Meta-analysis of Cannabis and Cognitive Function in Adolescents and Young Adults | Adolescent Medicine | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

Association of Cannabis With Cognitive Functioning in Adolescents and Young AdultsA Systematic Review and Meta-analysis

Educational Objective To review If frequent or heavy cannabis use is associated with cognitive dysfunction in adolescents and young adults.
1 Credit CME
Key Points

Question  Is frequent or heavy cannabis use associated with cognitive dysfunction in adolescents and young adults?

Findings  This systematic review and meta-analysis of 69 cross-sectional studies of 2152 cannabis users and 6575 comparison participants showed a small but significant overall effect size for reduced cognitive functioning in adolescents and young adults who reported frequent cannabis use. However, studies requiring abstinence from cannabis for longer than 72 hours had a very small, nonsignificant effect size.

Meaning  Although continued cannabis use may be associated with small reductions in cognitive functioning, results suggest that cognitive deficits are substantially diminished with abstinence.


Importance  Substantial shifts in perception and policy regarding cannabis have recently occurred, with use of cannabis increasing while its perceived harm decreases. One possible risk of increased cannabis use is poorer cognitive functioning, especially in youth.

Objective  To provide the first quantitative synthesis of the literature examining cannabis and cognitive functioning in adolescents and young adults (with a mean age of 26 years and younger).

Data Sources  PubMed, PsycInfo, Academic Search Premier, Scopus, and bibliographies of relevant reviews were searched for peer-reviewed, English-language studies from the date the databases began through May 2017.

Study Selection  Consensus criteria were used to determine study inclusion through abstract and manuscript review.

Data Extraction and Synthesis  This study followed Meta-analysis of Observational Studies in Epidemiology guidelines. Effect size estimates were calculated using multivariate mixed-effects models for cognitive functioning outcomes classified into 10 domains.

Main Outcomes and Measures  Results from neurocognitive tests administered in cross-sectional studies were primary outcomes, and we examined the influence of a priori explanatory variables on variability in effect size.

Results  Sixty-nine studies of 2152 cannabis users (mean [SD] age, 20.6 [2.8] years; 1472 [68.4%] male) and 6575 comparison participants with minimal cannabis exposure were included (mean [SD] age, 20.8 [3.4]; 3669 [55.8%] male). Results indicated a small overall effect size (presented as mean d) for reduced cognitive functioning associated with frequent or heavy cannabis use (d, −0.25; 95% CI, −0.32 to −0.17; P < .001). The magnitude of effect sizes did not vary by sample age or age at cannabis use onset. However, studies requiring an abstinence period longer than 72 hours (15 studies; n = 928) had an overall effect size (d, −0.08; 95% CI, −0.22 to 0.07) that was not significantly different from 0 and smaller than studies with less stringent abstinence criteria (54 studies; n = 7799; d, −0.30; 95% CI, −0.37 to −0.22; P = .01).

Conclusions and Relevance  Associations between cannabis use and cognitive functioning in cross-sectional studies of adolescents and young adults are small and may be of questionable clinical importance for most individuals. Furthermore, abstinence of longer than 72 hours diminishes cognitive deficits associated with cannabis use. Although other outcomes (eg, psychosis) were not examined in the included studies, results indicate that previous studies of cannabis in youth may have overstated the magnitude and persistence of cognitive deficits associated with use. Reported deficits may reflect residual effects from acute use or withdrawal. Future studies should examine individual differences in susceptibility to cannabis-associated cognitive dysfunction.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Corresponding Author: J. Cobb Scott, PhD, Hospital of the University of Pennsylvania, 3400 Spruce St, 10th Floor, Gates Bldg, Philadelphia, PA 19104 (

Accepted for Publication: January 30, 2018.

Published Online: April 18, 2018. doi:10.1001/jamapsychiatry.2018.0335

Author Contributions: Dr Scott had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Scott, Slomiak, Jones, Rosen, Gur.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Scott, Slomiak, Jones, Moore, Gur.

Critical revision of the manuscript for important intellectual content: Scott, Jones, Rosen, Moore, Gur.

Statistical analysis: Scott, Slomiak, Rosen, Moore.

Obtained funding: Scott.

Administrative, technical, or material support: Scott, Slomiak, Jones, Rosen, Moore.

Study supervision: Scott, Moore, Gur.

Conflict of Interest Disclosures: Dr Gur reports receiving royalties from the Brain Resource Center. No other disclosures were reported.

Funding/Support: This work was supported by a Department of Veterans Affairs Career Development Award (grant IK2CX000772, Dr Scott).

Role of the Funder/Sponsor: The funders were not involved in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Disclaimer: The views expressed in this article are those of the authors and do not necessarily reflect the position or policy of the Department of Veterans Affairs or the University of Pennsylvania.

