[Skip to Content]
[Skip to Content Landing]

Association of Exercise Preconditioning With Immediate CardioprotectionA Review

Educational Objective
To describe the physiology of exercise-induced ischemic preconditioning and cardioprotection.
1 Credit CME
Abstract

Importance  Exercise reduces the risk of cardiovascular events, including through an underrecognized, clinically useful form of acute cardioprotection accessible after a single episode of exercise, which is called cardiovascular preconditioning.

Observations  Preclinical evidence shows that 1 to 3 episodes of exercise per week will provide strong cardioprotection; gradual, modest cardiovascular risk factor modification or physiological artery remodeling cannot fully explain these benefits. This review highlights preclinical evidence that acute exercise-induced cardiac preconditioning has the ability to activate multiple pathways to confer immediate protection against ischemic events, reduce the severity of potentially lethal ischemic myocardiac injury, and act as a physiological first line of defense.

Conclusions and Relevance  Independent of the protective benefits of long-term exercise training on risk factors and adaptation of the cardiovascular system, cardiovascular preconditioning may contribute to the immediate cardioprotection of exercise. In practical terms, this means that 1 episode of exercise can create clinically relevant cardioprotection.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Corresponding Author: Dick H. J. Thijssen, PhD, Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Philips van Leijdenlaan 15, 6525 EX Nijmegen, the Netherlands (dick.thijssen@radboudumc.nl).

Accepted for Publication: October 8, 2017.

Published Online: November 29, 2017. doi:10.1001/jamacardio.2017.4495

Author Contributions: Dr Thijssen had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Thijssen, Redington, Hopman, Jones.

Acquisition, analysis, or interpretation of data: Redington, George, Jones.

Drafting of the manuscript: All authors.

Critical revision of the manuscript for important intellectual content: Thijssen, Hopman, Jones.

Administrative, technical, or material support: Thijssen, Redington, George, Jones.

Study supervision: Thijssen, Redington, Hopman.

Conflict of Interest Disclosures: All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest and none were reported.

