[Skip to Content]
[Skip to Content Landing]

Management Considerations in Infective EndocarditisA Review

Educational Objective
To review the clinical management of patients with infective endocarditis.
1 Credit CME
Abstract

Importance  Infective endocarditis occurs in approximately 15 of 100 000 people in the United States and has increased in incidence. Clinicians must make treatment decisions with respect to prophylaxis, surgical management, specific antibiotics, and the length of treatment in the setting of emerging, sometimes inconclusive clinical research findings.

Observations  Community–associated infective endocarditis remains the predominant form of the disease; however, health care accounts for one-third of cases in high-income countries. As medical interventions are increasingly performed on older patients, the disease incidence from cardiac implanted electronic devices is also increasing. In addition, younger patients involved with intravenous drug use has increased in the past decade and with it the proportion of US hospitalization has increased to more than 10%. These epidemiological factors have led to Staphylococcus aureus being the most common cause in high-income countries, accounting for up to 40% of cases. The mainstays of diagnosis are still echocardiography and blood cultures. Adjunctive imaging such as cardiac computed tomographic and nuclear imaging can improve the sensitivity for diagnosis when echocardiography is not conclusive. Serological studies, histopathology, and polymerase chain reaction assays have distinct roles in the diagnosis of infective endocarditis when blood culture have tested negative with the highest yield obtained from serological studies. Increasing antibiotic resistance, particularly to S aureus, has led to a need for different antibiotic treatment options such as newer antibiotics and combination therapy regimens. Surgery can confer a survival benefit to patients with major complications; however, the decision to pursue surgery must balance the risks and benefits of operations in these frequently high-risk patients.

Conclusions and Relevance  The epidemiology and management of infective endocarditis are continually changing. Guidelines provide specific recommendations about management; however, careful attention to individual patient characteristics, pathogen, and risk of sequela must be considered when making therapeutic decisions.

Sign in to take quiz and track your certificates

Buy This Activity
Article Information

Corresponding Author: Vivian H. Chu, MD, MHS, Duke University Medical Center, DUMC Box 102359, Hanes Bldg, Room 177, Durham, NC 27710 (vivian.chu@duke.edu).

Accepted for Publication: May 31, 2018.

Author Contributions: Dr Chu had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: All authors.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: All authors.

Critical revision of the manuscript for important intellectual content: Wang, Chu.

Administrative, technical, or material support: All authors.

Supervision: All authors.

Conflict of Interest Disclosures: All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Dr Wang reports receiving grant support from the American Heart Association Mid-Atlantic Grant in Aid; institutional grants pending from MyoKardia Inc, Abbott Vascular, Gilead Sciences; and payment for developing educational presentations from the American College of Physicians. Dr Chu reports receiving royalties from UpToDate, personal fees for serving as a consultant to Theravance and DNAe, and receiving grant support from the National Institutes of Health. No other disclosures were reported.

