[Skip to Content]
[Skip to Content Landing]

Antiretroviral Drugs for Treatment and Prevention of HIV Infection in Adults2018 Recommendations of the International Antiviral Society–USA Panel

Educational Objective
To review expert recommendations regarding the use of antiretroviral therapy (ART) for the treatment and prevention of HIV infection in adults.
1 Credit CME
Abstract

Importance  Antiretroviral therapy (ART) is the cornerstone of prevention and management of HIV infection.

Objective  To evaluate new data and treatments and incorporate this information into updated recommendations for initiating therapy, monitoring individuals starting therapy, changing regimens, and preventing HIV infection for individuals at risk.

Evidence Review  New evidence collected since the International Antiviral Society–USA 2016 recommendations via monthly PubMed and EMBASE literature searches up to April 2018; data presented at peer-reviewed scientific conferences. A volunteer panel of experts in HIV research and patient care considered these data and updated previous recommendations.

Findings  ART is recommended for virtually all HIV-infected individuals, as soon as possible after HIV diagnosis. Immediate initiation (eg, rapid start), if clinically appropriate, requires adequate staffing, specialized services, and careful selection of medical therapy. An integrase strand transfer inhibitor (InSTI) plus 2 nucleoside reverse transcriptase inhibitors (NRTIs) is generally recommended for initial therapy, with unique patient circumstances (eg, concomitant diseases and conditions, potential for pregnancy, cost) guiding the treatment choice. CD4 cell count, HIV RNA level, genotype, and other laboratory tests for general health and co-infections are recommended at specified points before and during ART. If a regimen switch is indicated, treatment history, tolerability, adherence, and drug resistance history should first be assessed; 2 or 3 active drugs are recommended for a new regimen. HIV testing is recommended at least once for anyone who has ever been sexually active and more often for individuals at ongoing risk for infection. Preexposure prophylaxis with tenofovir disoproxil fumarate/emtricitabine and appropriate monitoring is recommended for individuals at risk for HIV.

Conclusions and Relevance  Advances in HIV prevention and treatment with antiretroviral drugs continue to improve clinical management and outcomes for individuals at risk for and living with HIV.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Corresponding Author: Michael S. Saag, MD, School of Medicine, University of Alabama at Birmingham, 845 19th St S, BBRB 256, Birmingham, AL 35294 (msaag@uabmc.edu).

Accepted for Publication: June 12, 2018.

Author Contributions: Dr Saag had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Saag, Benson, Gandhi, Hoy, Mugavero, Sax, Smith, Thompson, Buchbinder, del Rio, Eron, Fätkenheuer, Günthard, Jacobsen, Volberding.

Acquisition, analysis, or interpretation of data: Saag, Benson, Gandhi, Hoy, Landovitz, Mugavero, Sax, Smith, Thompson, Buchbinder, Eron, Fätkenheuer, Günthard, Molina, Volberding.

Drafting of the manuscript: Saag, Benson, Gandhi, Hoy, Landovitz, Mugavero, Sax, Smith, Thompson, Buchbinder, del Rio, Fätkenheuer, Molina, Jacobsen, Volberding.

Critical revision of the manuscript for important intellectual content: Saag, Benson, Gandhi, Hoy, Landovitz, Mugavero, Sax, Smith, Thompson, Buchbinder, del Rio, Eron, Fätkenheuer, Günthard, Molina.

Obtained funding: Jacobsen.

Administrative, technical, or material support: Saag, Landovitz, Mugavero, Sax, Smith, Günthard, Jacobsen, Volberding.

Supervision: Saag, Benson, Landovitz, Smith, Eron, Günthard.

