[Skip to Content]
[Skip to Content Landing]

Does This Patient Have Acute Mountain Sickness?The Rational Clinical Examination Systematic Review

Educational Objective
To review the diagnosis of acute mountain sickness.
1 Credit CME
Key Points

Question  What is the best instrument to use for diagnosing acute mountain sickness (AMS)?

Findings  In a systematic review of studies assessing the accuracy of existing AMS diagnostic instruments, the visual analog scale for the overall feeling of sickness at altitude (VAS[O]) score, the Acute Mountain Sickness-Cerebral score (AMS-C), and the clinical functional score (CFS) had similar testing characteristics for diagnosing AMS as did a reference standard (the Lake Louise Questionnaire Score [LLQS] using ≥5 to indicate a positive test result).

Meaning  Although these instruments emphasize different clinical features, they all performed similarly for establishing a diagnosis of AMS. The clinical functional score is the simplest instrument to use for diagnosing AMS because it relies on a single question and emphasizes functional limitations resulting from AMS.


Importance  Acute mountain sickness (AMS) affects more than 25% of individuals ascending to 3500 m (11 500 ft) and more than 50% of those above 6000 m (19 700 ft). AMS may progress from nonspecific symptoms to life-threatening high-altitude cerebral edema in less than 1% of patients. It is not clear how to best diagnose AMS.

Objective  To systematically review studies assessing the accuracy of AMS diagnostic instruments, including the visual analog scale (VAS) score, which quantifies the overall feeling of sickness at altitude (VAS[O]; various thresholds), Acute Mountain Sickness-Cerebral score (AMS-C; ≥0.7 indicates AMS), and the clinical functional score (CFS; ≥2 indicates AMS) compared with the Lake Louise Questionnaire Score (LLQS; score of ≥5).

Data Extraction and Synthesis  Searches of MEDLINE and EMBASE from inception to May 2017 identified 1245 publications of which 91 were suitable for prevalence analysis (66 944 participants) and 14 compared at least 2 instruments (1858 participants) using a score of 5 or greater on the LLQS as a reference standard. To determine the prevalence of AMS for establishing the pretest probability of AMS, a random-effects meta-regression was performed based on the reported prevalence of AMS as a function of altitude.

Main Outcomes and Measures  AMS prevalence, likelihood ratios (LRs), sensitivity, and specificity of screening instruments.

Results  The final analysis included 91 articles (comprising 66 944 study participants). Altitude predicted AMS and accounted for 28% of heterogeneity between studies. For each 1000-m (3300-ft) increase in altitude above 2500 m (8200 ft), AMS prevalence increased 13% (95% CI, 9.5%-17%). Testing characteristics were similar for VAS(O), AMS-C, and CFS vs a score of 5 or greater on the LLQS (positive LRs: range, 3.2-8.2; P = .22 for comparisons; specificity range, 67%-92%; negative LRs: range, 0.30-0.36; P = .50 for comparisons; sensitivity range, 67%-82%). The CFS asks a single question: “overall if you had any symptoms, how did they affect your activity (ordinal scale 0-3)?” For CFS, moderate to severe reduction in daily activities had a positive LR of 3.2 (95% CI, 1.4-7.2) and specificity of 67% (95% CI, 37%-97%); no reduction to mild reduction in activities had a negative LR of 0.30 (95% CI, 0.22-0.39) and sensitivity of 82% (95% CI, 77%-87%).

Conclusions and Relevance  The prevalence of acute mountain sickness increases with higher altitudes. The visual analog scale for the overall feeling of sickness at altitude, Acute Mountain Sickness-Cerebral, and clinical functional score perform similarly to the Lake Louise Questionnaire Score using a score of 5 or greater as a reference standard. In clinical and travel settings, the clinical functional score is the simplest instrument to use. Clinicians evaluating high-altitude travelers who report moderate to severe limitations in activities of daily living (clinical functional score ≥2) should use the Lake Louise Questionnaire Score to assess the severity of acute mountain sickness.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Corresponding Author: Tinh-Hai Collet, MD, Service of Endocrinology, Diabetes, and Metabolism, Lausanne University Hospital, Bugnon 46, 1011 Lausanne, Switzerland (tinh-hai.collet@chuv.ch).