References
1.
Murdoch  DR, Corey  GR, Hoen  B,  et al.  Clinical presentation, etiology, and outcome of infective endocarditis in the 21st century: the International Collaboration on Endocarditis-Prospective Cohort Study.  Arch Intern Med. 2009;169(5):463-473. doi:10.1001/archinternmed.2008.603Google ScholarCrossref
2.
Selton-Suty  C, Celard  M, Le Moing  V,  et al.  Preeminence of Staphylococcus aureus in infective endocarditis: a 1-year population-based survey.  Clin Infect Dis. 2012;54(9):1230-1239. doi:10.1093/cid/cis199Google ScholarCrossref
3.
Benito  N, Miro  JM, de Lazzari  E,  et al.  Health care-associated native valve endocarditis: importance of non-nosocomial acquisition.  Ann Intern Med. 2009;150(9):586-594. doi:10.7326/0003-4819-150-9-200905050-00004Google ScholarCrossref
4.
Lockhart  PB, Brennan  MT, Thornhill  M,  et al.  Poor oral hygiene as a risk factor for infective endocarditis-related bacteremia.  J Am Dent Assoc. 2009;140(10):1238-1244. doi:10.14219/jada.archive.2009.0046Google ScholarCrossref
5.
Durante-Mangoni  E, Bradley  S, Selton-Suty  C,  et al.  Current features of infective endocarditis in elderly patients: results of the International Collaboration on Endocarditis Prospective Cohort Study.  Arch Intern Med. 2008;168(19):2095-2103. doi:10.1001/archinte.168.19.2095Google ScholarCrossref
6.
Hill  EE, Vanderschueren  S, Verhaegen  J,  et al.  Risk factors for infective endocarditis and outcome of patients with Staphylococcus aureus bacteremia.  Mayo Clin Proc. 2007;82(10):1165-1169. doi:10.4065/82.10.1165Google ScholarCrossref
7.
McKinsey  DS, Ratts  TE, Bisno  AL.  Underlying cardiac lesions in adults with infective endocarditis: the changing spectrum.  Am J Med. 1987;82(4):681-688. doi:10.1016/0002-9343(87)90001-5Google ScholarCrossref
8.
Strom  BL, Abrutyn  E, Berlin  JA,  et al.  Risk factors for infective endocarditis: oral hygiene and nondental exposures.  Circulation. 2000;102(23):2842-2848. doi:10.1161/01.CIR.102.23.2842Google ScholarCrossref
9.
Chen  SJ, Liu  CJ, Chao  TF,  et al.  Dental scaling and risk reduction in infective endocarditis: a nationwide population-based case-control study.  Can J Cardiol. 2013;29(4):429-433. doi:10.1016/j.cjca.2012.04.018Google ScholarCrossref
10.
Pant  S, Patel  NJ, Deshmukh  A,  et al.  Trends in infective endocarditis incidence, microbiology, and valve replacement in the United States from 2000 to 2011.  J Am Coll Cardiol. 2015;65(19):2070-2076. doi:10.1016/j.jacc.2015.03.518Google ScholarCrossref
11.
Li  JS, Sexton  DJ, Mick  N,  et al.  Proposed modifications to the Duke criteria for the diagnosis of infective endocarditis.  Clin Infect Dis. 2000;30(4):633-638. doi:10.1086/313753Google ScholarCrossref
12.
Fernandez-Hidalgo  N, Almirante  B, Tornos  P,  et al.  Contemporary epidemiology and prognosis of health care–associated infective endocarditis.  Clin Infect Dis. 2008;47(10):1287-1297. doi:10.1086/592576Google ScholarCrossref
13.
Toyoda  N, Chikwe  J, Itagaki  S, Gelijns  AC, Adams  DH, Egorova  NN.  Trends in infective endocarditis in California and New York State, 1998-2013.  JAMA. 2017;317(16):1652-1660. doi:10.1001/jama.2017.4287Google ScholarCrossref
14.
Bor  DH, Woolhandler  S, Nardin  R, Brusch  J, Himmelstein  DU.  Infective endocarditis in the US, 1998-2009: a nationwide study.  PLoS One. 2013;8(3):e60033. doi:10.1371/journal.pone.0060033Google ScholarCrossref
15.
Delahaye  F, M’Hammedi  A, Guerpillon  B,  et al.  Systematic search for present and potential portals of entry for infective endocarditis.  J Am Coll Cardiol. 2016;67(2):151-158. doi:10.1016/j.jacc.2015.10.065Google ScholarCrossref
16.
Wurcel  AG, Anderson  JE, Chui  KK,  et al.  Increasing infectious endocarditis admissions among young people who inject drugs.  Open Forum Infect Dis. 2016;3(3):ofw157. doi:10.1093/ofid/ofw157Google ScholarCrossref
17.
Hedegaard  H, Warner  M, Minino  AM.  Drug overdose deaths in the United States, 1999-2016.  NCHS Data Brief. 2017;(294):1-8.Google Scholar
18.
Hartman  L, Barnes  E, Bachmann  L, Schafer  K, Lovato  J, Files  DC.  Opiate Injection-associated infective endocarditis in the Southeastern United States.  Am J Med Sci. 2016;352(6):603-608. doi:10.1016/j.amjms.2016.08.010Google ScholarCrossref
19.
