[Skip to Content]
[Skip to Content Landing]

Acute Respiratory Distress SyndromeAdvances in Diagnosis and Treatment

Educational Objective
To review the clinical management of adults with acute respiratory distress syndrome (ARDS).
1 Credit CME
Key Points

Question  What advances in diagnosis and treatment of acute respiratory distress syndrome (ARDS) have been introduced in the last 5 years?

Findings  The diagnosis of ARDS is based on fulfilling the Berlin definition criteria for timing of the syndrome’s onset, origin of edema, chest radiograph findings, and hypoxemia. Few pharmacologic treatments are available and management remains supportive largely based on physiological approaches to lung-protective mechanical ventilation.

Meaning  The Berlin definition of ARDS addressed limitations from prior definitions but poor reliability of some criteria may contribute to underrecognition. Clinical guidelines can assist clinicians in the evidence-based use of 6 interventions related to mechanical ventilation and extracorporeal membrane oxygenation.

Abstract

Importance  Acute respiratory distress syndrome (ARDS) is a life-threatening form of respiratory failure that affects approximately 200 000 patients each year in the United States, resulting in nearly 75 000 deaths annually. Globally, ARDS accounts for 10% of intensive care unit admissions, representing more than 3 million patients with ARDS annually.

Objective  To review advances in diagnosis and treatment of ARDS over the last 5 years.

Evidence Review  We searched MEDLINE, EMBASE, and the Cochrane Database of Systematic Reviews from 2012 to 2017 focusing on randomized clinical trials, meta-analyses, systematic reviews, and clinical practice guidelines. Articles were identified for full text review with manual review of bibliographies generating additional references.

Findings  After screening 1662 citations, 31 articles detailing major advances in the diagnosis or treatment of ARDS were selected. The Berlin definition proposed 3 categories of ARDS based on the severity of hypoxemia: mild (200 mm Hg<Pao2/Fio2≤300 mm Hg), moderate (100 mm Hg<Pao2/Fio2≤200 mm Hg), and severe (Pao2/Fio2 ≤100 mm Hg), along with explicit criteria related to timing of the syndrome’s onset, origin of edema, and the chest radiograph findings. The Berlin definition has significantly greater predictive validity for mortality than the prior American-European Consensus Conference definition. Clinician interpretation of the origin of edema and chest radiograph criteria may be less reliable in making a diagnosis of ARDS. The cornerstone of management remains mechanical ventilation, with a goal to minimize ventilator-induced lung injury (VILI). Aspirin was not effective in preventing ARDS in patients at high-risk for the syndrome. Adjunctive interventions to further minimize VILI, such as prone positioning in patients with a Pao2/Fio2 ratio less than 150 mm Hg, were associated with a significant mortality benefit whereas others (eg, extracorporeal carbon dioxide removal) remain experimental. Pharmacologic therapies such as β2 agonists, statins, and keratinocyte growth factor, which targeted pathophysiologic alterations in ARDS, were not beneficial and demonstrated possible harm. Recent guidelines on mechanical ventilation in ARDS provide evidence-based recommendations related to 6 interventions, including low tidal volume and inspiratory pressure ventilation, prone positioning, high-frequency oscillatory ventilation, higher vs lower positive end-expiratory pressure, lung recruitment maneuvers, and extracorporeal membrane oxygenation.

Conclusions and Relevance  The Berlin definition of acute respiratory distress syndrome addressed limitations of the American-European Consensus Conference definition, but poor reliability of some criteria may contribute to underrecognition by clinicians. No pharmacologic treatments aimed at the underlying pathology have been shown to be effective, and management remains supportive with lung-protective mechanical ventilation. Guidelines on mechanical ventilation in patients with acute respiratory distress syndrome can assist clinicians in delivering evidence-based interventions that may lead to improved outcomes.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Corresponding Author: Eddy Fan, MD, PhD, Toronto General Hospital, 585 University Ave, PMB 11-123, Toronto, ON, Canada M5G 2N2 (eddy.fan@uhn.ca).