Additional Contributions: We thank Carrie Cuttler, PhD, Washington State University, Alecia Dager, PhD, Olin Neuropsychiatry Research Center, Sarah Feldstein Ewing, PhD, Oregon Health & Science University, Pilar Flores Cubos, PhD, Universidad de Almeria, Jodi Gilman, PhD, Harvard Medical School, Boris Quednow, Dr rer nat, University of Zurich, and Liam Nestor, PhD, Imperial College London, for kindly providing supplementary data from their studies for analyses. They were not compensated for their contributions.

Substance Abuse and Mental Health Services Administration.  Results From the 2013 National Survey on Drug Use and Health: Summary of National Findings. Rockville, MD: Substance Abuse and Mental Health Services Administration; 2014.
Johnston  LD, O’Malley  PM, Miech  RA, Bachman  JG, Schulenberg  JE.  Monitoring the Future National Survey Results on Drug Use, 1975-2016: Overview, Key Findings on Adolescent Drug Use. Ann Arbor: Institute for Social Research, The University of Michigan; 2017.
Gur  RC, Richard  J, Calkins  ME,  et al.  Age group and sex differences in performance on a computerized neurocognitive battery in children age 8-21.  Neuropsychology. 2012;26(2):251-265.PubMedGoogle ScholarCrossref
Giedd  JN, Blumenthal  J, Jeffries  NO,  et al.  Brain development during childhood and adolescence: a longitudinal MRI study.  Nat Neurosci. 1999;2(10):861-863.PubMedGoogle ScholarCrossref
Satterthwaite  TD, Wolf  DH, Erus  G,  et al.  Functional maturation of the executive system during adolescence.  J Neurosci. 2013;33(41):16249-16261.PubMedGoogle ScholarCrossref
Galve-Roperh  I, Palazuelos  J, Aguado  T, Guzmán  M.  The endocannabinoid system and the regulation of neural development: potential implications in psychiatric disorders.  Eur Arch Psychiatry Clin Neurosci. 2009;259(7):371-382.PubMedGoogle ScholarCrossref
Ellgren  M, Artmann  A, Tkalych  O,  et al.  Dynamic changes of the endogenous cannabinoid and opioid mesocorticolimbic systems during adolescence: THC effects.  Eur Neuropsychopharmacol. 2008;18(11):826-834.PubMedGoogle ScholarCrossref
Jacobus  J, Tapert  SF.  Effects of cannabis on the adolescent brain.  Curr Pharm Des. 2014;20(13):2186-2193.PubMedGoogle ScholarCrossref
Schneider  M.  Puberty as a highly vulnerable developmental period for the consequences of cannabis exposure.  Addict Biol. 2008;13(2):253-263.PubMedGoogle ScholarCrossref
Dougherty  DM, Mathias  CW, Dawes  MA,  et al.  Impulsivity, attention, memory, and decision-making among adolescent marijuana users.  Psychopharmacology (Berl). 2013;226(2):307-319.PubMedGoogle ScholarCrossref
Medina  KL, Hanson  KL, Schweinsburg  AD, Cohen-Zion  M, Nagel  BJ, Tapert  SF.  Neuropsychological functioning in adolescent marijuana users: subtle deficits detectable after a month of abstinence.  J Int Neuropsychol Soc. 2007;13(5):807-820.PubMedGoogle ScholarCrossref
Solowij  N, Jones  KA, Rozman  ME,  et al.  Verbal learning and memory in adolescent cannabis users, alcohol users and non-users.  Psychopharmacology (Berl). 2011;216(1):131-144.PubMedGoogle ScholarCrossref
Gruber  SA, Sagar  KA, Dahlgren  MK, Racine  M, Lukas  SE.  Age of onset of marijuana use and executive function.  Psychol Addict Behav. 2012;26(3):496-506.PubMedGoogle ScholarCrossref
Ehrenreich  H, Rinn  T, Kunert  HJ,  et al.  Specific attentional dysfunction in adults following early start of cannabis use.  Psychopharmacology (Berl). 1999;142(3):295-301.PubMedGoogle ScholarCrossref
Crane  NA, Schuster  RM, Fusar-Poli  P, Gonzalez  R.  Effects of cannabis on neurocognitive functioning: recent advances, neurodevelopmental influences, and sex differences.  Neuropsychol Rev. 2013;23(2):117-137.PubMedGoogle ScholarCrossref
Scott  JC, Wolf  DH, Calkins  ME,  et al.  Cognitive functioning of adolescent and young adult cannabis users in the Philadelphia Neurodevelopmental Cohort.  Psychol Addict Behav. 2017;31(4):423-434.PubMedGoogle ScholarCrossref