Fleischauer  AT, Ruhl  L, Rhea  S, Barnes  E.  Hospitalizations for endocarditis and associated health care costs among persons with diagnosed drug dependence—North Carolina, 2010-2015.  MMWR Morb Mortal Wkly Rep. 2017;66(22):569-573. doi:10.15585/mmwr.mm6622a1Google ScholarCrossref
20.
Greenspon  AJ, Patel  JD, Lau  E,  et al.  16-Year trends in the infection burden for pacemakers and implantable cardioverter-defibrillators in the United States 1993 to 2008.  J Am Coll Cardiol. 2011;58(10):1001-1006. doi:10.1016/j.jacc.2011.04.033Google ScholarCrossref
21.
Polyzos  KA, Konstantelias  AA, Falagas  ME.  Risk factors for cardiac implantable electronic device infection: a systematic review and meta-analysis.  Europace. 2015;17(5):767-777. doi:10.1093/europace/euv053Google ScholarCrossref
22.
Athan  E, Chu  VH, Tattevin  P,  et al.  Clinical characteristics and outcome of infective endocarditis involving implantable cardiac devices.  JAMA. 2012;307(16):1727-1735. doi:10.1001/jama.2012.497Google ScholarCrossref
23.
Klug  D, Lacroix  D, Savoye  C,  et al.  Systemic infection related to endocarditis on pacemaker leads: clinical presentation and management.  Circulation. 1997;95(8):2098-2107. doi:10.1161/01.CIR.95.8.2098Google ScholarCrossref
24.
Nishimura  RA, Otto  CM, Bonow  RO,  et al.  2017 AHA/ACC Focused Update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.  Circulation. 2017;135(25):e1159-e1195. doi:10.1161/CIR.0000000000000503Google ScholarCrossref
25.
Durack  DT, Lukes  AS, Bright  DK.  New criteria for diagnosis of infective endocarditis: utilization of specific echocardiographic findings. Duke Endocarditis Service.  Am J Med. 1994;96(3):200-209. doi:10.1016/0002-9343(94)90143-0Google ScholarCrossref
26.
Towns  ML, Reller  LB.  Diagnostic methods current best practices and guidelines for isolation of bacteria and fungi in infective endocarditis.  Infect Dis Clin North Am. 2002;16(2):363-376. ix-x. doi:10.1016/S0891-5520(02)00002-8Google ScholarCrossref
27.
Fowler  VG  Jr, Miro  JM, Hoen  B,  et al.  Staphylococcus aureus endocarditis: a consequence of medical progress.  JAMA. 2005;293(24):3012-3021. doi:10.1001/jama.293.24.3012Google ScholarCrossref
28.
Carugati  M, Bayer  AS, Miro  JM,  et al.  High-dose daptomycin therapy for left-sided infective endocarditis: a prospective study from the international collaboration on endocarditis.  Antimicrob Agents Chemother. 2013;57(12):6213-6222. doi:10.1128/AAC.01563-13Google ScholarCrossref
29.
Bae  IG, Federspiel  JJ, Miro  JM,  et al.  Heterogeneous vancomycin-intermediate susceptibility phenotype in bloodstream methicillin-resistant Staphylococcus aureus isolates from an international cohort of patients with infective endocarditis: prevalence, genotype, and clinical significance.  J Infect Dis. 2009;200(9):1355-1366. doi:10.1086/606027Google ScholarCrossref
30.
Dickerman  SA, Abrutyn  E, Barsic  B,  et al.  The relationship between the initiation of antimicrobial therapy and the incidence of stroke in infective endocarditis: an analysis from the ICE Prospective Cohort Study (ICE-PCS).  Am Heart J. 2007;154(6):1086-1094. doi:10.1016/j.ahj.2007.07.023Google ScholarCrossref
31.
Rizzi  M, Ravasio  V, Carobbio  A,  et al.  Predicting the occurrence of embolic events: an analysis of 1456 episodes of infective endocarditis from the Italian Study on Endocarditis (SEI).  BMC Infect Dis. 2014;14:230. doi:10.1186/1471-2334-14-230Google ScholarCrossref
32.
Thuny  F, Di Salvo  G, Belliard  O,  et al.  Risk of embolism and death in infective endocarditis: prognostic value of echocardiography: a prospective multicenter study.  Circulation. 2005;112(1):69-75. doi:10.1161/CIRCULATIONAHA.104.493155Google ScholarCrossref
33.
Chu  VH, Miro  JM, Hoen  B,  et al.  Coagulase-negative staphylococcal prosthetic valve endocarditis—a contemporary update based on the International Collaboration on Endocarditis.  Heart. 2009;95(7):570-576. doi:10.1136/hrt.2008.152975Google ScholarCrossref
34.
Chambers  ST, Murdoch  D, Morris  A,  et al.  HACEK infective endocarditis: characteristics and outcomes from a large, multi-national cohort.  PLoS One. 2013;8(5):e63181. doi:10.1371/journal.pone.0063181Google ScholarCrossref
35.
Baron  EJ, Scott  JD, Tompkins  LS.  Prolonged incubation and extensive subculturing do not increase recovery of clinically significant microorganisms from standard automated blood cultures.  Clin Infect Dis. 2005;41(11):1677-1680. doi:10.1086/497595Google ScholarCrossref