Accepted for Publication: January 22, 2018.

Author Contributions: Dr Fan had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Conflict of Interest Disclosures: All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Dr Brodie reported serving on the medical advisory board for ALung Technologies and Kadence, with compensation paid to his institution. Dr Slutsky reported serving as chair for the data and safety monitoring committee at Faron Pharmaceuticals and on advisory committees for Baxter, Maquet Critical Care, and Novalung. No other disclosures were reported.

Funding/Support: Dr Fan is supported by a New Investigator Award from the Canadian Institutes of Health Research.

Role of the Funder/Sponsor: The Canadian Institutes of Health Research had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

References
1.
Ashbaugh  DG, Bigelow  DB, Petty  TL, Levine  BE.  Acute respiratory distress in adults.  Lancet. 1967;2(7511):319-323.PubMedGoogle ScholarCrossref
2.
Rubenfeld  GD, Caldwell  E, Peabody  E,  et al.  Incidence and outcomes of acute lung injury.  N Engl J Med. 2005;353(16):1685-1693.PubMedGoogle ScholarCrossref
3.
Bellani  G, Laffey  JG, Pham  T,  et al; LUNG SAFE Investigators; ESICM Trials Group.  Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries.  JAMA. 2016;315(8):788-800.PubMedGoogle ScholarCrossref
4.
Fan  E, Needham  DM, Stewart  TE.  Ventilatory management of acute lung injury and acute respiratory distress syndrome.  JAMA. 2005;294(22):2889-2896.PubMedGoogle ScholarCrossref
5.
Herridge  MS, Cheung  AM, Tansey  CM,  et al; Canadian Critical Care Trials Group.  One-year outcomes in survivors of the acute respiratory distress syndrome.  N Engl J Med. 2003;348(8):683-693.PubMedGoogle ScholarCrossref
6.
Herridge  MS, Tansey  CM, Matté  A,  et al; Canadian Critical Care Trials Group.  Functional disability 5 years after acute respiratory distress syndrome.  N Engl J Med. 2011;364(14):1293-1304.PubMedGoogle ScholarCrossref
7.
Fan  E, Dowdy  DW, Colantuoni  E,  et al.  Physical complications in acute lung injury survivors: a two-year longitudinal prospective study.  Crit Care Med. 2014;42(4):849-859.PubMedGoogle ScholarCrossref
8.
Ferguson  ND, Fan  E, Camporota  L,  et al.  The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material.  Intensive Care Med. 2012;38(10):1573-1582.PubMedGoogle ScholarCrossref
9.
Bernard  GR, Artigas  A, Brigham  KL,  et al. The American-European Consensus Conference on ARDS: definitions, mechanisms, relevant outcomes, and clinical trial coordination. In: Vol 149. 1994:818-824.
10.
Ranieri  VM, Rubenfeld  GD, Thompson  BT,  et al; ARDS Definition Task Force.  Acute respiratory distress syndrome: the Berlin Definition.  JAMA. 2012;307(23):2526-2533. PubMedGoogle Scholar
11.
Goddard  S, Fan  E, Manoharan  V, Rubenfeld  GD.  Randomized Educational ARDS Diagnosis Study (READS): a LUNG SAFE sub-study.  Am J Respir Crit Care Med. 2016;193:A4292.Google Scholar
12.
Beitler  JR, Goligher  EC, Schmidt  M,  et al; ARDSne(x)t Investigators.  Personalized medicine for ARDS: the 2035 research agenda.  Intensive Care Med. 2016;42(5):756-767.PubMedGoogle ScholarCrossref
13.
Slutsky  AS, Ranieri  VM.  Ventilator-induced lung injury.  N Engl J Med. 2013;369(22):2126-2136.PubMedGoogle ScholarCrossref
14.