Conflict of Interest Disclosures: All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Dr Saag reported receiving consulting fees from Gilead, ViiV, and Merck and receiving grants paid to his institutions from Gilead, ViiV, Merck, and Proteus. Dr Benson reported receiving a grant paid to her institution from Gilead; receiving personal fees from ViiV-GlaxoSmithKline; and that her spouse receives consulting fees from Pfizer and Cytodyne. Dr Gandhi reported receiving educational grants to his institution from Gilead, ViiV, and Merck and receiving consulting fees from Gilead, Merck, and Theratechnologies. Dr Hoy reported receiving advisory board fees paid to her institution from Gilead, ViiV, and Merck Sharp & Dohme. Dr Landovitz reported receiving travel fees from Gilead and Merck. Dr Mugavero reported receiving personal fees from Gilead. Dr Sax reported receiving nonfinancial support from Bristol-Myers Squibb; receiving research grants paid to his institution from Gilead and ViiV-GlaxoSmithKline; and receiving consulting fees from Gilead, Janssen, Merck, and ViiV-GlaxoSmithKline. Dr Smith reported receiving a grant paid to his institution from ViiV and receiving consulting fees from Merck, Gilead, and the AIDS Healthcare Foundation. Dr Thompson reported receiving research funding paid to the AIDS Research Consortium of Atlanta from Bristol-Myers Squibb, CytoDyn, GlaxoSmithKline, Gilead, Merck Sharp & Dohme, Roche Laboratories, Taimed, and ViiV. Dr Buchbinder reported receiving nonfinancial support from Gilead. Dr del Rio reported receiving grants from the Emory Center for AIDS Research and the Emory–Centers for Disease Control and Prevention HIV Clinical Trials Unit and receiving consulting fees from ViiV. Dr Eron reported receiving personal fees from Merck, Janssen, Gilead, ViiV, and Bristol-Myers Squibb and receiving grants paid to the University of North Carolina from Janssen, ViiV, Gilead, and Bristol-Myers Squibb. Dr Fätkenheuer reported receiving grants from the Federal Ministry of Education and Research and the German Center for Infection Research. Dr Günthard reported receiving grant funding from the Swiss National Science Foundation, Systems.X (HIV.X), University of Zurich Clinical Research Priority Program, Swiss HIV Cohort Study, National Institutes of Health, Gilead, and the Yvonne Jacob Foundation and receiving consulting fees from Gilead, Sandoz, Teva, and Merck. Dr Molina reported receiving consulting fees from Merck, Gilead, ViiV, Bristol-Myers Squibb, Janssen, and Teva and receiving a grant paid to his institution from Gilead. Dr Volberding reported receiving personal fees from Merck. No other authors reported disclosures.

Funding/Support: The work is sponsored and funded by the International Antiviral Society–USA (IAS-USA). The IAS-USA is a mission-based, nonmembership, 501(c)(3) not-for-profit organization. No private sector or government funding was used to support the effort. Panel members are not compensated for participation in the effort.

Role of the Funder/Sponsor: The IAS-USA determined the need to update recommendations, selected the panel members, and provided administrative support and oversight. The panel designed and conducted the work; collected, managed, analyzed, and interpreted the data; prepared, reviewed, and approved the manuscript; and submitted the manuscript for publication.

Additional Contributions: We thank Michelle Valderama, BS (IAS-USA), for administrative support and Hacsi Horváth, MA (University of California San Francisco), for conducting the PubMed and EMBASE literature searches.