Fried  PA, Watkinson  B, Gray  R.  Neurocognitive consequences of marihuana—a comparison with pre-drug performance.  Neurotoxicol Teratol. 2005;27(2):231-239.PubMedGoogle ScholarCrossref
Hooper  SR, Woolley  D, De Bellis  MD.  Intellectual, neurocognitive, and academic achievement in abstinent adolescents with cannabis use disorder.  Psychopharmacology (Berl). 2014;231(8):1467-1477.PubMedGoogle ScholarCrossref
Pardini  D, White  HR, Xiong  S,  et al.  Unfazed or dazed and confused: does early adolescent marijuana use cause sustained impairments in attention and academic functioning?  J Abnorm Child Psychol. 2015;43(7):1203-1217.PubMedGoogle ScholarCrossref
Tait  RJ, Mackinnon  A, Christensen  H.  Cannabis use and cognitive function: 8-year trajectory in a young adult cohort.  Addiction. 2011;106(12):2195-2203.PubMedGoogle ScholarCrossref
Lisdahl  KM, Wright  NE, Kirchner-Medina  C, Maple  KE, Shollenbarger  S.  Considering cannabis: the effects of regular cannabis use on neurocognition in adolescents and young adults.  Curr Addict Rep. 2014;1(2):144-156.PubMedGoogle ScholarCrossref
Lubman  DI, Cheetham  A, Yücel  M.  Cannabis and adolescent brain development.  Pharmacol Ther. 2015;148:1-16.PubMedGoogle ScholarCrossref
Grant  I, Gonzalez  R, Carey  CL, Natarajan  L, Wolfson  T.  Non-acute (residual) neurocognitive effects of cannabis use: a meta-analytic study.  J Int Neuropsychol Soc. 2003;9(5):679-689.PubMedGoogle ScholarCrossref
Schreiner  AM, Dunn  ME.  Residual effects of cannabis use on neurocognitive performance after prolonged abstinence: a meta-analysis.  Exp Clin Psychopharmacol. 2012;20(5):420-429.PubMedGoogle ScholarCrossref
Ganzer  F, Bröning  S, Kraft  S, Sack  P-M, Thomasius  R.  Weighing the evidence: a systematic review on long-term neurocognitive effects of cannabis use in abstinent adolescents and adults.  Neuropsychol Rev. 2016;26(2):186-222.PubMedGoogle ScholarCrossref
Stroup  DF, Berlin  JA, Morton  SC,  et al.  Meta-analysis of observational studies in epidemiology: a proposal for reporting; Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group.  JAMA. 2000;283(15):2008-2012.PubMedGoogle ScholarCrossref
Miyake  A, Friedman  NP, Emerson  MJ, Witzki  AH, Howerter  A, Wager  TD.  The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis.  Cogn Psychol. 2000;41(1):49-100.PubMedGoogle ScholarCrossref
Snyder  HR, Miyake  A, Hankin  BL.  Advancing understanding of executive function impairments and psychopathology: bridging the gap between clinical and cognitive approaches.  Front Psychol. 2015;6:328.PubMedGoogle ScholarCrossref
Hedges  LV, Olkin  LI.  Statistical Methods for Meta-Analysis. Orlando, FL: Academic Press; 1985.
Egger  M, Davey Smith  G, Schneider  M, Minder  C.  Bias in meta-analysis detected by a simple, graphical test.  BMJ. 1997;315(7109):629-634.PubMedGoogle ScholarCrossref
Duval  S, Tweedie  R.  Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis.  Biometrics. 2000;56(2):455-463.PubMedGoogle ScholarCrossref
Arends  LR, Vokó  Z, Stijnen  T.  Combining multiple outcome measures in a meta-analysis: an application.  Stat Med. 2003;22(8):1335-1353.PubMedGoogle ScholarCrossref
Kalaian  HA, Raudenbush  SW.  A multivariate mixed linear model for meta-analysis.  Psychol Methods. 1996;1(3):227-235.Google ScholarCrossref
Rabe-Hesketh  S, Skrondal  A, Pickles  A. GLLAMM manual; UC Berkeley Division of Biostatistics working paper series, paper 160. Published 2004. Accessed February 14, 2018.
Scott  JC, Woods  SP, Matt  GE,  et al.  Neurocognitive effects of methamphetamine: a critical review and meta-analysis.  Neuropsychol Rev. 2007;17(3):275-297.PubMedGoogle ScholarCrossref
Scott  JC, Matt  GE, Wrocklage  KM,  et al.  A quantitative meta-analysis of neurocognitive functioning in posttraumatic stress disorder.  Psychol Bull. 2015;141(1):105-140.PubMedGoogle ScholarCrossref