36.
Ellis  ME, Al-Abdely  H, Sandridge  A, Greer  W, Ventura  W.  Fungal endocarditis: evidence in the world literature, 1965-1995.  Clin Infect Dis. 2001;32(1):50-62. doi:10.1086/317550Google ScholarCrossref
37.
Pierrotti  LC, Baddour  LM.  Fungal endocarditis, 1995-2000.  Chest. 2002;122(1):302-310. doi:10.1378/chest.122.1.302Google ScholarCrossref
38.
Brouqui  P, Raoult  D.  Endocarditis due to rare and fastidious bacteria.  Clin Microbiol Rev. 2001;14(1):177-207. doi:10.1128/CMR.14.1.177-207.2001Google ScholarCrossref
39.
Fournier  PE, Thuny  F, Richet  H,  et al.  Comprehensive diagnostic strategy for blood culture-negative endocarditis: a prospective study of 819 new cases.  Clin Infect Dis. 2010;51(2):131-140. doi:10.1086/653675Google ScholarCrossref
40.
Tattevin  P, Watt  G, Revest  M, Arvieux  C, Fournier  PE.  Update on blood culture-negative endocarditis.  Med Mal Infect. 2015;45(1-2):1-8. doi:10.1016/j.medmal.2014.11.003Google ScholarCrossref
41.
Habib  G, Lancellotti  P, Antunes  MJ,  et al.  2015 ESC Guidelines for the management of infective endocarditis: the Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC).  Eur Heart J. 2015;36(44):3075-3128. doi:10.1093/eurheartj/ehv319Google ScholarCrossref
42.
Sivak  JA, Vora  AN, Navar  AM,  et al.  An approach to improve the negative predictive value and clinical utility of transthoracic echocardiography in suspected native valve infective endocarditis.  J Am Soc Echocardiogr. 2016;29(4):315-322. doi:10.1016/j.echo.2015.12.009Google ScholarCrossref
43.
Shively  BK, Gurule  FT, Roldan  CA, Leggett  JH, Schiller  NB.  Diagnostic value of transesophageal compared with transthoracic echocardiography in infective endocarditis.  J Am Coll Cardiol. 1991;18(2):391-397. doi:10.1016/0735-1097(91)90591-VGoogle ScholarCrossref
44.
Habib  G, Badano  L, Tribouilloy  C,  et al.  Recommendations for the practice of echocardiography in infective endocarditis.  Eur J Echocardiogr. 2010;11(2):202-219. doi:10.1093/ejechocard/jeq004Google ScholarCrossref
45.
Feuchtner  GM, Stolzmann  P, Dichtl  W,  et al.  Multislice computed tomography in infective endocarditis: comparison with transesophageal echocardiography and intraoperative findings.  J Am Coll Cardiol. 2009;53(5):436-444. doi:10.1016/j.jacc.2008.01.077Google ScholarCrossref
46.
Nishimura  RA, Otto  CM, Bonow  RO,  et al.  2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines.  J Am Coll Cardiol. 2014;63(22):2438-2488. doi:10.1016/j.jacc.2014.02.537Google ScholarCrossref
47.
Kim  IC, Chang  S, Hong  GR,  et al.  Comparison of cardiac computed tomography with transesophageal echocardiography for identifying vegetation and intracardiac complications in patients with infective endocarditis in the era of 3-dimensional images.  Circ Cardiovasc Imaging. 2018;11(3):e006986. doi:10.1161/CIRCIMAGING.117.006986Google ScholarCrossref
48.
Salaun  E, Habib  G.  Beyond standard echocardiography in infective endocarditis: computed tomography, 3-dimensional imaging, and multi-imaging.  Circ Cardiovasc Imaging. 2018;11(3):e007626. doi:10.1161/CIRCIMAGING.118.007626Google ScholarCrossref
49.
Saby  L, Laas  O, Habib  G,  et al.  Positron emission tomography/computed tomography for diagnosis of prosthetic valve endocarditis: increased valvular 18F-fluorodeoxyglucose uptake as a novel major criterion.  J Am Coll Cardiol. 2013;61(23):2374-2382. doi:10.1016/j.jacc.2013.01.092Google ScholarCrossref
50.
Baddour  LM, Wilson  WR, Bayer  AS,  et al.  Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications: a scientific statement for healthcare professionals from the American Heart Association.  Circulation. 2015;132(15):1435-1486. doi:10.1161/CIR.0000000000000296Google ScholarCrossref
51.
Chang  FY, Peacock  JE  Jr, Musher  DM,  et al.  Staphylococcus aureus bacteremia: recurrence and the impact of antibiotic treatment in a prospective multicenter study.  Medicine (Baltimore). 2003;82(5):333-339. doi:10.1097/01.md.0000091184.93122.09Google ScholarCrossref
52.
Fowler  VG  Jr, Boucher  HW, Corey  GR,  et al.  Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus.  N Engl J Med. 2006;355(7):653-665. doi:10.1056/NEJMoa053783Google ScholarCrossref
53.
Liu  C, Bayer  A, Cosgrove  SE,  et al.  Clinical practice guidelines by the infectious diseases society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children.  Clin Infect Dis. 2011;52(3):285-292. doi:10.1093/cid/cir034Google ScholarCrossref