References
1.
Günthard  HF, Saag  MS, Benson  CA,  et al.  Antiretroviral drugs for treatment and prevention of HIV infection in adults: 2016 recommendations of the International Antiviral Society—USA panel.  JAMA. 2016;316(2):191-210. doi:10.1001/jama.2016.8900PubMedGoogle ScholarCrossref
2.
Canadian Task Force on the Periodic Health Examination.  The periodic health examination.  Can Med Assoc J. 1979;121(9):1193-1254.PubMedGoogle Scholar
3.
Gopal  S, Patel  MR, Yanik  EL,  et al.  Association of early HIV viremia with mortality after HIV-associated lymphoma.  AIDS. 2013;27(15):2365-2373. doi:10.1097/QAD.0b013e3283635232PubMedGoogle ScholarCrossref
4.
World Health Organization (WHO). Guidelines for Managing Advanced HIV Disease and Rapid Initiation of Antiretroviral Therapy. WHO website. http://www.who.int/hiv/pub/guidelines/advanced-HIV-disease/en/. Published 2017. Accessed June 26, 2018.
5.
Rosen  S, Maskew  M, Fox  MP,  et al.  Initiating antiretroviral therapy for HIV at a patient’s first clinic visit: the RapIT randomized controlled trial.  PLoS Med. 2016;13(5):e1002015. doi:10.1371/journal.pmed.1002015PubMedGoogle ScholarCrossref
6.
Koenig  SP, Dorvil  N, Dévieux  JG,  et al.  Same-day HIV testing with initiation of antiretroviral therapy versus standard care for persons living with HIV: a randomized unblinded trial.  PLoS Med. 2017;14(7):e1002357. doi:10.1371/journal.pmed.1002357PubMedGoogle ScholarCrossref
7.
Labhardt  ND, Ringera  I, Lejone  TI,  et al.  Effect of offering same-day ART vs usual health facility referral during home-based HIV testing on linkage to care and viral suppression among adults with HIV in Lesotho: the CASCADE randomized clinical trial.  JAMA. 2018;319(11):1103-1112. doi:10.1001/jama.2018.1818PubMedGoogle ScholarCrossref
8.
Amanyire  G, Semitala  FC, Namusobya  J,  et al.  Effects of a multicomponent intervention to streamline initiation of antiretroviral therapy in Africa: a stepped-wedge cluster-randomised trial.  Lancet HIV. 2016;3(11):e539-e548. doi:10.1016/S2352-3018(16)30090-XPubMedGoogle ScholarCrossref
9.
Hoenigl  M, Chaillon  A, Mehta  SR, Smith  DM, Graff-Zivin  J, Little  SJ.  Screening for acute HIV infection in community-based settings: cost-effectiveness and impact on transmissions.  J Infect. 2016;73(5):476-484. doi:10.1016/j.jinf.2016.07.019PubMedGoogle ScholarCrossref
10.
Ford  N, Migone  C, Calmy  A,  et al.  Benefits and risks of rapid initiation of antiretroviral therapy.  AIDS. 2018;32(1):17-23. doi:10.1097/QAD.0000000000001671PubMedGoogle ScholarCrossref
11.
Bacon  O, Chin  JC, Hsu  L,  et al. The Rapid ART Program Initiative for HIV Diagnoses (RAPID) in San Francisco. Presented at: 25th Conference on Retroviruses and Opportunistic Infections (CROI); March 4-7, 2018; Boston, MA.
12.
Pilcher  CD, Ospina-Norvell  C, Dasgupta  A,  et al.  The effect of same-day observed initiation of antiretroviral therapy on HIV viral load and treatment outcomes in a US public health setting.  J Acquir Immune Defic Syndr. 2017;74(1):44-51. doi:10.1097/QAI.0000000000001134PubMedGoogle ScholarCrossref
13.
Colasanti  J, Sumitani  J, Mehta  C,  et al.  Implementation of a rapid entry program decreases time to viral suppression among vulnerable persons living with HIV in the Southern United States.  Open Forum Infect Dis. 2018;5(6):1-8.Google Scholar