References
1.
Paffenbarger  RS  Jr, Hyde  RT, Wing  AL, Hsieh  CC.  Physical activity, all-cause mortality, and longevity of college alumni.  N Engl J Med. 1986;314(10):605-613.PubMedGoogle ScholarCrossref
2.
Manson  JE, Hu  FB, Rich-Edwards  JW,  et al.  A prospective study of walking as compared with vigorous exercise in the prevention of coronary heart disease in women.  N Engl J Med. 1999;341(9):650-658.PubMedGoogle ScholarCrossref
3.
Anderson  L, Oldridge  N, Thompson  DR,  et al.  Exercise-based cardiac rehabilitation for coronary heart disease: Cochrane systematic review and meta-analysis.  J Am Coll Cardiol. 2016;67(1):1-12.PubMedGoogle ScholarCrossref
4.
Pitsavos  C, Kavouras  SA, Panagiotakos  DB,  et al; GREECS Study Investigators.  Physical activity status and acute coronary syndromes survival: the GREECS (Greek Study of Acute Coronary Syndromes) study.  J Am Coll Cardiol. 2008;51(21):2034-2039.PubMedGoogle ScholarCrossref
5.
Naci  H, Ioannidis  JP.  Comparative effectiveness of exercise and drug interventions on mortality outcomes: metaepidemiological study.  BMJ. 2013;347:f5577.PubMedGoogle ScholarCrossref
6.
Green  DJ, O’Driscoll  G, Joyner  MJ, Cable  NT.  Exercise and cardiovascular risk reduction: time to update the rationale for exercise?  J Appl Physiol (1985). 2008;105(2):766-768.PubMedGoogle ScholarCrossref
7.
Green  DJ, Hopman  MT, Padilla  J, Laughlin  MH, Thijssen  DH.  Vascular adaptation to exercise in humans: role of hemodynamic stimuli.  Physiol Rev. 2017;97(2):495-528.PubMedGoogle ScholarCrossref
8.
Mora  S, Cook  N, Buring  JE, Ridker  PM, Lee  IM.  Physical activity and reduced risk of cardiovascular events: potential mediating mechanisms.  Circulation. 2007;116(19):2110-2118.PubMedGoogle ScholarCrossref
9.
Kloner  RA, Bolli  R, Marban  E, Reinlib  L, Braunwald  E.  Medical and cellular implications of stunning, hibernation, and preconditioning: an NHLBI workshop.  Circulation. 1998;97(18):1848-1867.PubMedGoogle ScholarCrossref
10.
Demirel  HA, Powers  SK, Zergeroglu  MA,  et al.  Short-term exercise improves myocardial tolerance to in vivo ischemia-reperfusion in the rat.  J Appl Physiol (1985). 2001;91(5):2205-2212.PubMedGoogle ScholarCrossref
11.
Hamilton  KL, Powers  SK, Sugiura  T,  et al.  Short-term exercise training can improve myocardial tolerance to I/R without elevation in heat shock proteins.  Am J Physiol Heart Circ Physiol. 2001;281(3):H1346-H1352.PubMedGoogle ScholarCrossref
12.
de Waard  MC, Duncker  DJ.  Prior exercise improves survival, infarct healing, and left ventricular function after myocardial infarction.  J Appl Physiol (1985). 2009;107(3):928-936.PubMedGoogle ScholarCrossref
13.
Frasier  CR, Moore  RL, Brown  DA.  Exercise-induced cardiac preconditioning: how exercise protects your achy-breaky heart.  J Appl Physiol (1985). 2011;111(3):905-915.PubMedGoogle ScholarCrossref
14.
Murry  CE, Jennings  RB, Reimer  KA.  Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium.  Circulation. 1986;74(5):1124-1136.PubMedGoogle ScholarCrossref
15.
Przyklenk  K, Bauer  B, Ovize  M, Kloner  RA, Whittaker  P.  Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion.  Circulation. 1993;87(3):893-899.PubMedGoogle ScholarCrossref
16.
Pickard  JM, Bøtker  HE, Crimi  G,  et al.  Remote ischemic conditioning: from experimental observation to clinical application: report from the 8th Biennial Hatter Cardiovascular Institute Workshop.  Basic Res Cardiol. 2015;110(1):453.PubMedGoogle ScholarCrossref
17.
Thielmann  M, Kottenberg  E, Kleinbongard  P,  et al.  Cardioprotective and prognostic effects of remote ischaemic preconditioning in patients undergoing coronary artery bypass surgery: a single-centre randomised, double-blind, controlled trial.  Lancet. 2013;382(9892):597-604.PubMedGoogle ScholarCrossref
18.
Bøtker  HE, Kharbanda  R, Schmidt  MR,  et al.  Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial.  Lancet. 2010;375(9716):727-734.PubMedGoogle ScholarCrossref
19.
Hull  SS  Jr, Vanoli  E, Adamson  PB, Verrier  RL, Foreman  RD, Schwartz  PJ.  Exercise training confers anticipatory protection from sudden death during acute myocardial ischemia.  Circulation. 1994;89(2):548-552.PubMedGoogle ScholarCrossref
20.
