The Carbohydrate-Insulin Model of Obesity | Lifestyle Behaviors | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

The Carbohydrate-Insulin Model of ObesityBeyond “Calories In, Calories Out”

Educational Objective
To review the association of a high-carbohydrate diet with postprandial hyperinsulinemia, deposition of calories in fat cells instead of oxidation in lean tissues, and predisposition to weight gain through increased hunger, slowing metabolic rate, or both.
1 Credit CME
Abstract

Despite intensive research, the causes of the obesity epidemic remain incompletely understood and conventional calorie-restricted diets continue to lack long-term efficacy. According to the carbohydrate-insulin model (CIM) of obesity, recent increases in the consumption of processed, high–glycemic-load carbohydrates produce hormonal changes that promote calorie deposition in adipose tissue, exacerbate hunger, and lower energy expenditure. Basic and genetic research provides mechanistic evidence in support of the CIM. In animals, dietary composition has been clearly demonstrated to affect metabolism and body composition, independently of calorie intake, consistent with CIM predictions. Meta-analyses of behavioral trials report greater weight loss with reduced-glycemic load vs low-fat diets, though these studies characteristically suffer from poor long-term compliance. Feeding studies have lacked the rigor and duration to test the CIM, but the longest such studies tend to show metabolic advantages for low-glycemic load vs low-fat diets. Beyond the type and amount of carbohydrate consumed, the CIM provides a conceptual framework for understanding how many dietary and nondietary exposures might alter hormones, metabolism, and adipocyte biology in ways that could predispose to obesity. Pending definitive studies, the principles of a low-glycemic load diet offer a practical alternative to the conventional focus on dietary fat and calorie restriction.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Corresponding Author: David S. Ludwig, MD, PhD, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115 (david.ludwig@childrens.harvard.edu).

Accepted for Publication: May 7, 2018.

Published Online: July 2, 2018. doi:10.1001/jamainternmed.2018.2933

Author Contributions: Author Ludwig had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Ludwig.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Ludwig.

Critical revision of the manuscript for important intellectual content: All authors.

Administrative, technical, or material support: All authors.

Conflict of Interest Disclosures: Both authors received grants (to Boston Children’s Hospital) from the National Institutes of Health, Nutrition Science Initiative, the Laura and John Arnold Foundation and other philanthropic organizations unaffiliated with the food industry. Both authors have conducted research studies examining the carbohydrate-insulin model. Dr Ludwig received royalties for books on obesity and nutrition that recommend a low-glycemic load diet. Dr Ludwig is supported in part by award K24DK082730 from the National Institute of Diabetes and Digestive and Kidney Diseases. No other disclosures are reported.

Disclaimer: The content of this article is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Diabetes and Digestive and Kidney Diseases or the National Institutes of Health.

Additional Contributions: We thank Dariush Mozaffarian, MD, PhD, Tufts University, for advice on an earlier version of this manuscript. He received no financial compensation.