54.
Murray  HW, Wigley  FM, Mann  JJ, Arthur  RR.  Combination antibiotic therapy in staphylococcal endocarditis: the use of methicillin sodium-gentamicin sulfate therapy.  Arch Intern Med. 1976;136(4):480-483. doi:10.1001/archinte.1976.03630040082017Google ScholarCrossref
55.
Cosgrove  SE, Vigliani  GA, Fowler  VG  Jr,  et al.  Initial low-dose gentamicin for Staphylococcus aureus bacteremia and endocarditis is nephrotoxic.  Clin Infect Dis. 2009;48(6):713-721. doi:10.1086/597031Google ScholarCrossref
56.
Levine  DP, Fromm  BS, Reddy  BR.  Slow response to vancomycin or vancomycin plus rifampin in methicillin-resistant Staphylococcus aureus endocarditis.  Ann Intern Med. 1991;115(9):674-680. doi:10.7326/0003-4819-115-9-674Google ScholarCrossref
57.
Riedel  DJ, Weekes  E, Forrest  GN.  Addition of rifampin to standard therapy for treatment of native valve infective endocarditis caused by Staphylococcus aureus.  Antimicrob Agents Chemother. 2008;52(7):2463-2467. doi:10.1128/AAC.00300-08Google ScholarCrossref
58.
Holmes  NE, Turnidge  JD, Munckhof  WJ,  et al.  Antibiotic choice may not explain poorer outcomes in patients with Staphylococcus aureus bacteremia and high vancomycin minimum inhibitory concentrations.  J Infect Dis. 2011;204(3):340-347. doi:10.1093/infdis/jir270Google ScholarCrossref
59.
van Hal  SJ, Lodise  TP, Paterson  DL.  The clinical significance of vancomycin minimum inhibitory concentration in Staphylococcus aureus infections: a systematic review and meta-analysis.  Clin Infect Dis. 2012;54(6):755-771. doi:10.1093/cid/cir935Google ScholarCrossref
60.
Cervera  C, Castaneda  X, de la Maria  CG,  et al.  Effect of vancomycin minimal inhibitory concentration on the outcome of methicillin-susceptible Staphylococcus aureus endocarditis.  Clin Infect Dis. 2014;58(12):1668-1675. doi:10.1093/cid/ciu183Google ScholarCrossref
61.
Marcos  LA, Camins  BC.  Successful treatment of vancomycin-intermediate Staphylococcus aureus pacemaker lead infective endocarditis with telavancin.  Antimicrob Agents Chemother. 2010;54(12):5376-5378. doi:10.1128/AAC.00857-10Google ScholarCrossref
62.
Davis  JS, Sud  A, O’Sullivan  MVN,  et al.  Combination of vancomycin and beta-lactam therapy for methicillin-resistant Staphylococcus aureus bacteremia: a pilot multicenter randomized controlled trial.  Clin Infect Dis. 2016;62(2):173-180. doi:10.1093/cid/civ808Google ScholarCrossref
63.
Dhand  A, Bayer  AS, Pogliano  J,  et al.  Use of antistaphylococcal beta-lactams to increase daptomycin activity in eradicating persistent bacteremia due to methicillin-resistant Staphylococcus aureus: role of enhanced daptomycin binding.  Clin Infect Dis. 2011;53(2):158-163. doi:10.1093/cid/cir340Google ScholarCrossref
64.
Chambers  HF, Basuino  L, Hamilton  SM, Choo  EJ, Moise  P.  Daptomycin-beta-Lactam combinations in a rabbit model of daptomycin-nonsusceptible methicillin-resistant Staphylococcus aureus endocarditis.  Antimicrob Agents Chemother. 2016;60(7):3976-3979. doi:10.1128/AAC.00589-16Google ScholarCrossref
65.
Sakoulas  G, Moise  PA, Casapao  AM,  et al.  Antimicrobial salvage therapy for persistent staphylococcal bacteremia using daptomycin plus ceftaroline.  Clin Ther. 2014;36(10):1317-1333. doi:10.1016/j.clinthera.2014.05.061Google ScholarCrossref
66.
Ho  TT, Cadena  J, Childs  LM, Gonzalez-Velez  M, Lewis  JS  II.  Methicillin-resistant Staphylococcus aureus bacteraemia and endocarditis treated with ceftaroline salvage therapy.  J Antimicrob Chemother. 2012;67(5):1267-1270. doi:10.1093/jac/dks006Google ScholarCrossref
67.
Lin  JC, Aung  G, Thomas  A, Jahng  M, Johns  S, Fierer  J.  The use of ceftaroline fosamil in methicillin-resistant Staphylococcus aureus endocarditis and deep-seated MRSA infections: a retrospective case series of 10 patients.  J Infect Chemother. 2013;19(1):42-49. doi:10.1007/s10156-012-0449-9Google ScholarCrossref
68.
Park  HJ, Kim  SH, Kim  MJ,  et al.  Efficacy of linezolid-based salvage therapy compared with glycopeptide-based therapy in patients with persistent methicillin-resistant Staphylococcus aureus bacteremia.  J Infect. 2012;65(6):505-512. doi:10.1016/j.jinf.2012.08.007Google ScholarCrossref
69.