Accepted for Publication: October 5, 2017.

Correction: This article was corrected on June 19, 2018, to fix incorrect values in footnote a of Table 2 and in the Scenario Resolution section of text.

Author Contributions: Drs Meier and Collet had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Drs Meier and Collet contributed equally to this work.

Concept and design: Collet, Cornuz, Sartori.

Acquisition, analysis, or interpretation of data: Meier, Collet, Locatelli, Kayser, Simel, Sartori.

Drafting of the manuscript: Meier, Collet, Locatelli, Simel, Sartori.

Critical revision of the manuscript for important intellectual content: Meier, Collet, Cornuz, Kayser, Simel, Sartori.

Statistical analysis: Collet, Locatelli, Simel.

Obtained funding: Cornuz.

Administrative, technical, or material support: Meier, Collet, Cornuz, Kayser.

Supervision: Sartori.

Conflict of Interest Disclosures: All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Dr Simel reports receiving honoraria for contributions to JAMAEvidence.com. No other disclosures were reported.

Funding/Support: Dr Collet’s research is supported by grants from the Swiss National Science Foundation (P3SMP3-155318, PZ00P3-167826).

Role of the Funder/Sponsor: The Swiss National Science Foundation had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Additional Contributions: We thank John Patrick Yeatts, MD, MPH; Anne Reihman, MD, and John W. Williams, MD, MS, Duke University, Durham, North Carolina for their helpful comments on a previous version of this article. They did not receive compensation for their contribution.

Disclaimer: Dr Simel, section editor of The Rational Clinical Examination series, was not involved in the editorial review of or decision to publish this article. No other disclosures were reported.