Marber  MS, Latchman  DS, Walker  JM, Yellon  DM.  Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction.  Circulation. 1993;88(3):1264-1272.PubMedGoogle ScholarCrossref
21.
Heusch  G.  Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning.  Circ Res. 2015;116(4):674-699.PubMedGoogle ScholarCrossref
22.
Yamashita  N, Hoshida  S, Otsu  K, Asahi  M, Kuzuya  T, Hori  M.  Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation.  J Exp Med. 1999;189(11):1699-1706.PubMedGoogle ScholarCrossref
23.
Lennon  SL, Quindry  J, Hamilton  KL,  et al.  Loss of exercise-induced cardioprotection after cessation of exercise.  J Appl Physiol (1985). 2004;96(4):1299-1305.PubMedGoogle ScholarCrossref
24.
Williams  RP, Manou-Stathopoulou  V, Redwood  SR, Marber  MS.  ‘Warm-up angina’: harnessing the benefits of exercise and myocardial ischaemia.  Heart. 2014;100(2):106-114.PubMedGoogle ScholarCrossref
25.
Lalonde  F, Poirier  P, Sylvestre  MP, Arvisais  D, Curnier  D.  Exercise-induced ischemic preconditioning detected by sequential exercise stress tests: a meta-analysis.  Eur J Prev Cardiol. 2015;22(1):100-112.PubMedGoogle ScholarCrossref
26.
Bogaty  P, Poirier  P, Boyer  L, Jobin  J, Dagenais  GR.  What induces the warm-up ischemia/angina phenomenon: exercise or myocardial ischemia?  Circulation. 2003;107(14):1858-1863.PubMedGoogle ScholarCrossref
27.
Paraskevaidis  IA, Iliodromitis  EK, Mavrogeni  S,  et al.  Repeated exercise stress testing identifies early and late preconditioning.  Int J Cardiol. 2005;98(2):221-226.PubMedGoogle ScholarCrossref
28.
Lambiase  PD, Edwards  RJ, Cusack  MR, Bucknall  CA, Redwood  SR, Marber  MS.  Exercise-induced ischemia initiates the second window of protection in humans independent of collateral recruitment.  J Am Coll Cardiol. 2003;41(7):1174-1182.PubMedGoogle ScholarCrossref
29.
Yamashita  N, Baxter  GF, Yellon  DM.  Exercise directly enhances myocardial tolerance to ischaemia-reperfusion injury in the rat through a protein kinase C mediated mechanism.  Heart. 2001;85(3):331-336.PubMedGoogle ScholarCrossref
30.
Domenech  R, Macho  P, Schwarze  H, Sánchez  G.  Exercise induces early and late myocardial preconditioning in dogs.  Cardiovasc Res. 2002;55(3):561-566.PubMedGoogle ScholarCrossref
31.
Parra  VM, Macho  P, Sánchez  G, Donoso  P, Domenech  RJ.  Exercise preconditioning of myocardial infarct size in dogs is triggered by calcium.  J Cardiovasc Pharmacol. 2015;65(3):276-281.PubMedGoogle ScholarCrossref
32.
Parra  VM, Macho  P, Domenech  RJ.  Late cardiac preconditioning by exercise in dogs is mediated by mitochondrial potassium channels.  J Cardiovasc Pharmacol. 2010;56(3):268-274.PubMedGoogle ScholarCrossref
33.
Michelsen  MM, Støttrup  NB, Schmidt  MR,  et al.  Exercise-induced cardioprotection is mediated by a bloodborne, transferable factor.  Basic Res Cardiol. 2012;107(3):260.PubMedGoogle ScholarCrossref
34.
Miller  LE, McGinnis  GR, Peters  BA,  et al.  Involvement of the δ-opioid receptor in exercise-induced cardioprotection.  Exp Physiol. 2015;100(4):410-421.PubMedGoogle ScholarCrossref
35.
Rengo  G, Galasso  G, Piscione  F,  et al.  An active lifestyle improves outcome of primary angioplasty in elderly patients with acute myocardial infarction.  Am Heart J. 2007;154(2):352-360.PubMedGoogle ScholarCrossref
36.
Abete  P, Ferrara  N, Cacciatore  F,  et al.  High level of physical activity preserves the cardioprotective effect of preinfarction angina in elderly patients.  J Am Coll Cardiol. 2001;38(5):1357-1365.PubMedGoogle ScholarCrossref
37.
Rengo  G, Galasso  G, Vitale  DF,  et al.  An active lifestyle prior to coronary surgery is associated with improved survival in elderly patients.  J Gerontol A Biol Sci Med Sci. 2010;65(7):758-763.PubMedGoogle ScholarCrossref
38.
Rinaldi  CA, Masani  ND, Linka  AZ, Hall  RJ.  Effect of repetitive episodes of exercise induced myocardial ischaemia on left ventricular function in patients with chronic stable angina: evidence for cumulative stunning or ischaemic preconditioning?  Heart. 1999;81(4):404-411.PubMedGoogle ScholarCrossref
39.
McElroy  CL, Gissen  SA, Fishbein  MC.  Exercise-induced reduction in myocardial infarct size after coronary artery occlusion in the rat.  Circulation. 1978;57(5):958-962.PubMedGoogle ScholarCrossref