Ruggero  MA, Peaper  DR, Topal  JE.  Telavancin for refractory methicillin-resistant Staphylococcus aureus bacteremia and infective endocarditis.  Infect Dis (Lond). 2015;47(6):379-384. doi:10.3109/00365548.2014.995696Google ScholarCrossref
70.
McDonald  JR, Olaison  L, Anderson  DJ,  et al.  Enterococcal endocarditis: 107 cases from the international collaboration on endocarditis merged database.  Am J Med. 2005;118(7):759-766. doi:10.1016/j.amjmed.2005.02.020Google ScholarCrossref
71.
Fernandez-Hidalgo  N, Almirante  B, Gavalda  J,  et al.  Ampicillin plus ceftriaxone is as effective as ampicillin plus gentamicin for treating Enterococcus faecalis infective endocarditis.  Clin Infect Dis. 2013;56(9):1261-1268. doi:10.1093/cid/cit052Google ScholarCrossref
72.
Chirouze  C, Athan  E, Alla  F,  et al.  Enterococcal endocarditis in the beginning of the 21st century: analysis from the International Collaboration on Endocarditis-Prospective Cohort Study.  Clin Microbiol Infect. 2013;19(12):1140-1147. doi:10.1111/1469-0691.12166Google ScholarCrossref
73.
Gavalda  J, Len  O, Miro  JM,  et al.  Brief communication: treatment of Enterococcus faecalis endocarditis with ampicillin plus ceftriaxone.  Ann Intern Med. 2007;146(8):574-579. doi:10.7326/0003-4819-146-8-200704170-00008Google ScholarCrossref
74.
Miro  JM, Pericas  JM, del Rio  A.  A new era for treating Enterococcus faecalis endocarditis: ampicillin plus short-course gentamicin or ampicillin plus ceftriaxone: that is the question!  Circulation. 2013;127(17):1763-1766. doi:10.1161/CIRCULATIONAHA.113.002431Google ScholarCrossref
75.
Pericas  JM, Cervera  C, del Rio  A,  et al.  Changes in the treatment of Enterococcus faecalis infective endocarditis in Spain in the last 15 years: from ampicillin plus gentamicin to ampicillin plus ceftriaxone.  Clin Microbiol Infect. 2014;20(12):O1075-O1083. doi:10.1111/1469-0691.12756Google ScholarCrossref
76.
Baddour  LM, Wilson  WR, Bayer  AS,  et al.  Infective endocarditis: diagnosis, antimicrobial therapy, and management of complications: a statement for healthcare professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, and the Councils on Clinical Cardiology, Stroke, and Cardiovascular Surgery and Anesthesia, American Heart Association: endorsed by the Infectious Diseases Society of America.  Circulation. 2005;111(23):e394-e434. doi:10.1161/CIRCULATIONAHA.105.165564Google ScholarCrossref
77.
Le  T, Bayer  AS.  Combination antibiotic therapy for infective endocarditis.  Clin Infect Dis. 2003;36(5):615-621. doi:10.1086/367661Google ScholarCrossref
78.
Protonotariou  E, Dimitroulia  E, Pournaras  S, Pitiriga  V, Sofianou  D, Tsakris  A.  Trends in antimicrobial resistance of clinical isolates of Enterococcus faecalis and Enterococcus faecium in Greece between 2002 and 2007.  J Hosp Infect. 2010;75(3):225-227. doi:10.1016/j.jhin.2009.12.007Google ScholarCrossref
79.
Kiefer  T, Park  L, Tribouilloy  C,  et al.  Association between valvular surgery and mortality among patients with infective endocarditis complicated by heart failure.  JAMA. 2011;306(20):2239-2247. doi:10.1001/jama.2011.1701Google ScholarCrossref
80.
Nishimura  RA, Otto  CM, Bonow  RO,  et al.  2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines.  J Am Coll Cardiol. 2014;63(22):e57-e185. doi:10.1016/j.jacc.2014.02.536Google ScholarCrossref
81.
Hubert  S, Thuny  F, Resseguier  N,  et al.  Prediction of symptomatic embolism in infective endocarditis: construction and validation of a risk calculator in a multicenter cohort.  J Am Coll Cardiol. 2013;62(15):1384-1392. doi:10.1016/j.jacc.2013.07.029Google ScholarCrossref
82.
Chirouze  C, Alla  F, Fowler  VG  Jr,  et al.  Impact of early valve surgery on outcome of Staphylococcus aureus prosthetic valve infective endocarditis: analysis in the International Collaboration of Endocarditis-Prospective Cohort Study.  Clin Infect Dis. 2015;60(5):741-749. doi:10.1093/cid/ciu871Google ScholarCrossref
83.
Sohail  MR, Martin  KR, Wilson  WR, Baddour  LM, Harmsen  WS, Steckelberg  JM.  Medical versus surgical management of Staphylococcus aureus prosthetic valve endocarditis.  Am J Med. 2006;119(2):147-154. doi:10.1016/j.amjmed.2005.09.037Google ScholarCrossref
84.
Hill  EE, Herregods  MC, Vanderschueren  S, Claus  P, Peetermans  WE, Herijgers  P.  Management of prosthetic valve infective endocarditis.  Am J Cardiol. 2008;101(8):1174-1178. doi:10.1016/j.amjcard.2007.12.015Google ScholarCrossref