Basnyat  B, Murdoch  DR.  High-altitude illness.  Lancet. 2003;361(9373):1967-1974.PubMedGoogle ScholarCrossref
Netzer  N, Strohl  K, Faulhaber  M, Gatterer  H, Burtscher  M.  Hypoxia-related altitude illnesses.  J Travel Med. 2013;20(4):247-255.PubMedGoogle ScholarCrossref
Luks  AM, Swenson  ER, Bärtsch  P.  Acute high-altitude sickness.  Eur Respir Rev. 2017;26(143):160096.PubMedGoogle ScholarCrossref
Hackett  PH, Roach  RC.  High-altitude illness.  N Engl J Med. 2001;345(2):107-114.PubMedGoogle ScholarCrossref
Jensen  JB, Sperling  B, Severinghaus  JW, Lassen  NA.  Augmented hypoxic cerebral vasodilation in men during 5 days at 3810 m altitude.  J Appl Physiol. 1996;80(4):1214-1218.PubMedGoogle ScholarCrossref
Burgess  KR, Johnson  P, Edwards  N, Cooper  J.  Acute mountain sickness is associated with sleep desaturation at high altitude.  Respirology. 2004;9(4):485-492.PubMedGoogle ScholarCrossref
Bartsch  P, Bailey  DM, Berger  MM, Knauth  M, Baumgartner  RW.  Acute mountain sickness: controversies and advances.  High Alt Med Biol. 2004;5(2):110-124.PubMedGoogle ScholarCrossref
MacInnis  MJ, Lohse  KR, Strong  JK, Koehle  MS.  Is previous history a reliable predictor for acute mountain sickness susceptibility? a meta-analysis of diagnostic accuracy.  Br J Sports Med. 2015;49(2):69-75.PubMedGoogle ScholarCrossref
Schneider  M, Bernasch  D, Weymann  J, Holle  R, Bartsch  P.  Acute mountain sickness: influence of susceptibility, preexposure, and ascent rate.  Med Sci Sports Exerc. 2002;34(12):1886-1891.PubMedGoogle ScholarCrossref
Richalet  J-P, Larmignat  P, Poitrine  E, Letournel  M, Canouï-Poitrine  F.  Physiological risk factors for severe high-altitude illness: a prospective cohort study.  Am J Respir Crit Care Med. 2012;185(2):192-198.PubMedGoogle ScholarCrossref
Canouï-Poitrine  F, Veerabudun  K, Larmignat  P, Letournel  M, Bastuji-Garin  S, Richalet  J-P.  Risk prediction score for severe high altitude illness: a cohort study.  PLoS One. 2014;9(7):e100642.PubMedGoogle ScholarCrossref
Honigman  B, Theis  MK, Koziol-McLain  J,  et al.  Acute mountain sickness in a general tourist population at moderate altitudes.  Ann Intern Med. 1993;118(8):587-592.PubMedGoogle ScholarCrossref
Pesce  C, Leal  C, Pinto  H,  et al.  Determinants of acute mountain sickness and success on Mount Aconcagua (6962 m).  High Alt Med Biol. 2005;6(2):158-166.PubMedGoogle ScholarCrossref
Weng  Y-M, Chiu  Y-H, Lynn  J-J,  et al.  Different duration of high-altitude pre-exposure associated with the incidence of acute mountain sickness on Jade Mountain.  Am J Emerg Med. 2013;31(7):1113-1117.PubMedGoogle ScholarCrossref
Wu  TY, Ding  SQ, Liu  JL,  et al.  Reduced incidence and severity of acute mountain sickness in Qinghai-Tibet railroad construction workers after repeated 7-month exposures despite 5-month low altitude periods.  High Alt Med Biol. 2009;10(3):221-232.PubMedGoogle ScholarCrossref
Gillombardo  CB, Yamauchi  M, Adams  MD,  et al.  Identification of novel mouse genes conferring posthypoxic pauses.  J Appl Physiol. 2012;113(1):167-174.PubMedGoogle ScholarCrossref
Gillombardo  CB, Darrah  R, Dick  TE,  et al.  C57BL/6J mouse apolipoprotein A2 gene is deterministic for apnea.  Respir Physiol Neurobiol. 2017;235:88-94.PubMedGoogle ScholarCrossref
Friedman  L, Haines  A, Klann  K,  et al.  Ventilatory behavior during sleep among A/J and C57BL/6J mouse strains.  J Appl Physiol. 2004;97(5):1787-1795.PubMedGoogle ScholarCrossref
Gaillard  S, Dellasanta  P, Loutan  L, Kayser  B.  Awareness, prevalence, medication use, and risk factors of acute mountain sickness in tourists trekking around the Annapurnas in Nepal: a 12-year follow-up.  High Alt Med Biol. 2004;5(4):410-419.PubMedGoogle ScholarCrossref