40.
Li  Y, Cai  M, Cao  L,  et al.  Endurance exercise accelerates myocardial tissue oxygenation recovery and reduces ischemia reperfusion injury in mice.  PLoS One. 2014;9(12):e114205.PubMedGoogle ScholarCrossref
41.
de Waard  MC, van Haperen  R, Soullié  T, Tempel  D, de Crom  R, Duncker  DJ.  Beneficial effects of exercise training after myocardial infarction require full eNOS expression.  J Mol Cell Cardiol. 2010;48(6):1041-1049.PubMedGoogle ScholarCrossref
42.
Sun  XJ, Pan  SS.  Role of calcitonin gene-related peptide in cardioprotection of short-term and long-term exercise preconditioning.  J Cardiovasc Pharmacol. 2014;64(1):53-59.PubMedGoogle ScholarCrossref
43.
Margonato  V, Milano  G, Allibardi  S, Merati  G, de Jonge  R, Samaja  M.  Swim training improves myocardial resistance to ischemia in rats.  Int J Sports Med. 2000;21(3):163-167.PubMedGoogle ScholarCrossref
44.
Farah  C, Kleindienst  A, Bolea  G,  et al.  Exercise-induced cardioprotection: a role for eNOS uncoupling and NO metabolites.  Basic Res Cardiol. 2013;108(6):389.PubMedGoogle ScholarCrossref
45.
Brown  DA, Chicco  AJ, Jew  KN,  et al.  Cardioprotection afforded by chronic exercise is mediated by the sarcolemmal, and not the mitochondrial, isoform of the KATP channel in the rat.  J Physiol. 2005;569(pt 3):913-924.PubMedGoogle ScholarCrossref
46.
Powers  SK, Demirel  HA, Vincent  HK,  et al.  Exercise training improves myocardial tolerance to in vivo ischemia-reperfusion in the rat.  Am J Physiol. 1998;275(5, pt 2):R1468-R1477.PubMedGoogle Scholar
47.
Calvert  JW, Condit  ME, Aragón  JP,  et al.  Exercise protects against myocardial ischemia-reperfusion injury via stimulation of β(3)-adrenergic receptors and increased nitric oxide signaling: role of nitrite and nitrosothiols.  Circ Res. 2011;108(12):1448-1458.PubMedGoogle ScholarCrossref
48.
Freimann  S, Scheinowitz  M, Yekutieli  D, Feinberg  MS, Eldar  M, Kessler-Icekson  G.  Prior exercise training improves the outcome of acute myocardial infarction in the rat: heart structure, function, and gene expression.  J Am Coll Cardiol. 2005;45(6):931-938.PubMedGoogle ScholarCrossref
49.
van den Munckhof  I, Riksen  N, Seeger  JP,  et al.  Aging attenuates the protective effect of ischemic preconditioning against endothelial ischemia-reperfusion injury in humans.  Am J Physiol Heart Circ Physiol. 2013;304(12):H1727-H1732.PubMedGoogle ScholarCrossref
50.
Takase  B, Hamabe  A, Satomura  K,  et al.  Close relationship between the vasodilator response to acetylcholine in the brachial and coronary artery in suspected coronary artery disease.  Int J Cardiol. 2005;105(1):58-66.PubMedGoogle ScholarCrossref
51.
Seeger  JP, Lenting  CJ, Schreuder  TH,  et al.  Interval exercise, but not endurance exercise, prevents endothelial ischemia-reperfusion injury in healthy subjects.  Am J Physiol Heart Circ Physiol. 2015;308(4):H351-H357.PubMedGoogle ScholarCrossref
52.
Brunt  VE, Jeckell  AT, Ely  BR, Howard  MJ, Thijssen  DH, Minson  CT.  Acute hot water immersion is protective against impaired vascular function following forearm ischemia-reperfusion in young healthy humans.  Am J Physiol Regul Integr Comp Physiol. 2016;311(6):R1060-R1067.PubMedGoogle ScholarCrossref
53.
DeVan  AE, Umpierre  D, Lin  HF,  et al.  Habitual resistance exercise and endothelial ischemia-reperfusion injury in young adults.  Atherosclerosis. 2011;219(1):191-193.PubMedGoogle ScholarCrossref
54.
Devan  AE, Umpierre  D, Harrison  ML,  et al.  Endothelial ischemia-reperfusion injury in humans: association with age and habitual exercise.  Am J Physiol Heart Circ Physiol. 2011;300(3):H813-H819.PubMedGoogle ScholarCrossref
55.
Maessen  MFH, van Mil  ACCM, Straathof  Y,  et al.  Impact of lifelong exercise training on endothelial ischemia-reperfusion and ischemic preconditioning in humans.  Am J Physiol Regul Integr Comp Physiol. 2017;312(5):R828-R834.PubMedGoogle ScholarCrossref
56.
Chicco  AJ, Johnson  MS, Armstrong  CJ,  et al.  Sex-specific and exercise-acquired cardioprotection is abolished by sarcolemmal KATP channel blockade in the rat heart.  Am J Physiol Heart Circ Physiol. 2007;292(5):H2432-H2437.PubMedGoogle ScholarCrossref
57.