85.
Steinbach  WJ, Perfect  JR, Cabell  CH,  et al.  A meta-analysis of medical versus surgical therapy for Candida endocarditis.  J Infect. 2005;51(3):230-247. doi:10.1016/j.jinf.2004.10.016Google ScholarCrossref
86.
Arnold  CJ, Johnson  M, Bayer  AS,  et al.  Candida infective endocarditis: an observational cohort study with a focus on therapy.  Antimicrob Agents Chemother. 2015;59(4):2365-2373. doi:10.1128/AAC.04867-14Google ScholarCrossref
87.
Rivoisy  C, Vena  A, Schaeffer  L,  et al.  Prosthetic valve Candida spp endocarditis: new insights into long-term prognosis—the ESCAPE Study.  Clin Infect Dis. 2018;66(6):825-832. doi:10.1093/cid/cix913Google ScholarCrossref
88.
Lefort  A, Chartier  L, Sendid  B,  et al.  Diagnosis, management and outcome of Candida endocarditis.  Clin Microbiol Infect. 2012;18(4):E99-E109. doi:10.1111/j.1469-0691.2012.03764.xGoogle ScholarCrossref
89.
Tattevin  P, Revest  M, Lefort  A, Michelet  C, Lortholary  O.  Fungal endocarditis: current challenges.  Int J Antimicrob Agents. 2014;44(4):290-294. doi:10.1016/j.ijantimicag.2014.07.003Google ScholarCrossref
90.
Kalokhe  AS, Rouphael  N, El Chami  MF, Workowski  KA, Ganesh  G, Jacob  JT.  Aspergillus endocarditis: a review of the literature.  Int J Infect Dis. 2010;14(12):e1040-e1047. doi:10.1016/j.ijid.2010.08.005Google ScholarCrossref
91.
Shrestha  NK, Jue  J, Hussain  ST,  et al.  Injection drug use and outcomes after surgical intervention for infective endocarditis.  Ann Thorac Surg. 2015;100(3):875-882. doi:10.1016/j.athoracsur.2015.03.019Google ScholarCrossref
92.
Rabkin  DG, Mokadam  NA, Miller  DW, Goetz  RR, Verrier  ED, Aldea  GS.  Long-term outcome for the surgical treatment of infective endocarditis with a focus on intravenous drug users.  Ann Thorac Surg. 2012;93(1):51-57. doi:10.1016/j.athoracsur.2011.08.016Google ScholarCrossref
93.
Osterdal  OB, Salminen  PR, Jordal  S, Sjursen  H, Wendelbo  O, Haaverstad  R.  Cardiac surgery for infective endocarditis in patients with intravenous drug use.  Interact Cardiovasc Thorac Surg. 2016;22(5):633-640. doi:10.1093/icvts/ivv397Google ScholarCrossref
94.
Lockhart  PB, Brennan  MT, Sasser  HC, Fox  PC, Paster  BJ, Bahrani-Mougeot  FK.  Bacteremia associated with toothbrushing and dental extraction.  Circulation. 2008;117(24):3118-3125. doi:10.1161/CIRCULATIONAHA.107.758524Google ScholarCrossref
95.
Roberts  GJ.  Dentists are innocent! “Everyday” bacteremia is the real culprit: a review and assessment of the evidence that dental surgical procedures are a principal cause of bacterial endocarditis in children.  Pediatr Cardiol. 1999;20(5):317-325. doi:10.1007/s002469900477Google ScholarCrossref
96.
Glenny  AM, Oliver  R, Roberts  GJ, Hooper  L, Worthington  HV.  Antibiotics for the prophylaxis of bacterial endocarditis in dentistry.  Cochrane Database Syst Rev. 2013;(10):CD003813.Google Scholar
97.
DeSimone  DC, Tleyjeh  IM, Correa de Sa  DD,  et al.  Incidence of infective endocarditis due to viridans group streptococci before and after the 2007 American Heart Association’s prevention guidelines: an extended evaluation of the Olmsted County, Minnesota, population and nationwide inpatient sample.  Mayo Clin Proc. 2015;90(7):874-881. doi:10.1016/j.mayocp.2015.04.019Google ScholarCrossref
98.
Thornhill  MH, Dayer  MJ, Prendergast  B, Baddour  LM, Jones  S, Lockhart  PB.  Incidence and nature of adverse reactions to antibiotics used as endocarditis prophylaxis.  J Antimicrob Chemother. 2015;70(8):2382-2388. doi:10.1093/jac/dkv115Google ScholarCrossref
99.
Duval  X, Millot  S, Chirouze  C,  et al.  Oral streptococcal endocarditis, oral hygiene habits, and recent dental procedures: a case-control study.  Clin Infect Dis. 2017;64(12):1678-1685. doi:10.1093/cid/cix237Google ScholarCrossref
100.
Wilson  W, Taubert  KA, Gewitz  M,  et al.  Prevention of infective endocarditis: guidelines from the American Heart Association: a guideline from the American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease Committee, Council on Cardiovascular Disease in the Young, and the Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and the Quality of Care and Outcomes Research Interdisciplinary Working Group.  Circulation. 2007;116(15):1736-1754. doi:10.1161/CIRCULATIONAHA.106.183095Google ScholarCrossref
101.