Rabe-Hesketh  S, Skrondal  A, Pickles  A.  Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects.  J Econom. 2005;128(2):301-323.Google ScholarCrossref
Ashtari  M, Avants  B, Cyckowski  L,  et al.  Medial temporal structures and memory functions in adolescents with heavy cannabis use.  J Psychiatr Res. 2011;45(8):1055-1066.PubMedGoogle ScholarCrossref
Becker  MP, Collins  PF, Luciana  M.  Neurocognition in college-aged daily marijuana users.  J Clin Exp Neuropsychol. 2014;36(4):379-398.PubMedGoogle ScholarCrossref
Brown  J, McKone  E, Ward  J.  Deficits of long-term memory in ecstasy users are related to cognitive complexity of the task.  Psychopharmacology (Berl). 2010;209(1):51-67.PubMedGoogle ScholarCrossref
Churchwell  JC, Lopez-Larson  M, Yurgelun-Todd  DA.  Altered frontal cortical volume and decision making in adolescent cannabis users.  Front Psychol. 2010;1:225.PubMedGoogle ScholarCrossref
Cousijn  J, Watson  P, Koenders  L, Vingerhoets  WA, Goudriaan  AE, Wiers  RW.  Cannabis dependence, cognitive control and attentional bias for cannabis words.  Addict Behav. 2013;38(12):2825-2832.PubMedGoogle ScholarCrossref
Croft  RJ, Mackay  AJ, Mills  AT, Gruzelier  JG.  The relative contributions of ecstasy and cannabis to cognitive impairment.  Psychopharmacology (Berl). 2001;153(3):373-379.PubMedGoogle ScholarCrossref
Cuttler  C, McLaughlin  RJ, Graf  P.  Mechanisms underlying the link between cannabis use and prospective memory.  PLoS One. 2012;7(5):e36820.PubMedGoogle ScholarCrossref
Cuyàs  E, Verdejo-García  A, Fagundo  AB,  et al.  The influence of genetic and environmental factors among MDMA users in cognitive performance.  PLoS One. 2011;6(11):e27206.PubMedGoogle ScholarCrossref
Epstein  KA, Kumra  S.  Executive attention impairment in adolescents with schizophrenia who have used cannabis.  Schizophr Res. 2014;157(1-3):48-54.PubMedGoogle ScholarCrossref
Filbey  FM, McQueeny  T, Kadamangudi  S, Bice  C, Ketcherside  A.  Combined effects of marijuana and nicotine on memory performance and hippocampal volume.  Behav Brain Res. 2015;293:46-53.PubMedGoogle ScholarCrossref
Flavel  SC, White  JM, Todd  G.  Abnormal maximal finger tapping in abstinent cannabis users.  Hum Psychopharmacol. 2013;28(6):612-614.PubMedGoogle ScholarCrossref
Gonzalez  R, Schuster  RM, Mermelstein  RJ, Vassileva  J, Martin  EM, Diviak  KR.  Performance of young adult cannabis users on neurocognitive measures of impulsive behavior and their relationship to symptoms of cannabis use disorders.  J Clin Exp Neuropsychol. 2012;34(9):962-976.PubMedGoogle ScholarCrossref
Gouzoulis-Mayfrank  E, Daumann  J, Tuchtenhagen  F,  et al.  Impaired cognitive performance in drug free users of recreational ecstasy (MDMA).  J Neurol Neurosurg Psychiatry. 2000;68(6):719-725.PubMedGoogle ScholarCrossref
Grant  JE, Chamberlain  SR, Schreiber  L, Odlaug  BL.  Neuropsychological deficits associated with cannabis use in young adults.  Drug Alcohol Depend. 2012;121(1-2):159-162.PubMedGoogle ScholarCrossref
Grant  I, Rochford  J, Fleming  T, Stunkard  A.  A neuropsychological assessment of the effects of moderate marihuana use.  J Nerv Ment Dis. 1973;156(4):278-280.PubMedGoogle ScholarCrossref
Hadjiefthyvoulou  F, Fisk  JE, Montgomery  C, Bridges  N.  Everyday and prospective memory deficits in ecstasy/polydrug users.  J Psychopharmacol. 2011;25(4):453-464.PubMedGoogle ScholarCrossref
Hanson  KL, Winward  JL, Schweinsburg  AD, Medina  KL, Brown  SA, Tapert  SF.  Longitudinal study of cognition among adolescent marijuana users over three weeks of abstinence.  Addict Behav. 2010;35(11):970-976.PubMedGoogle ScholarCrossref
Hanson  KL, Thayer  RE, Tapert  SF.  Adolescent marijuana users have elevated risk-taking on the balloon analog risk task.  J Psychopharmacol. 2014;28(11):1080-1087.PubMedGoogle ScholarCrossref
Harvey  MA, Sellman  JD, Porter  RJ, Frampton  CM.  The relationship between non-acute adolescent cannabis use and cognition.  Drug Alcohol Rev. 2007;26(3):309-319.PubMedGoogle ScholarCrossref