Fan  E, Del Sorbo  L, Goligher  EC,  et al; American Thoracic Society, European Society of Intensive Care Medicine, and Society of Critical Care Medicine.  An official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine clinical practice guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome.  Am J Respir Crit Care Med. 2017;195(9):1253-1263.PubMedGoogle ScholarCrossref
15.
Meade  MO, Young  D, Hanna  S,  et al.  Severity of hypoxemia and effect of high frequency oscillatory ventilation in ARDS.  Am J Respir Crit Care Med. 2017;196(6):727-733. PubMedGoogle ScholarCrossref
16.
Pipeling  MR, Fan  E.  Therapies for refractory hypoxemia in acute respiratory distress syndrome.  JAMA. 2010;304(22):2521-2527.PubMedGoogle ScholarCrossref
17.
Kor  DJ, Carter  RE, Park  PK,  et al; US Critical Illness and Injury Trials Group: Lung Injury Prevention with Aspirin Study Group (USCIITG: LIPS-A).  Effect of aspirin on development of ARDS in at-risk patients presenting to the emergency department: the LIPS-A randomized clinical trial.  JAMA. 2016;315(22):2406-2414.PubMedGoogle ScholarCrossref
18.
Bein  T, Weber-Carstens  S, Goldmann  A,  et al.  Lower tidal volume strategy (≈3 ml/kg) combined with extracorporeal co2 removal versus “conventional” protective ventilation (6 ml/kg) in severe ARDS: the prospective randomized Xtravent-study.  Intensive Care Med. 2013;39(5):847-856.PubMedGoogle ScholarCrossref
19.
Guérin  C, Reignier  J, Richard  J-C,  et al; PROSEVA Study Group.  Prone positioning in severe acute respiratory distress syndrome.  N Engl J Med. 2013;368(23):2159-2168.PubMedGoogle ScholarCrossref
20.
Gao Smith  F, Perkins  GD, Gates  S,  et al; BALTI-2 study investigators.  Effect of intravenous β2 agonist treatment on clinical outcomes in acute respiratory distress syndrome (BALTI-2): a multicentre, randomised controlled trial.  Lancet. 2012;379(9812):229-235.PubMedGoogle ScholarCrossref
21.
McAuley  DF, Cross  LM, Hamid  U,  et al.  Keratinocyte growth factor for the treatment of the acute respiratory distress syndrome (KARE): a randomised, double-blind, placebo-controlled phase 2 trial.  Lancet Respir Med. 2017;5(6):484-491.PubMedGoogle ScholarCrossref
22.
National Heart, Lung, and Blood Institute ARDS Clinical Trials Network, Truwit  JD, Bernard  GR,  et al.  Rosuvastatin for sepsis-associated acute respiratory distress syndrome.  N Engl J Med. 2014;370(23):2191-2200. PubMedGoogle ScholarCrossref
23.
McAuley  DF, Laffey  JG, O’Kane  CM,  et al; HARP-2 Investigators; Irish Critical Care Trials Group.  Simvastatin in the acute respiratory distress syndrome.  N Engl J Med. 2014;371(18):1695-1703.PubMedGoogle ScholarCrossref
24.
Young  D, Lamb  SE, Shah  S,  et al; OSCAR Study Group.  High-frequency oscillation for acute respiratory distress syndrome.  N Engl J Med. 2013;368(9):806-813.PubMedGoogle ScholarCrossref
25.
Ferguson  ND, Cook  DJ, Guyatt  GH,  et al; OSCILLATE Trial Investigators; Canadian Critical Care Trials Group.  High-frequency oscillation in early acute respiratory distress syndrome.  N Engl J Med. 2013;368(9):795-805.PubMedGoogle ScholarCrossref
26.
Kacmarek  RM, Villar  J, Sulemanji  D,  et al; Open Lung Approach Network.  Open lung approach for the acute respiratory distress syndrome: a pilot, randomized controlled trial.  Crit Care Med. 2016;44(1):32-42.PubMedGoogle ScholarCrossref