References
1.
Schwartz  MW, Seeley  RJ, Zeltser  LM,  et al.  Obesity pathogenesis: an Endocrine Society Scientific Statement.  Endocr Rev. 2017;38(4):267-296.PubMedGoogle ScholarCrossref
2.
Leibel  RL, Rosenbaum  M, Hirsch  J.  Changes in energy expenditure resulting from altered body weight.  N Engl J Med. 1995;332(10):621-628.PubMedGoogle ScholarCrossref
3.
Ludwig  DS.  The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease.  JAMA. 2002;287(18):2414-2423.PubMedGoogle ScholarCrossref
4.
Ludwig  DS, Friedman  MI.  Increasing adiposity: consequence or cause of overeating?  JAMA. 2014;311(21):2167-2168.PubMedGoogle ScholarCrossref
5.
Taubes  G.  The science of obesity: what do we really know about what makes us fat? An essay by Gary Taubes.  BMJ. 2013;346:f1050.PubMedGoogle ScholarCrossref
6.
Carlson  MG, Campbell  PJ.  Intensive insulin therapy and weight gain in IDDM.  Diabetes. 1993;42(12):1700-1707.PubMedGoogle ScholarCrossref
7.
Hansen  JB, Arkhammar  PO, Bodvarsdottir  TB, Wahl  P.  Inhibition of insulin secretion as a new drug target in the treatment of metabolic disorders.  Curr Med Chem. 2004;11(12):1595-1615.PubMedGoogle ScholarCrossref
8.
Wolever  TM, Bolognesi  C.  Prediction of glucose and insulin responses of normal subjects after consuming mixed meals varying in energy, protein, fat, carbohydrate and glycemic index.  J Nutr. 1996;126(11):2807-2812.PubMedGoogle Scholar
9.
Ford  ES, Dietz  WH.  Trends in energy intake among adults in the United States: findings from NHANES.  Am J Clin Nutr. 2013;97(4):848-853.PubMedGoogle ScholarCrossref
10.
O’Neil  CE, Keast  DR, Fulgoni  VL, Nicklas  TA.  Food sources of energy and nutrients among adults in the US: NHANES 2003–2006.  Nutrients. 2012;4(12):2097-2120.PubMedGoogle ScholarCrossref
11.
Cusin  I, Rohner-Jeanrenaud  F, Terrettaz  J, Jeanrenaud  B.  Hyperinsulinemia and its impact on obesity and insulin resistance.  Int J Obes Relat Metab Disord. 1992;16(suppl 4):S1-S11.PubMedGoogle Scholar
12.
VanderWeele  DA, Haraczkiewicz  E, Van Itallie  TB.  Elevated insulin and satiety in obese and normal-weight rats.  Appetite. 1982;3(2):99-109.PubMedGoogle ScholarCrossref
13.
Torbay  N, Bracco  EF, Geliebter  A, Stewart  IM, Hashim  SA.  Insulin increases body fat despite control of food intake and physical activity.  Am J Physiol. 1985;248(1 Pt 2):R120-R124.PubMedGoogle Scholar
14.
Kabir  M, Rizkalla  SW, Champ  M,  et al.  Dietary amylose-amylopectin starch content affects glucose and lipid metabolism in adipocytes of normal and diabetic rats.  J Nutr. 1998;128(1):35-43.PubMedGoogle ScholarCrossref
15.
Kabir  M, Rizkalla  SW, Quignard-Boulangé  A,  et al.  A high glycemic index starch diet affects lipid storage-related enzymes in normal and to a lesser extent in diabetic rats.  J Nutr. 1998;128(11):1878-1883.PubMedGoogle ScholarCrossref
16.
Lerer-Metzger  M, Rizkalla  SW, Luo  J,  et al.  Effects of long-term low-glycaemic index starchy food on plasma glucose and lipid concentrations and adipose tissue cellularity in normal and diabetic rats.  Br J Nutr. 1996;75(5):723-732.PubMedGoogle ScholarCrossref
17.
Pawlak  DB, Kushner  JA, Ludwig  DS.  Effects of dietary glycaemic index on adiposity, glucose homoeostasis, and plasma lipids in animals.  Lancet. 2004;364(9436):778-785.PubMedGoogle ScholarCrossref
18.
Kennedy  AR, Pissios  P, Otu  H,  et al.  A high-fat, ketogenic diet induces a unique metabolic state in mice.  Am J Physiol Endocrinol Metab. 2007;292(6):E1724-E1739.PubMedGoogle ScholarCrossref