Habib  G, Hoen  B, Tornos  P,  et al.  Guidelines on the prevention, diagnosis, and treatment of infective endocarditis (new version 2009): the Task Force on the Prevention, Diagnosis, and Treatment of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and the International Society of Chemotherapy (ISC) for Infection and Cancer.  Eur Heart J. 2009;30(19):2369-2413. doi:10.1093/eurheartj/ehp285Google ScholarCrossref
102.
Prophylaxis against infective endocarditis: antimicrobial prophylaxis against infective endocarditis in adults and children undergoing interventional procedures (CG64). National Institute for Health and Care Excellence (NICE). http://www.nice.org.uk/guidance/CG64. Accessed April 26, 2018.
103.
Dayer  MJ, Jones  S, Prendergast  B, Baddour  LM, Lockhart  PB, Thornhill  MH.  Incidence of infective endocarditis in England, 2000-13: a secular trend, interrupted time-series analysis.  Lancet. 2015;385(9974):1219-1228. doi:10.1016/S0140-6736(14)62007-9Google ScholarCrossref
104.
Leon  MB, Smith  CR, Mack  M,  et al.  Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery.  N Engl J Med. 2010;363(17):1597-1607. doi:10.1056/NEJMoa1008232Google ScholarCrossref
105.
Amat-Santos  IJ, Ribeiro  HB, Urena  M,  et al.  Prosthetic valve endocarditis after transcatheter valve replacement: a systematic review.  JACC Cardiovasc Interv. 2015;8(2):334-346. doi:10.1016/j.jcin.2014.09.013Google ScholarCrossref
106.
Svensson  LG, Tuzcu  M, Kapadia  S,  et al.  A comprehensive review of the PARTNER trial.  J Thorac Cardiovasc Surg. 2013;145(3)(suppl):S11-S16. doi:10.1016/j.jtcvs.2012.11.051Google ScholarCrossref
107.
Glaser  N, Jackson  V, Holzmann  MJ, Franco-Cereceda  A, Sartipy  U.  Prosthetic valve endocarditis after surgical aortic valve replacement.  Circulation. 2017;136(3):329-331. doi:10.1161/CIRCULATIONAHA.117.028783Google ScholarCrossref
108.
Wang  A, Athan  E, Pappas  PA,  et al.  Contemporary clinical profile and outcome of prosthetic valve endocarditis.  JAMA. 2007;297(12):1354-1361. doi:10.1001/jama.297.12.1354Google ScholarCrossref
109.
Regueiro  A, Linke  A, Latib  A,  et al.  Association between transcatheter aortic valve replacement and subsequent infective endocarditis and in-hospital death.  JAMA. 2016;316(10):1083-1092. doi:10.1001/jama.2016.12347Google ScholarCrossref
110.
Lalani  T, Chu  VH, Park  LP,  et al.  In-hospital and 1-year mortality in patients undergoing early surgery for prosthetic valve endocarditis.  JAMA Intern Med. 2013;173(16):1495-1504. doi:10.1001/jamainternmed.2013.8203Google ScholarCrossref
111.
Erba  PA, Sollini  M, Conti  U,  et al.  Radiolabeled WBC scintigraphy in the diagnostic workup of patients with suspected device-related infections.  JACC Cardiovasc Imaging. 2013;6(10):1075-1086. doi:10.1016/j.jcmg.2013.08.001Google ScholarCrossref
112.
Baddour  LM, Epstein  AE, Erickson  CC,  et al.  Update on cardiovascular implantable electronic device infections and their management: a scientific statement from the American Heart Association.  Circulation. 2010;121(3):458-477. doi:10.1161/CIRCULATIONAHA.109.192665Google ScholarCrossref
113.
Maytin  M, Jones  SO, Epstein  LM.  Long-term mortality after transvenous lead extraction.  Circ Arrhythm Electrophysiol. 2012;5(2):252-257. doi:10.1161/CIRCEP.111.965277Google ScholarCrossref
114.
Park  LP, Chu  VH, Peterson  G,  et al.  Validated risk score for predicting 6-month mortality in infective endocarditis.  J Am Heart Assoc. 2016;5(4):e003016. doi:10.1161/JAHA.115.003016Google ScholarCrossref
115.
Netzer  RO, Altwegg  SC, Zollinger  E, Tauber  M, Carrel  T, Seiler  C.  Infective endocarditis: determinants of long term outcome.  Heart. 2002;88(1):61-66. doi:10.1136/heart.88.1.61Google ScholarCrossref
116.
Chu  VH, Park  LP, Athan  E,  et al.  Association between surgical indications, operative risk, and clinical outcome in infective endocarditis: a prospective study from the International Collaboration on Endocarditis.  Circulation. 2015;131(2):131-140. doi:10.1161/CIRCULATIONAHA.114.012461Google ScholarCrossref
117.
Shih  CJ, Chu  H, Chao  PW,  et al.  Long-term clinical outcome of major adverse cardiac events in survivors of infective endocarditis: a nationwide population-based study.  Circulation. 2014;130(19):1684-1691. doi:10.1161/CIRCULATIONAHA.114.012717Google ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Topics
State Requirements