27.
Cavalcanti  AB, Suzumura  ÉA, Laranjeira  LN,  et al; Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators.  Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial.  JAMA. 2017;318(14):1335-1345.PubMedGoogle ScholarCrossref
28.
Patel  BK, Wolfe  KS, Pohlman  AS, Hall  JB, Kress  JP.  Effect of noninvasive ventilation delivered by helmet vs face mask on the rate of endotracheal intubation in patients with acute respiratory distress syndrome: a randomized clinical trial.  JAMA. 2016;315(22):2435-2441.PubMedGoogle ScholarCrossref
29.
Yadav  H, Kor  DJ.  Platelets in the pathogenesis of acute respiratory distress syndrome.  Am J Physiol Lung Cell Mol Physiol. 2015;309(9):L915-L923.PubMedGoogle ScholarCrossref
30.
Kor  DJ, Erlich  J, Gong  MN,  et al; US Critical Illness and Injury Trials Group: Lung Injury Prevention Study Investigators.  Association of prehospitalization aspirin therapy and acute lung injury: results of a multicenter international observational study of at-risk patients.  Crit Care Med. 2011;39(11):2393-2400.PubMedGoogle ScholarCrossref
31.
Gajic  O, Dabbagh  O, Park  PK,  et al.  Early identification of patients at risk of acute lung injury: evaluation of lung injury prediction score in a multicenter cohort study.  Am J Respir Crit Care Med. 2011;183(4):462-470. PubMedGoogle ScholarCrossref
32.
Terragni  PP, Rosboch  G, Tealdi  A,  et al.  Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome.  Am J Respir Crit Care Med. 2007;175(2):160-166. PubMedGoogle ScholarCrossref
33.
Grasso  S, Stripoli  T, De Michele  M,  et al.  ARDSnet ventilatory protocol and alveolar hyperinflation: role of positive end-expiratory pressure.  Am J Respir Crit Care Med. 2007;176(8):761-767.PubMedGoogle ScholarCrossref
34.
Needham  DM, Colantuoni  E, Mendez-Tellez  PA,  et al.  Lung protective mechanical ventilation and two year survival in patients with acute lung injury: prospective cohort study.  BMJ. 2012;344(2):e2124-e2124. PubMedGoogle ScholarCrossref
35.
Morelli  A, Del Sorbo  L, Pesenti  A, Ranieri  VM, Fan  E.  Extracorporeal carbon dioxide removal (ECCO2R) in patients with acute respiratory failure.  Intensive Care Med. 2017;43(4):519-530.PubMedGoogle ScholarCrossref
36.
Fitzgerald  M, Millar  J, Blackwood  B,  et al.  Extracorporeal carbon dioxide removal for patients with acute respiratory failure secondary to the acute respiratory distress syndrome: a systematic review.  Crit Care. 2014;18(3):222.PubMedGoogle ScholarCrossref
37.
Goligher  EC, Amato  MBP, Slutsky  AS.  Applying precision medicine to trial design using physiology: extracorporeal co2 removal for acute respiratory distress syndrome.  Am J Respir Crit Care Med. 2017;196(5):558-568.PubMedGoogle ScholarCrossref
38.
Gattinoni  L, Taccone  P, Carlesso  E, Marini  JJ.  Prone position in acute respiratory distress syndrome: rationale, indications, and limits.  Am J Respir Crit Care Med. 2013;188(11):1286-1293.PubMedGoogle ScholarCrossref
39.
Gattinoni  L, Pesenti  A, Carlesso  E.  Body position changes redistribute lung computed-tomographic density in patients with acute respiratory failure: impact and clinical fallout through the following 20 years.  Intensive Care Med. 2013;39(11):1909-1915.PubMedGoogle ScholarCrossref