19.
Blüher  M, Kahn  BB, Kahn  CR.  Extended longevity in mice lacking the insulin receptor in adipose tissue.  Science. 2003;299(5606):572-574.PubMedGoogle ScholarCrossref
20.
Astley  CM, Todd  JN, Salem  RM,  et al.  Genetic evidence that carbohydrate-stimulated insulin secretion leads to obesity.  Clin Chem. 2018;64(1):192-200.PubMedGoogle ScholarCrossref
21.
Le Stunff  C, Fallin  D, Schork  NJ, Bougnères  P.  The insulin gene VNTR is associated with fasting insulin levels and development of juvenile obesity.  Nat Genet. 2000;26(4):444-446.PubMedGoogle ScholarCrossref
22.
Mehran  AE, Templeman  NM, Brigidi  GS,  et al.  Hyperinsulinemia drives diet-induced obesity independently of brain insulin production.  Cell Metab. 2012;16(6):723-737.PubMedGoogle ScholarCrossref
23.
Mansoor  N, Vinknes  KJ, Veierød  MB, Retterstøl  K.  Effects of low-carbohydrate diets v. low-fat diets on body weight and cardiovascular risk factors: a meta-analysis of randomised controlled trials.  Br J Nutr. 2016;115(3):466-479.PubMedGoogle ScholarCrossref
24.
Tobias  DK, Chen  M, Manson  JE, Ludwig  DS, Willett  W, Hu  FB.  Effect of low-fat diet interventions versus other diet interventions on long-term weight change in adults: a systematic review and meta-analysis.  Lancet Diabetes Endocrinol. 2015;3(12):968-979.PubMedGoogle ScholarCrossref
25.
Larsen  TM, Dalskov  SM, van Baak  M,  et al; Diet, Obesity, and Genes (Diogenes) Project.  Diets with high or low protein content and glycemic index for weight-loss maintenance.  N Engl J Med. 2010;363(22):2102-2113.PubMedGoogle ScholarCrossref
26.
Shai  I, Schwarzfuchs  D, Henkin  Y,  et al; Dietary Intervention Randomized Controlled Trial (DIRECT) Group.  Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet.  N Engl J Med. 2008;359(3):229-241.PubMedGoogle ScholarCrossref
27.
Gardner  CD, Trepanowski  JF, Del Gobbo  LC,  et al.  Effect of low-fat vs low-carbohydrate diet on 12-month weight loss in overweight adults and the association with genotype pattern or insulin secretion: the DIETFITS randomized clinical trial.  JAMA. 2018;319(7):667-679.PubMedGoogle ScholarCrossref
28.
Mozaffarian  D, Hao  T, Rimm  EB, Willett  WC, Hu  FB.  Changes in diet and lifestyle and long-term weight gain in women and men.  N Engl J Med. 2011;364(25):2392-2404.PubMedGoogle ScholarCrossref
29.
de Ruyter  JC, Olthof  MR, Seidell  JC, Katan  MB.  A trial of sugar-free or sugar-sweetened beverages and body weight in children.  N Engl J Med. 2012;367(15):1397-1406.PubMedGoogle ScholarCrossref
30.
Solomon  TP, Haus  JM, Cook  MA, Flask  CA, Kirwan  JP.  A low-glycemic diet lifestyle intervention improves fat utilization during exercise in older obese humans.  Obesity (Silver Spring). 2013;21(11):2272-2278.PubMedGoogle ScholarCrossref
31.
Walsh  CO, Ebbeling  CB, Swain  JF, Markowitz  RL, Feldman  HA, Ludwig  DS.  Effects of diet composition on postprandial energy availability during weight loss maintenance.  PLoS One. 2013;8(3):e58172.PubMedGoogle ScholarCrossref
32.
Hall  KD.  A review of the carbohydrate-insulin model of obesity.  Eur J Clin Nutr. 2017;71(3):323-326.PubMedGoogle ScholarCrossref
33.
Hall  KD, Guo  J.  Obesity energetics: body weight regulation and the effects of diet composition.  Gastroenterology. 2017;152(7):1718-1727.Google ScholarCrossref
34.