Gonggalanzi  L, Labasangzhu, Nafstad  P,  et al.  Acute mountain sickness among tourists visiting the high-altitude city of Lhasa at 3658 m above sea level: a cross-sectional study.  Arch Public Health. 2016;74:23.PubMedGoogle ScholarCrossref
Tang  X-G, Zhang  JH, Qin  J,  et al.  Age as a risk factor for acute mountain sickness upon rapid ascent to 3,700 m among young adult Chinese men.  Clin Interv Aging. 2014;9:1287-1294.PubMedGoogle Scholar
McDevitt  M, McIntosh  SE, Rodway  G, Peelay  J, Adams  DL, Kayser  B.  Risk determinants of acute mountain sickness in trekkers in the Nepali Himalaya: a 24-year follow-up.  Wilderness Environ Med. 2014;25(2):152-159.PubMedGoogle ScholarCrossref
Santantonio  M, Chapplain  J-M, Tattevin  P,  et al.  Prevalence of and risk factors for acute mountain sickness among a cohort of high-altitude travellers who received pre-travel counselling.  Travel Med Infect Dis. 2014;12(5):534-540.PubMedGoogle ScholarCrossref
Lawrence  JS, Reid  SA.  Risk determinants of acute mountain sickness and summit success on a 6-day ascent of Mount Kilimanjaro (5895 m).  Wilderness Environ Med. 2016;27(1):78-84.PubMedGoogle ScholarCrossref
Mairer  K, Wille  M, Bucher  T, Burtscher  M.  Prevalence of acute mountain sickness in the Eastern Alps.  High Alt Med Biol. 2009;10(3):239-245.PubMedGoogle ScholarCrossref
Hsu  T-Y, Weng  Y-M, Chiu  Y-H,  et al.  Rate of ascent and acute mountain sickness at high altitude.  Clin J Sport Med. 2015;25(2):95-104.PubMedGoogle ScholarCrossref
Bian  S-Z, Jin  J, Zhang  J-H,  et al.  Principal component analysis and risk factors for acute mountain sickness upon acute exposure at 3700 m.  PLoS One. 2015;10(11):e0142375.PubMedGoogle ScholarCrossref
Wu  T-Y, Ding  S-Q, Liu  J-L,  et al.  Smoking, acute mountain sickness and altitude acclimatisation: a cohort study.  Thorax. 2012;67(10):914-919.PubMedGoogle ScholarCrossref
Tang  E, Chen  Y, Luo  Y.  Dexamethasone for the prevention of acute mountain sickness: systematic review and meta-analysis.  Int J Cardiol. 2014;173(2):133-138.PubMedGoogle ScholarCrossref
Ritchie  ND, Baggott  AV, Andrew Todd  WT.  Acetazolamide for the prevention of acute mountain sickness—a systematic review and meta-analysis.  J Travel Med. 2012;19(5):298-307.PubMedGoogle ScholarCrossref
Kayser  B, Dumont  L, Lysakowski  C, Combescure  C, Haller  G, Tramèr  MR.  Reappraisal of acetazolamide for the prevention of acute mountain sickness: a systematic review and meta-analysis.  High Alt Med Biol. 2012;13(2):82-92.PubMedGoogle ScholarCrossref
Bircher  HP, Eichenberger  U, Maggiorini  M, Oelz  O, Bartsch  P.  Relationship of mountain sickness to physical fitness and exercise intensity during ascent.  J Wilderness Med. 1994;5(3):302-311. doi:10.1580/0953-9859-5.3.302Google ScholarCrossref
Sampson  JB, Cymerman  A, Burse  RL, Maher  JT, Rock  PB.  Procedures for the measurement of acute mountain sickness.  Aviat Space Environ Med. 1983;54(12 pt 1):1063-1073.PubMedGoogle Scholar
Hackett  PH, Rennie  D, Levine  HD.  The incidence, importance, and prophylaxis of acute mountain sickness.  Lancet. 1976;2(7996):1149-1155.PubMedGoogle ScholarCrossref
Wagner  DR, Tatsugawa  K, Parker  D, Young  TA.  Reliability and utility of a visual analog scale for the assessment of acute mountain sickness.  High Alt Med Biol. 2007;8(1):27-31.PubMedGoogle ScholarCrossref
West  JB.  English translation of “Nomenclature, classification, and diagnostic criteria of high altitude disease in China”.  High Alt Med Biol. 2010;11(2):169-172.PubMedGoogle ScholarCrossref