40.
Sud  S, Friedrich  JO, Adhikari  NKJ,  et al.  Effect of prone positioning during mechanical ventilation on mortality among patients with acute respiratory distress syndrome: a systematic review and meta-analysis.  CMAJ. 2014;186(10):E381-E390.PubMedGoogle ScholarCrossref
41.
Beitler  JR, Shaefi  S, Montesi  SB,  et al.  Prone positioning reduces mortality from acute respiratory distress syndrome in the low tidal volume era: a meta-analysis.  Intensive Care Med. 2014;40(3):332-341.PubMedGoogle ScholarCrossref
42.
Bassford  CR, Thickett  DR, Perkins  GD.  The rise and fall of β-agonists in the treatment of ARDS.  Crit Care. 2012;16(2):208.PubMedGoogle ScholarCrossref
43.
Perkins  GD, McAuley  DF, Thickett  DR, Gao  F.  The β-agonist lung injury trial (BALTI): a randomized placebo-controlled clinical trial.  Am J Respir Crit Care Med. 2006;173(3):281-287. PubMedGoogle ScholarCrossref
44.
National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Matthay  MA, Brower  RG,  et al.  Randomized, placebo-controlled clinical trial of an aerosolized β2-agonist for treatment of acute lung injury.  Am J Respir Crit Care Med. 2011;184(5):561-568. PubMedGoogle ScholarCrossref
45.
Perkins  GD, Gates  S, Park  D,  et al; BALTI-Prevention Collaborators.  The β-agonist lung injury trial prevention: a randomized controlled trial.  Am J Respir Crit Care Med. 2014;189(6):674-683.PubMedGoogle ScholarCrossref
46.
Ware  LB, Matthay  MA.  Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome.  Am J Respir Crit Care Med. 2001;163(6):1376-1383.PubMedGoogle ScholarCrossref
47.
Ware  LB, Matthay  MA.  Keratinocyte and hepatocyte growth factors in the lung: roles in lung development, inflammation, and repair.  Am J Physiol Lung Cell Mol Physiol. 2002;282(5):L924-L940.PubMedGoogle ScholarCrossref
48.
Shyamsundar  M, McKeown  STW, O’Kane  CM,  et al.  Simvastatin decreases lipopolysaccharide-induced pulmonary inflammation in healthy volunteers.  Am J Respir Crit Care Med. 2009;179(12):1107-1114.PubMedGoogle ScholarCrossref
49.
Jacobson  JR, Barnard  JW, Grigoryev  DN, Ma  S-F, Tuder  RM, Garcia  JGN.  Simvastatin attenuates vascular leak and inflammation in murine inflammatory lung injury.  Am J Physiol Lung Cell Mol Physiol. 2005;288(6):L1026-L1032.PubMedGoogle ScholarCrossref
50.
Craig  TR, Duffy  MJ, Shyamsundar  M,  et al.  A randomized clinical trial of hydroxymethylglutaryl-coenzyme a reductase inhibition for acute lung injury (the HARP Study).  Am J Respir Crit Care Med. 2011;183(5):620-626.PubMedGoogle ScholarCrossref
51.
Lachmann  B.  Open up the lung and keep the lung open.  Intensive Care Med. 1992;18(6):319-321.PubMedGoogle ScholarCrossref
52.
Sud  S, Sud  M, Friedrich  JO,  et al.  High frequency oscillation in patients with acute lung injury and acute respiratory distress syndrome (ARDS): systematic review and meta-analysis.  BMJ. 2010;340:c2327.PubMedGoogle ScholarCrossref
53.
Sklar  MC, Fan  E, Goligher  EC.  High-frequency oscillatory ventilation in adults with ARDS: past, present, and future.  Chest. 2017;152(6):1306-1317.PubMedGoogle ScholarCrossref
54.
Guervilly  C, Forel  J-M, Hraiech  S,  et al.  Right ventricular function during high-frequency oscillatory ventilation in adults with acute respiratory distress syndrome.  Crit Care Med. 2012;40(5):1539-1545.PubMedGoogle ScholarCrossref