14.
Perfect  JR, Dismukes  WE, Dromer  F,  et al.  Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the Infectious Diseases Society of America.  Clin Infect Dis. 2010;50(3):291-322. doi:10.1086/649858PubMedGoogle ScholarCrossref
15.
Ingle  SM, Miro  JM, Furrer  H,  et al. Impact of ART on mortality in cryptococcal meningitis patients: high-income settings. Presented at: 22nd Conference on Retroviruses and Opportunistic Infections (CROI); February 23-26, 2015; Seattle, WA.
16.
Buchacz  K, Lau  B, Jing  Y,  et al; North American AIDS Cohort Collaboration on Research and Design (NA-ACCORD) of IeDEA.  Incidence of AIDS-defining opportunistic infections in a multicohort analysis of HIV-infected persons in the United States and Canada, 2000-2010.  J Infect Dis. 2016;214(6):862-872. doi:10.1093/infdis/jiw085PubMedGoogle ScholarCrossref
17.
Djawe  K, Buchacz  K, Hsu  L,  et al.  Mortality risk after AIDS-defining opportunistic illness among HIV-infected persons—San Francisco, 1981-2012.  J Infect Dis. 2015;212(9):1366-1375. doi:10.1093/infdis/jiv235PubMedGoogle ScholarCrossref
18.
Yangco  BG, Buchacz  K, Baker  R, Palella  FJ, Armon  C, Brooks  JT; HIV Outpatient Study Investigators.  Is primary Mycobacterium avium complex prophylaxis necessary in patients with CD4 <50 cells/μL who are virologically suppressed on cART?  AIDS Patient Care STDS. 2014;28(6):280-283. doi:10.1089/apc.2013.0270PubMedGoogle ScholarCrossref
19.
Mocroft  A, Reiss  P, Kirk  O,  et al; Opportunistic Infections Project Team of the Collaboration of Observational HIV Epidemiological Research in Europe (COHERE).  Is it safe to discontinue primary Pneumocystis jiroveci pneumonia prophylaxis in patients with virologically suppressed HIV infection and a CD4 cell count <200 cells/microL?  Clin Infect Dis. 2010;51(5):611-619. doi:10.1086/655761PubMedGoogle ScholarCrossref
20.
Gallant  J, Lazzarin  A, Mills  A,  et al.  Bictegravir, emtricitabine, and tenofovir alafenamide versus dolutegravir, abacavir, and lamivudine for initial treatment of HIV-1 infection (GS-US-380-1489): a double-blind, multicentre, phase 3, randomised controlled non-inferiority trial.  Lancet. 2017;390(10107):2063-2072. doi:10.1016/S0140-6736(17)32299-7PubMedGoogle ScholarCrossref
21.
Sax  PE, Pozniak  A, Montes  ML,  et al.  Coformulated bictegravir, emtricitabine, and tenofovir alafenamide versus dolutegravir with emtricitabine and tenofovir alafenamide, for initial treatment of HIV-1 infection (GS-US-380-1490): a randomised, double-blind, multicentre, phase 3, non-inferiority trial.  Lancet. 2017;390(10107):2073-2082. doi:10.1016/S0140-6736(17)32340-1PubMedGoogle ScholarCrossref
22.
Squires  KE, Molina  J-M, Sax  PE,  et al. Fixed dose combination of doravirine/lamivudine/TDF is non-inferior to efavirenz/emtricitabine/TDF in treatment-naïve adults with HIV-1 infection: week 48 results of the phase 3 DRIVE-AHEAD study. Presented at: 9th International AIDS Society Conference on HIV Science; July 23-26, 2017; Paris, France.
23.
Molina  JM, Squires  K, Sax  PE,  et al.  Doravirine versus ritonavir-boosted darunavir in antiretroviral-naive adults with HIV-1 (DRIVE-FORWARD): 48-week results of a randomised, double-blind, phase 3, non-inferiority trial.  Lancet HIV. 2018;5(5):e211-e220. doi: 10.1016/S2352-3018(18)30021-3.PubMedGoogle ScholarCrossref