Hermann  D, Sartorius  A, Welzel  H,  et al.  Dorsolateral prefrontal cortex N-acetylaspartate/total creatine (NAA/tCr) loss in male recreational cannabis users.  Biol Psychiatry. 2007;61(11):1281-1289.PubMedGoogle ScholarCrossref
Herzig  DA, Nutt  DJ, Mohr  C.  Alcohol and relatively pure cannabis use, but not schizotypy, are associated with cognitive attenuations.  Front Psychiatry. 2014;5:133.PubMedGoogle ScholarCrossref
Houck  JM, Bryan  AD, Feldstein Ewing  SW.  Functional connectivity and cannabis use in high-risk adolescents.  Am J Drug Alcohol Abuse. 2013;39(6):414-423.PubMedGoogle ScholarCrossref
Jacobsen  LK, Mencl  WE, Westerveld  M, Pugh  KR.  Impact of cannabis use on brain function in adolescents.  Ann N Y Acad Sci. 2004;1021:384-390.PubMedGoogle ScholarCrossref
Jacobus  J, Squeglia  LM, Sorg  SF, Nguyen-Louie  TT, Tapert  SF.  Cortical thickness and neurocognition in adolescent marijuana and alcohol users following 28 days of monitored abstinence.  J Stud Alcohol Drugs. 2014;75(5):729-743.PubMedGoogle ScholarCrossref
Jacobus  J, Squeglia  LM, Infante  MA,  et al.  Neuropsychological performance in adolescent marijuana users with co-occurring alcohol use: a three-year longitudinal study.  Neuropsychology. 2015;29(6):829-843.PubMedGoogle ScholarCrossref
Lamers  CTJ, Bechara  A, Rizzo  M, Ramaekers  JG.  Cognitive function and mood in MDMA/THC users, THC users and non-drug using controls.  J Psychopharmacol. 2006;20(2):302-311.PubMedGoogle ScholarCrossref
Lane  SD, Cherek  DR, Tcheremissine  OV, Steinberg  JL, Sharon  JL.  Response perseveration and adaptation in heavy marijuana-smoking adolescents.  Addict Behav. 2007;32(5):977-990.PubMedGoogle ScholarCrossref
Lisdahl  KM, Price  JS.  Increased marijuana use and gender predict poorer cognitive functioning in adolescents and emerging adults.  J Int Neuropsychol Soc. 2012;18(4):678-688.PubMedGoogle ScholarCrossref
de Sola Llopis  S, Miguelez-Pan  M, Peña-Casanova  J,  et al.  Cognitive performance in recreational ecstasy polydrug users: a two-year follow-up study.  J Psychopharmacol. 2008;22(5):498-510.PubMedGoogle ScholarCrossref
Mahmood  OM, Jacobus  J, Bava  S, Scarlett  A, Tapert  SF.  Learning and memory performances in adolescent users of alcohol and marijuana: interactive effects.  J Stud Alcohol Drugs. 2010;71(6):885-894.PubMedGoogle ScholarCrossref
Messinis  L, Kyprianidou  A, Malefaki  S, Papathanasopoulos  P.  Neuropsychological deficits in long-term frequent cannabis users.  Neurology. 2006;66(5):737-739.PubMedGoogle ScholarCrossref
Morgan  CJA, Duffin  S, Hunt  S, Monaghan  L, Mason  O, Curran  HV.  Neurocognitive function and schizophrenia-proneness in individuals dependent on ketamine, on high potency cannabis (‘skunk’) or on cocaine.  Pharmacopsychiatry. 2012;45(7):269-274.PubMedGoogle ScholarCrossref
Murphy  PN, Erwin  PG, Maciver  L,  et al.  The relationships of ‘ecstasy’ (MDMA) and cannabis use to impaired executive inhibition and access to semantic long-term memory.  Hum Psychopharmacol. 2011;26(7):460-469.PubMedGoogle ScholarCrossref
Nestor  L, Roberts  G, Garavan  H, Hester  R.  Deficits in learning and memory: parahippocampal hyperactivity and frontocortical hypoactivity in cannabis users.  Neuroimage. 2008;40(3):1328-1339.PubMedGoogle ScholarCrossref
Price  JS, McQueeny  T, Shollenbarger  S, Browning  EL, Wieser  J, Lisdahl  KM.  Effects of marijuana use on prefrontal and parietal volumes and cognition in emerging adults.  Psychopharmacology (Berl). 2015;232(16):2939-2950.PubMedGoogle ScholarCrossref
Pujol  J, Blanco-Hinojo  L, Batalla  A,  et al.  Functional connectivity alterations in brain networks relevant to self-awareness in chronic cannabis users.  J Psychiatr Res. 2014;51:68-78.PubMedGoogle ScholarCrossref
Quednow  BB, Jessen  F, Kuhn  K-U, Maier  W, Daum  I, Wagner  M.  Memory deficits in abstinent MDMA (ecstasy) users: neuropsychological evidence of frontal dysfunction.  J Psychopharmacol. 2006;20(3):373-384.PubMedGoogle ScholarCrossref