Owen  OE, Caprio  S, Reichard  GA  Jr, Mozzoli  MA, Boden  G, Owen  RS.  Ketosis of starvation: a revisit and new perspectives.  Clin Endocrinol Metab. 1983;12(2):359-379.PubMedGoogle ScholarCrossref
35.
Yang  MU, Van Itallie  TB.  Composition of weight lost during short-term weight reduction. metabolic responses of obese subjects to starvation and low-calorie ketogenic and nonketogenic diets.  J Clin Invest. 1976;58(3):722-730.PubMedGoogle ScholarCrossref
36.
Vazquez  JA, Adibi  SA.  Protein sparing during treatment of obesity: ketogenic versus nonketogenic very low calorie diet.  Metabolism. 1992;41(4):406-414.PubMedGoogle ScholarCrossref
37.
Norgan  NG, Durnin  JV.  The effect of 6 weeks of overfeeding on the body weight, body composition, and energy metabolism of young men.  Am J Clin Nutr. 1980;33(5):978-988.PubMedGoogle ScholarCrossref
38.
Sims  EA, Goldman  RF, Gluck  CM, Horton  ES, Kelleher  PC, Rowe  DW.  Experimental obesity in man.  Trans Assoc Am Physicians. 1968;81:153-170.PubMedGoogle Scholar
39.
Virtue  S, Vidal-Puig  A.  Adipose tissue expandability, lipotoxicity and the Metabolic Syndrome—an allostatic perspective.  Biochim Biophys Acta. 2010;1801(3):338-349.PubMedGoogle ScholarCrossref
40.
Pénicaud  L, Kinebanyan  MF, Ferré  P,  et al.  Development of VMH obesity: in vivo insulin secretion and tissue insulin sensitivity.  Am J Physiol. 1989;257(2 Pt 1):E255-E260.PubMedGoogle Scholar
41.
Kusnadi  DTL, Barclay  AW, Brand-Miller  JC, Louie  JCY.  Changes in dietary glycemic index and glycemic load in Australian adults from 1995 to 2012.  Am J Clin Nutr. 2017;106(1):189-198.PubMedGoogle ScholarCrossref
42.
Chaput  JP, Tremblay  A, Rimm  EB, Bouchard  C, Ludwig  DS.  A novel interaction between dietary composition and insulin secretion: effects on weight gain in the Quebec Family Study.  Am J Clin Nutr. 2008;87(2):303-309.PubMedGoogle ScholarCrossref
43.
Ebbeling  CB, Leidig  MM, Feldman  HA, Lovesky  MM, Ludwig  DS.  Effects of a low-glycemic load vs low-fat diet in obese young adults: a randomized trial.  JAMA. 2007;297(19):2092-2102.PubMedGoogle ScholarCrossref
44.
Pittas  AG, Das  SK, Hajduk  CL,  et al.  A low-glycemic load diet facilitates greater weight loss in overweight adults with high insulin secretion but not in overweight adults with low insulin secretion in the CALERIE Trial.  Diabetes Care. 2005;28(12):2939-2941.PubMedGoogle ScholarCrossref
45.
Feinman  RD, Pogozelski  WK, Astrup  A,  et al.  Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base.  Nutrition. 2015;31(1):1-13.PubMedGoogle ScholarCrossref
46.
Sanchez  A, Hubbard  RW.  Plasma amino acids and the insulin/glucagon ratio as an explanation for the dietary protein modulation of atherosclerosis.  Med Hypotheses. 1991;36(1):27-32.PubMedGoogle ScholarCrossref
47.
Mozaffarian  D, Ludwig  DS.  The 2015 US Dietary Guidelines: lifting the ban on total dietary fat.  JAMA. 2015;313(24):2421-2422.PubMedGoogle ScholarCrossref
48.
Howell  S, Kones  R. “Calories in, calories out” and macronutrient intake: the hope, hype, and science of calories.  Am J Physiol Endocrinol Metab. 2017;313(5):E608-E612.Google ScholarCrossref
49.
Bray  GA, Heisel  WE, Afshin  A,  et al.  The science of obesity management: an Endocrine Society scientific statement.  Endocr Rev. 2018;39(2):79-132.PubMedGoogle ScholarCrossref
50.
Bauer  J.  Obesity: its pathogenesis, etiology and treatment.  Arch Intern Med (Chic). 1941;67(5):968-994.Google ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close