Roach  RC, Bärtsch  P, Hackett  PH, Oelz  O; Lake Louise AMS Scoring Consensus Committee. The Lake Louise acute mountain sickness scoring system. In: Sutton  JR, Houston  CS, Coates  G, eds.  Hypoxia and Molecular Medicine: Proceedings of the 8th International Hypoxia Symposium Held at Lake Louise, Canada, February 9-13, 1993. Burlington, VT: Queen City Printers; 1993:272-274.
Simel  DL, Rennie  D. The Rational Clinical Examination: Evidence-Based Clinical Diagnosis. McGraw Hill Medical; 2009. http://jamaevidence.mhmedical.com/book.aspx?bookID=845. Accessed October 20, 2017.
Scherrer  U, Rexhaj  E, Jayet  P-Y, Allemann  Y, Sartori  C.  New insights in the pathogenesis of high-altitude pulmonary edema.  Prog Cardiovasc Dis. 2010;52(6):485-492.PubMedGoogle ScholarCrossref
Whiting  PF, Rutjes  AWS, Westwood  ME,  et al; QUADAS-2 Group.  QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies.  Ann Intern Med. 2011;155(8):529-536.PubMedGoogle ScholarCrossref
Higgins  JPT, Thompson  SG.  Quantifying heterogeneity in a meta-analysis.  Stat Med. 2002;21(11):1539-1558.PubMedGoogle ScholarCrossref
Takwoingi  Y, Guo  B, Riley  RD, Deeks  JJ.  Performance of methods for meta-analysis of diagnostic test accuracy with few studies or sparse data.  Stat Methods Med Res. 2017;26(4):1896-1911.PubMedGoogle ScholarCrossref
Southard  A, Niermeyer  S, Yaron  M.  Language used in Lake Louise Scoring System underestimates symptoms of acute mountain sickness in 4- to 11-year-old children.  High Alt Med Biol. 2007;8(2):124-130.PubMedGoogle ScholarCrossref
Dallimore  J, Foley  JA, Valentine  P.  Background rates of acute mountain sickness-like symptoms at low altitude in adolescents using Lake Louise score.  Wilderness Environ Med. 2012;23(1):11-14.PubMedGoogle ScholarCrossref
Wagner  DR, Teramoto  M, Knott  JR, Fry  JP.  Comparison of scoring systems for assessment of acute mountain sickness.  High Alt Med Biol. 2012;13(4):245-251.PubMedGoogle ScholarCrossref
Frühauf  A, Burtscher  M, Pocecco  E, Faulhaber  M, Kopp  M.  Subjective assessment of acute mountain sickness: investigating the relationship between the Lake Louise Self-Report, a visual analogue scale and psychological well-being scales.  Springerplus. 2016;5(1):1646.PubMedGoogle ScholarCrossref
Maggiorini  M, Müller  A, Hofstetter  D, Bärtsch  P, Oelz  O.  Assessment of acute mountain sickness by different score protocols in the Swiss Alps.  Aviat Space Environ Med. 1998;69(12):1186-1192.PubMedGoogle Scholar
Hackett  PH, Rennie  D, Grover  RF, Reeves  JT.  Acute mountain sickness and the edemas of high altitude: a common pathogenesis?  Respir Physiol. 1981;46(3):383-390.PubMedGoogle ScholarCrossref
Hackett  PH, Rennie  D.  Rales, peripheral edema, retinal hemorrhage and acute mountain sickness.  Am J Med. 1979;67(2):214-218.PubMedGoogle ScholarCrossref
Bärtsch  P, Waber  U, Haeberli  A,  et al.  Enhanced fibrin formation in high-altitude pulmonary edema.  J Appl Physiol. 1987;63(2):752-757.PubMedGoogle ScholarCrossref
Bruno  RM, Giardini  G, Malacrida  S,  et al.  Role of altered vascular reactivity in the pathophysiology of acute mountain sickness.  Artery Res. 2015;12:29. doi:10.1016/j.artres.2015.10.304Google ScholarCrossref
Dellasanta  P, Gaillard  S, Loutan  L, Kayser  B.  Comparing questionnaires for the assessment of acute mountain sickness.  High Alt Med Biol. 2007;8(3):184-191.PubMedGoogle ScholarCrossref
Kayser  B, Aliverti  A, Pellegrino  R,  et al.  Comparison of a visual analogue scale and Lake Louise symptom scores for acute mountain sickness.  High Alt Med Biol. 2010;11(1):69-72.PubMedGoogle ScholarCrossref