Rochford  J, Grant  I, LaVigne  G.  Medical students and drugs: further neuropsychological and use pattern considerations.  Int J Addict. 1977;12(8):1057-1065.PubMedGoogle ScholarCrossref
Schwartz  RH, Gruenewald  PJ, Klitzner  M, Fedio  P.  Short-term memory impairment in cannabis-dependent adolescents.  Am J Dis Child. 1989;143(10):1214-1219.PubMedGoogle Scholar
Schweinsburg  AD, Schweinsburg  BC, Cheung  EH, Brown  GG, Brown  SA, Tapert  SF.  fMRI response to spatial working memory in adolescents with comorbid marijuana and alcohol use disorders.  Drug Alcohol Depend. 2005;79(2):201-210.PubMedGoogle ScholarCrossref
Schweinsburg  AD, Schweinsburg  BC, Medina  KL, McQueeny  T, Brown  SA, Tapert  SF.  The influence of recency of use on fMRI response during spatial working memory in adolescent marijuana users.  J Psychoactive Drugs. 2010;42(3):401-412.PubMedGoogle ScholarCrossref
Skosnik  PD, Edwards  CR, O’Donnell  BF, Steffen  A, Steinmetz  JE, Hetrick  WP.  Cannabis use disrupts eyeblink conditioning: evidence for cannabinoid modulation of cerebellar-dependent learning.  Neuropsychopharmacology. 2008;33(6):1432-1440.PubMedGoogle ScholarCrossref
Smith  MJ, Cobia  DJ, Wang  L,  et al.  Cannabis-related working memory deficits and associated subcortical morphological differences in healthy individuals and schizophrenia subjects.  Schizophr Bull. 2014;40(2):287-299.PubMedGoogle ScholarCrossref
Smith  MJ, Cobia  DJ, Reilly  JL,  et al.  Cannabis-related episodic memory deficits and hippocampal morphological differences in healthy individuals and schizophrenia subjects.  Hippocampus. 2015;25(9):1042-1051.PubMedGoogle ScholarCrossref
Takagi  M, Yücel  M, Cotton  SM,  et al.  Verbal memory, learning, and executive functioning among adolescent inhalant and cannabis users.  J Stud Alcohol Drugs. 2011b;72(1):96-105.PubMedGoogle ScholarCrossref
Takagi  M, Lubman  DI, Cotton  S,  et al.  Executive control among adolescent inhalant and cannabis users.  Drug Alcohol Rev. 2011a;30(6):629-637.PubMedGoogle ScholarCrossref
Takagi  MJ, Lubman  DI, Cotton  SM, Verdejo-García  A, Vilar-López  R, Yücel  M.  A signal detection analysis of executive control performance among adolescent inhalant and cannabis users.  Subst Use Misuse. 2014;49(14):1920-1927.PubMedGoogle ScholarCrossref
Tamm  L, Epstein  JN, Lisdahl  KM,  et al; MTA Neuroimaging Group.  Impact of ADHD and cannabis use on executive functioning in young adults.  Drug Alcohol Depend. 2013;133(2):607-614.PubMedGoogle ScholarCrossref
Varma  VK, Malhotra  AK, Dang  R, Das  K, Nehra  R.  Cannabis and cognitive functions: a prospective study.  Drug Alcohol Depend. 1988;21(2):147-152.PubMedGoogle ScholarCrossref
Verdejo-García  A, Fagundo  AB, Cuenca  A,  et al.  COMT val158met and 5-HTTLPR genetic polymorphisms moderate executive control in cannabis users.  Neuropsychopharmacology. 2013;38(8):1598-1606.PubMedGoogle ScholarCrossref
Vilar-López  R, Takagi  M, Lubman  DI,  et al.  The effects of inhalant misuse on attentional networks.  Dev Neuropsychol. 2013;38(2):126-136.PubMedGoogle ScholarCrossref
Whitehurst  LN, Fogler  K, Hall  K, Hartmann  M, Dyche  J.  The effects of chronic marijuana use on circadian entrainment.  Chronobiol Int. 2015;32(4):561-567.PubMedGoogle ScholarCrossref
Winward  JL, Hanson  KL, Tapert  SF, Brown  SA.  Heavy alcohol use, marijuana use, and concomitant use by adolescents are associated with unique and shared cognitive decrements.  J Int Neuropsychol Soc. 2014;20(8):784-795.PubMedGoogle ScholarCrossref
National Academies of Sciences, Engineering, and Medicine.  The Health Effects of Cannabis and Cannabinoids: The Current State of Evidence and Recommendations for Research. Washington, DC: The National Academies Press; 2017.