55.
Mekontso Dessap  A, Boissier  F, Charron  C,  et al.  Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact.  Intensive Care Med. 2016;42(5):862-870.PubMedGoogle ScholarCrossref
56.
Fan  E, Wilcox  ME, Brower  RG,  et al.  Recruitment maneuvers for acute lung injury: a systematic review.  Am J Respir Crit Care Med. 2008;178(11):1156-1163. PubMedGoogle ScholarCrossref
57.
Sahetya  SK, Goligher  EC, Brower  RG.  Fifty years of research in ARDS: setting positive end-expiratory pressure in acute respiratory distress syndrome.  Am J Respir Crit Care Med. 2017;195(11):1429-1438.PubMedGoogle ScholarCrossref
58.
Hodgson  C, Goligher  EC, Young  ME,  et al.  Recruitment maneuvers for adults with acute respiratory distress syndrome receiving mechanical ventilation.  Cochrane Database Syst Rev. 2016;11:CD006667. PubMedGoogle Scholar
59.
Bellani  G, Laffey  JG, Pham  T,  et al; LUNG SAFE Investigators; ESICM Trials Group.  Noninvasive ventilation of patients with acute respiratory distress syndrome: insights from the LUNG SAFE study.  Am J Respir Crit Care Med. 2017;195(1):67-77.PubMedGoogle ScholarCrossref
60.
Nava  S, Hill  N.  Non-invasive ventilation in acute respiratory failure.  Lancet. 2009;374(9685):250-259.PubMedGoogle ScholarCrossref
61.
Walkey  AJ, Goligher  EC, Del Sorbo  L,  et al.  Low tidal volume versus non-volume-limited strategies for patients with acute respiratory distress syndrome: a systematic review and meta-analysis.  Ann Am Thorac Soc. 2017;14(Suppl 4):S271-S279. PubMedGoogle ScholarCrossref
62.
Munshi  L, Del Sorbo  L, Adhikari  NKJ,  et al.  Prone position for acute respiratory distress syndrome: a systematic review and meta-analysis.  Ann Am Thorac Soc. 2017;14(Suppl 4):S280-S288. PubMedGoogle ScholarCrossref
63.
Goligher  EC, Munshi  L, Adhikari  NKJ,  et al.  High-frequency oscillation for adult patients with acute respiratory distress syndrome: a systematic review and meta-analysis.  Ann Am Thorac Soc. 2017;14(Suppl 4):S289-S296. PubMedGoogle ScholarCrossref
64.
Walkey  AJ, Del Sorbo  L, Hodgson  CL,  et al.  Higher PEEP versus lower PEEP strategies for patients with acute respiratory distress syndrome: a systematic review and meta-analysis.  Ann Am Thorac Soc. 2017;14(Suppl 4):S297-S303. PubMedGoogle ScholarCrossref
65.
Goligher  EC, Hodgson  CL, Adhikari  NKJ,  et al.  Lung recruitment maneuvers for adult patients with acute respiratory distress syndrome: a systematic review and meta-analysis.  Ann Am Thorac Soc. 2017;14(Suppl 4):S304-S311. PubMedGoogle ScholarCrossref
66.
Munshi  L, Telesnicki  T, Walkey  A.  Extracorporeal life support for acute respiratory failure: a systematic review and meta-analysis.  Ann Am Thorac Soc. 2014;11(5):802-810. PubMedGoogle ScholarCrossref
67.
Weiss  CH, McSparron  JI, Chatterjee  RS,  et al.  Summary for clinicians: mechanical ventilation in adult patients with acute respiratory distress syndrome clinical practice guideline.  Ann Am Thorac Soc. 2017;14(8):1235-1238.PubMedGoogle ScholarCrossref
68.
Brower  RG, Matthay  MA, Morris  A, Schoenfeld  D, Thompson  BT, Wheeler  A; Acute Respiratory Distress Syndrome Network.  Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome.  N Engl J Med. 2000;342(18):1301-1308.PubMedGoogle ScholarCrossref
69.
