) predict progression-free survival on endocrine therapy in patients with ER+ breast cancer [published online June 24, 2016].  Clin Cancer Res. doi:10.1158/1078-0432.CCR-16-0362Google Scholar
51.
Eckelman  WC, Mankoff  DA.  Choosing a single target as a biomarker or therapeutic using radioactive probes.  Nucl Med Biol. 2015;42(5):421-425.PubMedGoogle ScholarCrossref
52.
Clark  AS, DeMichele  A, Mankoff  D.  HER2 imaging in the ZEPHIR study.  Ann Oncol. 2016;27(4):555-557.PubMedGoogle ScholarCrossref
53.
Nishino  M, Tirumani  SH, Ramaiya  NH, Hodi  FS.  Cancer immunotherapy and immune-related response assessment: the role of radiologists in the new arena of cancer treatment.  Eur J Radiol. 2015;84(7):1259-1268.PubMedGoogle ScholarCrossref
54.
Patel  SP, Kurzrock  R.  PD-L1 expression as a predictive biomarker in cancer immunotherapy.  Mol Cancer Ther. 2015;14(4):847-856.PubMedGoogle ScholarCrossref
55.
Heskamp  S, Hobo  W, Molkenboer-Kuenen  JD,  et al.  Noninvasive imaging of tumor PD-L1 expression using radiolabeled anti-PD-L1 antibodies.  Cancer Res. 2015;75(14):2928-2936.PubMedGoogle ScholarCrossref
56.
Maute  RL, Gordon  SR, Mayer  AT,  et al.  Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging.  Proc Natl Acad Sci U S A. 2015;112(47):E6506-E6514.PubMedGoogle ScholarCrossref
57.
Natarajan  A, Mayer  AT, Xu  L, Reeves  RE, Gano  J, Gambhir  SS.  Novel radiotracer for immunoPET imaging of PD-1 checkpoint expression on tumor infiltrating lymphocytes.  Bioconjug Chem. 2015;26(10):2062-2069.PubMedGoogle ScholarCrossref
58.
Tavaré  R, Escuin-Ordinas  H, Mok  S,  et al.  An effective immuno-PET imaging method to monitor CD8-dependent responses to immunotherapy.  Cancer Res. 2016;76(1):73-82.PubMedGoogle ScholarCrossref
59.
Juergens  RA, Zukotynski  KA, Singnurkar  A, Snider  DP, Valliant  JF, Gulenchyn  KY.  Imaging biomarkers in immunotherapy.  Biomark Cancer. 2016;8(suppl 2):1-13.PubMedGoogle ScholarCrossref
60.
McShane  LM, Hayes  DF.  Publication of tumor marker research results: the necessity for complete and transparent reporting.  J Clin Oncol. 2012;30(34):4223-4232.PubMedGoogle ScholarCrossref
61.
Yankeelov  TE, Mankoff  DA, Schwartz  LH,  et al.  Quantitative imaging in cancer clinical trials.  Clin Cancer Res. 2016;22(2):284-290.PubMedGoogle ScholarCrossref
62.
Hammond  ME, Hayes  DF, Dowsett  M,  et al.  American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer.  J Clin Oncol. 2010;28(16):2784-2795.PubMedGoogle ScholarCrossref
63.
Doot  RK, McDonald  ES, Mankoff  DA.  Role of PET quantitation in the monitoring of cancer response to treatment: review of approaches and human clinical trials.  Clin Transl Imaging. 2014;2(4):295-303.PubMedGoogle ScholarCrossref
64.
Gerstner  ER, Zhang  Z, Fink  JR,  et al; ACRIN 6684 Trial Group.  ACRIN 6684: assessment of tumor hypoxia in newly diagnosed GBM using 18F-FMISO PET and MRI.  Clin Cancer Res. 2016;22(20):5079-5086.PubMedGoogle ScholarCrossref
65.
Yu  EY, Duan  F, Muzi  M,  et al.  Castration-resistant prostate cancer bone metastasis response measured by 18F-fluoride PET after treatment with dasatinib and correlation with progression-free survival: results from American College of Radiology Imaging Network 6687.  J Nucl Med. 2015;56(3):354-360.PubMedGoogle ScholarCrossref
66.
Buchholz  TA, McBride  WH, Cox  JD.  Preparing for the future of radiation oncology.  J Am Coll Radiol. 2007;4(8):560-562.PubMedGoogle ScholarCrossref
67.
Delbeke  D, Royal  HD, Frey  KA, Graham  MM, Segall  GM.  SNMMI/ABNM joint position statement on optimizing training in nuclear medicine in the era of hybrid imaging.  J Nucl Med. 2012;53(9):1490-1494.PubMedGoogle ScholarCrossref
68.
Lehman  CD, Blume  JD, DeMartini  WB, Hylton  NM, Herman  B, Schnall  MD.  Accuracy and interpretation time of computer-aided detection among novice and experienced breast MRI readers.  AJR Am J Roentgenol. 2013;200(6):W683-W689.PubMedGoogle ScholarCrossref
69.
Becker  GJ, Bosma  JL, Guiberteau  MJ, Gerdeman  AM, Frush  DP, Borgstede  JP; Board of Trustees of the American Board of Radiology.  ABR examinations: the why, what, and how.  Int J Radiat Oncol Biol Phys. 2013;87(2):237-245.PubMedGoogle ScholarCrossref
70.
Frey  KA, Royal  HD, Di Carli  MF,  et al.  ABNM position statement: Nuclear medicine professional competency and scope of practice.  J Nucl Med. 2011;52(6):994-997.PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Topics
State Requirements