Van Roo  JD, Lazio  MP, Pesce  C, Malik  S, Courtney  DM.  Visual analog scale (VAS) for assessment of acute mountain sickness (AMS) on Aconcagua.  Wilderness Environ Med. 2011;22(1):7-14.PubMedGoogle ScholarCrossref
Dehnert  C, Böhm  A, Grigoriev  I, Menold  E, Bärtsch  P.  Sleeping in moderate hypoxia at home for prevention of acute mountain sickness (AMS): a placebo-controlled, randomized double-blind study.  Wilderness Environ Med. 2014;25(3):263-271.PubMedGoogle ScholarCrossref
Savourey  G, Guinet  A, Besnard  Y, Garcia  N, Hanniquet  AM, Bittel  J.  Evaluation of the Lake Louise acute mountain sickness scoring system in a hypobaric chamber.  Aviat Space Environ Med. 1995;66(10):963-967.PubMedGoogle Scholar
Roeggla  G, Roeggla  M, Podolsky  A, Wagner  A, Laggner  AN.  How can acute mountain sickness be quantified at moderate altitude?  J R Soc Med. 1996;89(3):141-143.PubMedGoogle ScholarCrossref
Hext  F, Stubbings  A, Bird  B, Patey  S, Wright  A; Birmingham Medical Research Expeditionary Society.  Visual analogue scores in assessment of acute mountain sickness.  High Alt Med Biol. 2011;12(4):329-333.PubMedGoogle ScholarCrossref
Slingo  ME, Lowe  FSJ, Pieri  ARP, Imray  CHE; British Schools Exploring Society.  Visual analogue self-assessment of acute mountain sickness in adolescents: experience from two Himalayan expeditions.  High Alt Med Biol. 2012;13(3):185-192.PubMedGoogle ScholarCrossref
Chen  GZ, Qin  J, Yu  J,  et al.  Incidence of acute mountain sickness in young adults at 3200 meters: comparison of the Lake Louise Scoring and Chinese Scoring Systems.  Genet Mol Res. 2013;12(4):6790-6801.PubMedGoogle ScholarCrossref
Subudhi  AW, Bourdillon  N, Bucher  J,  et al.  AltitudeOmics: the integrative physiology of human acclimatization to hypobaric hypoxia and its retention upon reascent.  PLoS One. 2014;9(3):e92191.PubMedGoogle ScholarCrossref
Hall  DP, MacCormick  IJC, Phythian-Adams  AT,  et al.  Network analysis reveals distinct clinical syndromes underlying acute mountain sickness.  PLoS One. 2014;9(1):e81229.PubMedGoogle ScholarCrossref
Leichtfried  V, Basic  D, Burtscher  M, Gothe  RM, Siebert  U, Schobersberger  W.  Diagnosis and prediction of the occurrence of acute mountain sickness measuring oxygen saturation--independent of absolute altitude?  Sleep Breath. 2016;20(1):435-442.PubMedGoogle ScholarCrossref
Li  M, Zhang  J-H, Zhao  G-X,  et al.  A specific objective supplemental factor in evaluating acute mountain sickness: ΔHR in combination with SaO2.  Mil Med Res. 2015;2:26.PubMedGoogle ScholarCrossref
West  JB.  Predicting acute mountain sickness.  High Alt Med Biol. 2014;15(4):427.PubMedGoogle ScholarCrossref
Macinnis  MJ, Lanting  SC, Rupert  JL, Koehle  MS.  Is poor sleep quality at high altitude separate from acute mountain sickness? factor structure and internal consistency of the Lake Louise Score Questionnaire.  High Alt Med Biol. 2013;14(4):334-337.PubMedGoogle ScholarCrossref
Roach  R, Kayser  B, Hackett  P.  Pro: Headache should be a required symptom for the diagnosis of acute mountain sickness.  High Alt Med Biol. 2011;12(1):21-22.PubMedGoogle ScholarCrossref
West  JB.  Con: headache should not be a required symptom for the diagnosis of acute mountain sickness.  High Alt Med Biol. 2011;12(1):23-25.PubMedGoogle ScholarCrossref
Theis  MK, Honigman  B, Yip  R, McBride  D, Houston  CS, Moore  LG.  Acute mountain sickness in children at 2835 meters.  Am J Dis Child. 1993;147(2):143-145.PubMedGoogle Scholar
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience

Lookup An Activity



My Saved Searches

You currently have no searches saved.

With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right