Fan  E, Villar  J, Slutsky  AS.  Novel approaches to minimize ventilator-induced lung injury.  BMC Med. 2013;11(1):85.PubMedGoogle ScholarCrossref
70.
Fan  E, Gattinoni  L, Combes  A,  et al.  Venovenous extracorporeal membrane oxygenation for acute respiratory failure: a clinical review from an international group of experts.  Intensive Care Med. 2016;42(5):712-724.PubMedGoogle ScholarCrossref
71.
Karagiannidis  C, Brodie  D, Strassmann  S,  et al.  Extracorporeal membrane oxygenation: evolving epidemiology and mortality.  Intensive Care Med. 2016;42(5):889-896.PubMedGoogle ScholarCrossref
72.
Amato  MBP, Meade  MO, Slutsky  AS,  et al.  Driving pressure and survival in the acute respiratory distress syndrome.  N Engl J Med. 2015;372(8):747-755.PubMedGoogle ScholarCrossref
73.
Aoyama  H, Pettenuzzo  T, Aoyama  K, Pinto  R, Englesakis  M, Fan  E.  Association of driving pressure with mortality among ventilated patients with acute respiratory distress syndrome: a systematic review and meta-analysis.  Crit Care Med. 2018;46(2):300-306.PubMedGoogle ScholarCrossref
74.
Fan  E, Rubenfeld  GD.  Driving pressure-the emperor’s new clothes.  Crit Care Med. 2017;45(5):919-920.PubMedGoogle ScholarCrossref
75.
Ou  X, Hua  Y, Liu  J, Gong  C, Zhao  W.  Effect of high-flow nasal cannula oxygen therapy in adults with acute hypoxemic respiratory failure: a meta-analysis of randomized controlled trials.  CMAJ. 2017;189(7):E260-E267.PubMedGoogle ScholarCrossref
76.
Messika  J, Ben Ahmed  K, Gaudry  S,  et al.  Use of high-flow nasal cannula oxygen therapy in subjects with ARDS: a 1-year observational study.  Respir Care. 2015;60(2):162-169.PubMedGoogle ScholarCrossref
77.
O’Driscoll  BR, Howard  LS, Earis  J, Mak  V; British Thoracic Society Emergency Oxygen Guideline Group; BTS Emergency Oxygen Guideline Development Group.  BTS guideline for oxygen use in adults in healthcare and emergency settings.  Thorax. 2017;72(suppl 1):ii1-ii90.PubMedGoogle ScholarCrossref
78.
Girardis  M, Busani  S, Damiani  E,  et al.  Effect of conservative vs conventional oxygen therapy on mortality among patients in an intensive care unit: the Oxygen-ICU randomized clinical trial.  JAMA. 2016;316(15):1583-1589.PubMedGoogle ScholarCrossref
79.
Papazian  L, Forel  J-M, Gacouin  A,  et al; ACURASYS Study Investigators.  Neuromuscular blockers in early acute respiratory distress syndrome.  N Engl J Med. 2010;363(12):1107-1116.PubMedGoogle ScholarCrossref
80.
Slutsky  AS.  Neuromuscular blocking agents in ARDS.  N Engl J Med. 2010;363(12):1176-1180.PubMedGoogle ScholarCrossref
81.
Akoumianaki  E, Lyazidi  A, Rey  N,  et al.  Mechanical ventilation-induced reverse-triggered breaths: a frequently unrecognized form of neuromechanical coupling.  Chest. 2013;143(4):927-938.PubMedGoogle ScholarCrossref
82.
Yoshida  T, Torsani  V, Gomes  S,  et al.  Spontaneous effort causes occult pendelluft during mechanical ventilation.  Am J Respir Crit Care Med. 2013;188(12):1420-1427.PubMedGoogle ScholarCrossref
83.
Vaporidi  K, Babalis  D, Chytas  A,  et al.  Clusters of ineffective efforts during mechanical ventilation: impact on outcome.  Intensive Care Med. 2017;43(2):184-191.PubMedGoogle ScholarCrossref
84.