Stavro  K, Pelletier  J, Potvin  S.  Widespread and sustained cognitive deficits in alcoholism: a meta-analysis.  Addict Biol. 2013;18(2):203-213.PubMedGoogle ScholarCrossref
Barker  MJ, Greenwood  KM, Jackson  M, Crowe  SF.  Cognitive effects of long-term benzodiazepine use: a meta-analysis.  CNS Drugs. 2004;18(1):37-48.PubMedGoogle ScholarCrossref
Barker  MJ, Greenwood  KM, Jackson  M, Crowe  SF.  Persistence of cognitive effects after withdrawal from long-term benzodiazepine use: a meta-analysis.  Arch Clin Neuropsychol. 2004;19(3):437-454.PubMedGoogle ScholarCrossref
Potvin  S, Stavro  K, Rizkallah  E, Pelletier  J.  Cocaine and cognition: a systematic quantitative review.  J Addict Med. 2014;8(5):368-376.PubMedGoogle ScholarCrossref
Gilman  JM, Kuster  JK, Lee  S,  et al.  Cannabis use is quantitatively associated with nucleus accumbens and amygdala abnormalities in young adult recreational users.  J Neurosci. 2014;34(16):5529-5538.PubMedGoogle ScholarCrossref
Orr  JM, Paschall  CJ, Banich  MT.  Recreational marijuana use impacts white matter integrity and subcortical (but not cortical) morphometry.  Neuroimage Clin. 2016;12:47-56.PubMedGoogle ScholarCrossref
Pagliaccio  D, Barch  DM, Bogdan  R,  et al.  Shared predisposition in the association between cannabis use and subcortical brain structure.  JAMA Psychiatry. 2015;72(10):994-1001.PubMedGoogle ScholarCrossref
Thayer  RE, YorkWilliams  S, Karoly  HC,  et al.  Structural neuroimaging correlates of alcohol and cannabis use in adolescents and adults.  Addiction. 2017;112(12):2144-2154.PubMedGoogle ScholarCrossref
Weiland  BJ, Thayer  RE, Depue  BE, Sabbineni  A, Bryan  AD, Hutchison  KE.  Daily marijuana use is not associated with brain morphometric measures in adolescents or adults.  J Neurosci. 2015;35(4):1505-1512.PubMedGoogle ScholarCrossref
Pope  HG  Jr, Gruber  AJ, Hudson  JI, Huestis  MA, Yurgelun-Todd  D.  Neuropsychological performance in long-term cannabis users.  Arch Gen Psychiatry. 2001;58(10):909-915.PubMedGoogle ScholarCrossref
Meier  MH, Caspi  A, Ambler  A,  et al.  Persistent cannabis users show neuropsychological decline from childhood to midlife.  Proc Natl Acad Sci U S A. 2012;109(40):E2657-E2664.PubMedGoogle ScholarCrossref
Pope  HG  Jr, Gruber  AJ, Hudson  JI, Cohane  G, Huestis  MA, Yurgelun-Todd  D.  Early-onset cannabis use and cognitive deficits: what is the nature of the association?  Drug Alcohol Depend. 2003;69(3):303-310.PubMedGoogle ScholarCrossref
Jones  JD, Calkins  ME, Scott  JC, Bach  EC, Gur  RE.  Cannabis use, polysubstance use, and psychosis spectrum symptoms in a community-based sample of U.S. youth.  J Adolesc Health. 2017;60(6):653-659.PubMedGoogle ScholarCrossref
Marconi  A, Di Forti  M, Lewis  CM, Murray  RM, Vassos  E.  Meta-analysis of the association between the level of cannabis use and risk of psychosis.  Schizophr Bull. 2016;42(5):1262-1269.PubMedGoogle ScholarCrossref
Tetrault  JM, Crothers  K, Moore  BA, Mehra  R, Concato  J, Fiellin  DA.  Effects of marijuana smoking on pulmonary function and respiratory complications: a systematic review.  Arch Intern Med. 2007;167(3):221-228.PubMedGoogle ScholarCrossref
Silins  E, Horwood  LJ, Patton  GC,  et al; Cannabis Cohorts Research Consortium.  Young adult sequelae of adolescent cannabis use: an integrative analysis.  Lancet Psychiatry. 2014;1(4):286-293.PubMedGoogle ScholarCrossref
Castellanos-Ryan  N, Pingault  J-B, Parent  S, Vitaro  F, Tremblay  RE, Séguin  JR.  Adolescent cannabis use, change in neurocognitive function, and high-school graduation: a longitudinal study from early adolescence to young adulthood.  Dev Psychopathol. 2017;29(4):1253-1266.PubMedGoogle ScholarCrossref
Meier  MH, Hill  ML, Small  PJ, Luthar  SS.  Associations of adolescent cannabis use with academic performance and mental health: a longitudinal study of upper middle class youth.  Drug Alcohol Depend. 2015;156(suppl C):207-212.PubMedGoogle ScholarCrossref