24.
Eron  J, Orkin  C, Gallant  J,  et al; AMBER Study Group. Week 48 results of AMBER: a phase 3, randomised, double-blind trial in antiretroviral treatment-naïve HIV-1-infected adults to evaluate the efficacy and safety of the once-daily, single-tablet regimen of darunavir/cobicistat/emtricitabine/tenofovir alafenamide (D/C/F/TAF) versus darunavir/cobicistat plus emtricitabine/tenofovir disoproxil fumarate. Presented at: 16th European AIDS Conference (EACS); October 25-27, 2017; Milan, Italy.
25.
Arribas  JR, Thompson  M, Sax  PE,  et al.  Brief report: randomized, double-blind comparison of tenofovir alafenamide (TAF) vs tenofovir disoproxil fumarate (TDF), each coformulated with elvitegravir, cobicistat, and emtricitabine (E/C/F) for initial HIV-1 treatment: week 144 results.  J Acquir Immune Defic Syndr. 2017;75(2):211-218. doi:10.1097/QAI.0000000000001350PubMedGoogle ScholarCrossref
26.
Hill  A, Hughes  SL, Gotham  D, Pozniak  AL.  Tenofovir alafenamide versus tenofovir disoproxil fumarate: is there a true difference in efficacy and safety?  J Virus Erad. 2018;4(2):72-79.PubMedGoogle Scholar
27.
Girouard  MP, Sax  PE, Parker  RA,  et al.  The cost-effectiveness and budget impact of 2-drug dolutegravir-lamivudine regimens for the treatment of HIV infection in the United States.  Clin Infect Dis. 2016;62(6):784-791. doi:10.1093/cid/civ981PubMedGoogle ScholarCrossref
28.
Lambert-Niclot  S, George  EC, Pozniak  A,  et al; NEAT 001/ANRS 143 Study Group.  Antiretroviral resistance at virological failure in the NEAT 001/ANRS 143 trial: raltegravir plus darunavir/ritonavir or tenofovir/emtricitabine plus darunavir/ritonavir as first-line ART.  J Antimicrob Chemother. 2016;71(4):1056-1062. doi:10.1093/jac/dkv427PubMedGoogle ScholarCrossref
29.
Taiwo  BO, Zheng  L, Stefanescu  A,  et al.  ACTG A5353: a pilot study of dolutegravir plus lamivudine for initial treatment of human immunodeficiency virus-1 (HIV-1)-infected participants with HIV-1 RNA <500 000 copies/mL.  Clin Infect Dis. 2017;66(11):1689-1697. doi:10.1093/cid/cix1083PubMedGoogle ScholarCrossref
30.
Figueroa  MI, Sued  OG, Gun  AM,  et al. DRV/r/3TC FDC for HIV-1 treatment naive patients: week 48 results of the ANDES study. Presented at: 25th Conference on Retroviruses and Opportunistic Infections (CROI); March 4-7, 2018; Boston, MA.
31.
Llibre  JM, Hung  CC, Brinson  C,  et al.  Efficacy, safety, and tolerability of dolutegravir-rilpivirine for the maintenance of virological suppression in adults with HIV-1: phase 3, randomised, non-inferiority SWORD-1 and SWORD-2 studies.  Lancet. 2018;391(10123):839-849. doi:10.1016/S0140-6736(17)33095-7PubMedGoogle ScholarCrossref
32.
World Health Organization (WHO). Potential safety issue affecting women living with HIV using dolutegravir at the time of conception. WHO website. http://www.who.int/medicines/publications/drugalerts/Statement_on_DTG_18May_2018final.pdf. May 18, 2018. Accessed July 4, 2018.
33.
Best  B, Capparelli  E, Stek  A,  et al. Elvitegravir/cobicistat pharmacokinetics in pregnancy and postpartum. Presented at: 24th Conference on Retroviruses and Opportunistic Infections (CROI); February 16, 2017; Seattle, WA.
34.