Huang  DT, Angus  DC, Moss  M,  et al; Reevaluation of Systemic Early Neuromuscular Blockade Protocol Committee and the National Institutes of Health National Heart, Lung, and Blood Institute Prevention and Early Treatment of Acute Lung Injury Network Investigators.  Design and rationale of the reevaluation of systemic early neuromuscular blockade trial for acute respiratory distress syndrome.  Ann Am Thorac Soc. 2017;14(1):124-133.PubMedGoogle ScholarCrossref
85.
Brochard  L, Slutsky  A, Pesenti  A.  Mechanical ventilation to minimize progression of lung injury in acute respiratory failure.  Am J Respir Crit Care Med. 2017;195(4):438-442.PubMedGoogle ScholarCrossref
86.
Goligher  EC, Ferguson  ND, Brochard  LJ.  Clinical challenges in mechanical ventilation.  Lancet. 2016;387(10030):1856-1866.PubMedGoogle ScholarCrossref
87.
Goligher  EC, Kavanagh  BP, Rubenfeld  GD, Ferguson  ND.  Physiologic responsiveness should guide entry into randomized controlled trials.  Am J Respir Crit Care Med. 2015;192(12):1416-1419.PubMedGoogle ScholarCrossref
88.
Calfee  CS, Delucchi  K, Parsons  PE, Thompson  BT, Ware  LB, Matthay  MA; NHLBI ARDS Network.  Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials.  Lancet Respir Med. 2014;2(8):611-620.PubMedGoogle ScholarCrossref
89.
Famous  KR, Delucchi  K, Ware  LB,  et al; ARDS Network.  Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy.  Am J Respir Crit Care Med. 2017;195(3):331-338.PubMedGoogle Scholar
90.
Iwashyna  TJ, Burke  JF, Sussman  JB, Prescott  HC, Hayward  RA, Angus  DC.  Implications of heterogeneity of treatment effect for reporting and analysis of randomized trials in critical care.  Am J Respir Crit Care Med. 2015;192(9):1045-1051.PubMedGoogle ScholarCrossref
91.
Akoumianaki  E, Maggiore  SM, Valenza  F,  et al; PLUG Working Group (Acute Respiratory Failure Section of the European Society of Intensive Care Medicine).  The application of esophageal pressure measurement in patients with respiratory failure.  Am J Respir Crit Care Med. 2014;189(5):520-531.PubMedGoogle ScholarCrossref
92.
Grasso  S, Terragni  P, Mascia  L,  et al.  Airway pressure-time curve profile (stress index) detects tidal recruitment/hyperinflation in experimental acute lung injury.  Crit Care Med. 2004;32(4):1018-1027.PubMedGoogle ScholarCrossref
93.
Frerichs  I, Amato  MBP, van Kaam  AH,  et al.  Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the translational EIT development study group.  Thorax. 2017;72(1):83-93. PubMedGoogle ScholarCrossref
94.
Gattinoni  L, Tonetti  T, Cressoni  M,  et al.  Ventilator-related causes of lung injury: the mechanical power.  Intensive Care Med. 2016;42(10):1567-1575.PubMedGoogle ScholarCrossref
95.
Goligher  EC, Dres  M, Fan  E,  et al.  Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes. 2018;197(2):204-213. doi:10.1164/rccm.201703-0536OC
96.
Goligher  EC, Laghi  F, Detsky  ME,  et al.  Measuring diaphragm thickness with ultrasound in mechanically ventilated patients: feasibility, reproducibility and validity [correction appears in Intensive Care Med. 2015;41(4):734].  Intensive Care Med. 2015;41(4):642-649.PubMedGoogle ScholarCrossref
97.
Pham  T, Brochard  LJ, Slutsky  AS.  Mechanical ventilation: state of the art.  Mayo Clin Proc. 2017;92(9):1382-1400.PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
Close
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close