Verweij  KJH, Huizink  AC, Agrawal  A, Martin  NG, Lynskey  MT.  Is the relationship between early-onset cannabis use and educational attainment causal or due to common liability?  Drug Alcohol Depend. 2013;133(2):580-586.PubMedGoogle ScholarCrossref
Atakan  Z, Bhattacharyya  S, Allen  P,  et al.  Cannabis affects people differently: inter-subject variation in the psychotogenic effects of Δ9-tetrahydrocannabinol: a functional magnetic resonance imaging study with healthy volunteers.  Psychol Med. 2013;43(6):1255-1267.PubMedGoogle ScholarCrossref
Batalla  A, Crippa  JA, Busatto  GF,  et al.  Neuroimaging studies of acute effects of THC and CBD in humans and animals: a systematic review.  Curr Pharm Des. 2014;20(13):2168-2185.PubMedGoogle ScholarCrossref
Sterne  JA, Gavaghan  D, Egger  M.  Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature.  J Clin Epidemiol. 2000;53(11):1119-1129.PubMedGoogle ScholarCrossref
Dwan  K, Altman  DG, Arnaiz  JA,  et al.  Systematic review of the empirical evidence of study publication bias and outcome reporting bias.  PLoS One. 2008;3(8):e3081.PubMedGoogle ScholarCrossref
Daly  M.  Personality may explain the association between cannabis use and neuropsychological impairment.  Proc Natl Acad Sci U S A. 2013;110(11):E979.PubMedGoogle ScholarCrossref
Rogeberg  O.  Correlations between cannabis use and IQ change in the Dunedin cohort are consistent with confounding from socioeconomic status.  Proc Natl Acad Sci U S A. 2013;110(11):4251-4254.PubMedGoogle ScholarCrossref
Giancola  PR, Tarter  RE.  Executive cognitive functioning and risk for substance abuse.  Psychol Sci. 1999;10(3):203-205.Google ScholarCrossref
Meier  MH, Caspi  A, Danese  A,  et al.  Associations between adolescent cannabis use and neuropsychological decline: a longitudinal co-twin control study.  Addiction. 2018;113(2):257-265.PubMedGoogle ScholarCrossref
Sloboda  Z, Glantz  MD, Tarter  RE.  Revisiting the concepts of risk and protective factors for understanding the etiology and development of substance use and substance use disorders: implications for prevention.  Subst Use Misuse. 2012;47(8-9):944-962.PubMedGoogle ScholarCrossref
Tarter  RE, Kirisci  L, Mezzich  A,  et al.  Neurobehavioral disinhibition in childhood predicts early age at onset of substance use disorder.  Am J Psychiatry. 2003;160(6):1078-1085.PubMedGoogle ScholarCrossref
Jackson  NJ, Isen  JD, Khoddam  R,  et al.  Impact of adolescent marijuana use on intelligence: results from two longitudinal twin studies.  Proc Natl Acad Sci U S A. 2016;113(5):E500-E508.PubMedGoogle ScholarCrossref
Rømer Thomsen  K, Callesen  MB, Feldstein Ewing  SW.  Recommendation to reconsider examining cannabis subtypes together due to opposing effects on brain, cognition and behavior.  Neurosci Biobehav Rev. 2017;80:156-158.PubMedGoogle ScholarCrossref
Morgan  CJA, Schafer  G, Freeman  TP, Curran  HV.  Impact of cannabidiol on the acute memory and psychotomimetic effects of smoked cannabis: naturalistic study: naturalistic study  [published correction appears in Br J Psychiatry. 2010;197(5):416].  Br J Psychiatry. 2010;197(4):285-290.PubMedGoogle ScholarCrossref
Gruber  SA, Sagar  KA, Dahlgren  MK, Racine  MT, Smith  RT, Lukas  SE.  Splendor in the grass? a pilot study assessing the impact of medical marijuana on executive function.  Front Pharmacol. 2016;7:355.PubMedGoogle ScholarCrossref
Solowij  N, Lorenzetti  V, Yücel  M.  Effects of cannabis use on human behavior: a call for standardization of cannabis use metrics.  JAMA Psychiatry. 2016;73(9):995-996.PubMedGoogle ScholarCrossref
Kevin  RC, Allsop  DJ, Lintzeris  N, Dunlop  AJ, Booth  J, McGregor  IS.  Urinary cannabinoid levels during nabiximols (Sativex®)-medicated inpatient cannabis withdrawal.  Forensic Toxicol. 2017;35(1):33-44. ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience

Lookup An Activity



My Saved Searches

You currently have no searches saved.

With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right