Gallant  JE, Daar  ES, Raffi  F,  et al.  Efficacy and safety of tenofovir alafenamide versus tenofovir disoproxil fumarate given as fixed-dose combinations containing emtricitabine as backbones for treatment of HIV-1 infection in virologically suppressed adults: a randomised, double-blind, active-controlled phase 3 trial.  Lancet HIV. 2016;3(4):e158-e165. doi:10.1016/S2352-3018(16)00024-2PubMedGoogle ScholarCrossref
35.
Chan  HL, Fung  S, Seto  WK,  et al.  Tenofovir alafenamide versus tenofovir disoproxil fumarate for the treatment of HBeAg-positive chronic hepatitis B virus infection: a randomised, double-blind, phase 3, non-inferiority trial.  Lancet Gastroenterol Hepatol. 2016;1(3):185–195. doi:10.1016/S2468-1253(16)30024-3PubMedGoogle ScholarCrossref
36.
Buti  M, Gane  E, Seto  WK,  et al.  Tenofovir alafenamide versus tenofovir disoproxil fumarate for the treatment of patients with HBeAg-negative chronic hepatitis B virus infection: a randomised, double-blind, phase 3, non-inferiority trial.  Lancet Gastroenterol Hepatol. 2016;1(3):196–206. doi:10.1016/S2468-1253(16)30107-8PubMedGoogle ScholarCrossref
37.
Borges  AH, Hoy  J, Florence  E,  et al. Antiretrovirals, fractures, and osteonecrosis in a large European HIV cohort [abstract 46]. Presented at: 23rd Conference on Retroviruses and Opportunistic Infections (CROI); February 22-25, 2016; Boston, MA.
38.
Molina  JM, Ward  D, Brar  I,  et al.  Switching to fixed-dose bictegravir, emtricitabine, and tenofovir alafenamide from dolutegravir plus abacavir and lamivudine in virologically suppressed adults with HIV-1: 48 week results of a randomised, double-blind, multicentre, active-controlled, phase 3, non-inferiority trial  [published online June 18, 2018].  Lancet HIV. doi:10.1016/S2352-3018(18)30092-4Google Scholar
39.
Eron  JJ, Lelievre  JD, Kalayjian  R,  et al. Safety and efficacy of E/C/F/TAF in HIV-infected adults on chronic hemodialysis. Presented at: 25th Conference on Retroviruses and Opportunistic Infections (CROI); March 4-7, 2018; Boston, MA.
40.
Elion  RA, Althoff  KN, Zhang  J,  et al; North American AIDS Cohort Collaboration on Research and Design of IeDEA.  Recent abacavir use increases risk of type 1 and type 2 myocardial infarctions among adults with HIV.  J Acquir Immune Defic Syndr. 2018;78(1):62-72. doi:10.1097/QAI.0000000000001642PubMedGoogle ScholarCrossref
41.
Dooley  K, Kaplan  R, Mwelase  N,  et al. Safety and efficacy of dolutegravir-based ART in TB/HIV coinfected adults at week 24. Presented at: 25th Conference on Retroviruses and Opportunistic Infections (CROI); March 4-7, 2018; Boston, MA.
42.
Custodio  JM, West  SK, Collins  S,  et al. Pharmacokinetics of bictegravir administered twice daily in combination with rafampin. Presented at: 25th Conference on Retroviruses and Opportunistic Infections (CROI); March 4-7, 2018; Boston, MA.
43.
Cerrone  M, Alfarisi  O, Neary  M,  et al. Rifampin effect on tenofovir alafenamide (TAF) plasma/intracellular pharmacokinetics. Presented at: 25th Conference on Retroviruses and Opportunistic Infections (CROI); March 4-7, 2018; Boston, MA.
44.
Swindells  S, Ramchandani  R, Gupta  A,  et al. One month of rifapentine/isoniazid to prevent TB in people with HIV: Brief TB/A5279 [abstract 37LB]. Presented at: 25th Conference on Retroviruses and Opportunistic Infections (CROI); March 4-7, 2018; Boston, MA.