Akita  Y, Otani  H, Matsuhisa  S,  et al.  Exercise-induced activation of cardiac sympathetic nerve triggers cardioprotection via redox-sensitive activation of eNOS and upregulation of iNOS.  Am J Physiol Heart Circ Physiol. 2007;292(5):H2051-H2059.PubMedGoogle ScholarCrossref
58.
McGinnis  GR, Ballmann  C, Peters  B,  et al.  Interleukin-6 mediates exercise preconditioning against myocardial ischemia reperfusion injury.  Am J Physiol Heart Circ Physiol. 2015;308(11):H1423-H1433.PubMedGoogle ScholarCrossref
59.
Quindry  JC, Miller  L, McGinnis  G,  et al.  Ischemia reperfusion injury, KATP channels, and exercise-induced cardioprotection against apoptosis.  J Appl Physiol (1985). 2012;113(3):498-506.PubMedGoogle ScholarCrossref
60.
Locke  M, Tanguay  RM, Klabunde  RE, Ianuzzo  CD.  Enhanced postischemic myocardial recovery following exercise induction of HSP 72.  Am J Physiol. 1995;269(1, pt 2):H320-H325.PubMedGoogle Scholar
61.
Hoshida  S, Yamashita  N, Otsu  K, Hori  M.  Repeated physiologic stresses provide persistent cardioprotection against ischemia-reperfusion injury in rats.  J Am Coll Cardiol. 2002;40(4):826-831.PubMedGoogle ScholarCrossref
62.
Budiono  BP, See Hoe  LE, Brunt  AR, Peart  JN, Headrick  JP, Haseler  LJ.  Coupling of myocardial stress resistance and signaling to voluntary activity and inactivity.  Acta Physiol (Oxf). 2016;218(2):112-122.PubMedGoogle ScholarCrossref
63.
Ferdinandy  P, Hausenloy  DJ, Heusch  G, Baxter  GF, Schulz  R.  Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning.  Pharmacol Rev. 2014;66(4):1142-1174.PubMedGoogle ScholarCrossref
64.
Li  L, Meng  F, Li  N,  et al.  Exercise training prevents the attenuation of anesthetic pre-conditioning-mediated cardioprotection in diet-induced obese rats.  Acta Anaesthesiol Scand. 2015;59(1):85-97.PubMedGoogle ScholarCrossref
65.
Lund  J, Hafstad  AD, Boardman  NT,  et al.  Exercise training promotes cardioprotection through oxygen-sparing action in high fat-fed mice.  Am J Physiol Heart Circ Physiol. 2015;308(8):H823-H829.PubMedGoogle ScholarCrossref
66.
Pons  S, Martin  V, Portal  L,  et al.  Regular treadmill exercise restores cardioprotective signaling pathways in obese mice independently from improvement in associated co-morbidities.  J Mol Cell Cardiol. 2013;54:82-89.PubMedGoogle ScholarCrossref
67.
Boengler  K, Schulz  R, Heusch  G.  Loss of cardioprotection with ageing.  Cardiovasc Res. 2009;83(2):247-261.PubMedGoogle ScholarCrossref
68.
Abete  P, Calabrese  C, Ferrara  N,  et al.  Exercise training restores ischemic preconditioning in the aging heart.  J Am Coll Cardiol. 2000;36(2):643-650.PubMedGoogle ScholarCrossref
69.
Wang  W, Zhang  H, Xue  G,  et al.  Exercise training preserves ischemic preconditioning in aged rat hearts by restoring the myocardial polyamine pool.  Oxid Med Cell Longev. 2014;2014:457429.PubMedGoogle Scholar
70.
Abete  P, Testa  G, Galizia  G,  et al.  Tandem action of exercise training and food restriction completely preserves ischemic preconditioning in the aging heart.  Exp Gerontol. 2005;40(1-2):43-50.PubMedGoogle ScholarCrossref
71.
Domenech  RJ, Macho  P, Vélez  D, Sánchez  G, Liu  X, Dhalla  N.  Tachycardia preconditions infarct size in dogs: role of adenosine and protein kinase C.  Circulation. 1998;97(8):786-794.PubMedGoogle ScholarCrossref
72.
Bowles  DK, Farrar  RP, Starnes  JW.  Exercise training improves cardiac function after ischemia in the isolated, working rat heart.  Am J Physiol. 1992;263(3, pt 2):H804-H809.PubMedGoogle Scholar
73.
Lennon  SL, Quindry  JC, French  JP, Kim  S, Mehta  JL, Powers  SK.  Exercise and myocardial tolerance to ischaemia-reperfusion.  Acta Physiol Scand. 2004;182(2):161-169.PubMedGoogle ScholarCrossref
74.
Libonati  JR, Gaughan  JP, Hefner  CA, Gow  A, Paolone  AM, Houser  SR.  Reduced ischemia and reperfusion injury following exercise training.  Med Sci Sports Exerc. 1997;29(4):509-516.PubMedGoogle ScholarCrossref
75.
Egan  KJ, Janssen  H, Sena  ES,  et al.  Exercise reduces infarct volume and facilitates neurobehavioral recovery: results from a systematic review and meta-analysis of exercise in experimental models of focal ischemia.  Neurorehabil Neural Repair. 2014;28(8):800-812.PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
Close
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close