45.
Brooks  KM, George  JM, Pau  AK,  et al.  Cytokine-mediated systemic adverse drug reactions in a drug-drug interaction study of dolutegravir with once-weekly isoniazid and rifapentine  [published online February 23, 2018].  Clin Infect Dis. 2018. doi:10.1093/cid/ciy082PubMedGoogle Scholar
46.
Trottier  B, Lake  JE, Logue  K,  et al.  Dolutegravir/abacavir/lamivudine versus current ART in virally suppressed patients (STRIIVING): a 48-week, randomized, non-inferiority, open-label, phase IIIb study.  Antivir Ther. 2017;22(4):295-305. doi:10.3851/IMP3166PubMedGoogle ScholarCrossref
47.
Post  FA, Yazdanpanah  Y, Schembri  G,  et al.  Efficacy and safety of emtricitabine/tenofovir alafenamide (FTC/TAF) vs. emtricitabine/tenofovir disoproxil fumarate (FTC/TDF) as a backbone for treatment of HIV-1 infection in virologically suppressed adults: subgroup analysis by third agent of a randomized, double-blind, active-controlled phase 3 trial.  HIV Clin Trials. 2017;18(3):135-140. doi:10.1080/15284336.2017.1291867PubMedGoogle ScholarCrossref
48.
Marzolini  C, Gibbons  S, Khoo  S, Back  D.  Cobicistat versus ritonavir boosting and differences in the drug-drug interaction profiles with co-medications.  J Antimicrob Chemother. 2016;71(7):1755-1758. doi:10.1093/jac/dkw032PubMedGoogle ScholarCrossref
49.
Negredo  E, Estrada  V, Domingo  P,  et al.  Switching from a ritonavir-boosted PI to dolutegravir as an alternative strategy in virologically suppressed HIV-infected individuals.  J Antimicrob Chemother. 2017;72(3):844-849.PubMedGoogle Scholar
50.
Orkin  C, DeJesus  E, Ramgopal  M,  et al.  Switching from tenofovir disoproxil fumarate to tenofovir alafenamide coformulated with rilpivirine and emtricitabine in virally suppressed adults with HIV-1 infection: a randomised, double-blind, multicentre, phase 3b, non-inferiority study.  Lancet HIV. 2017;4(5):e195-e204. doi:10.1016/S2352-3018(17)30031-0PubMedGoogle ScholarCrossref
51.
Orkin  C, Molina  JM, Negredo  E,  et al; EMERALD Study Group.  Efficacy and safety of switching from boosted protease inhibitors plus emtricitabine and tenofovir disoproxil fumarate regimens to single-tablet darunavir, cobicistat, emtricitabine, and tenofovir alafenamide at 48 weeks in adults with virologically suppressed HIV-1 (EMERALD): a phase 3, randomised, non-inferiority trial.  Lancet HIV. 2018;5(1):e23-e34. doi:10.1016/S2352-3018(17)30179-0PubMedGoogle ScholarCrossref
52.
Daar  ES, DeJesus  E, Ruane  P,  et al.  Efficacy and safety of switching to fixed-dose bictegravir, emtricitabine, and tenofovir alafenamide from boosted protease inhibitor-based regimens in virologically suppressed adults with HIV-1: 48 week results of a randomised, open-label, multicentre, phase 3, non-inferiority trial  [published online June 15, 2018].  Lancet HIV. doi:10.1016/S2352-3018(18)30091-2Google Scholar
53.
Gallant  J, Brunetta  J, Crofoot  G,  et al; GS-US-292-1249 Study Investigators.  Brief report: efficacy and safety of switching to a single-tablet regimen of elvitegravir/cobicistat/emtricitabine/tenofovir alafenamide in HIV-1/hepatitis B-coinfected adults.  J Acquir Immune Defic Syndr. 2016;73(3):294-298. doi:10.1097/QAI.0000000000001069PubMedGoogle ScholarCrossref
54.
Sax  PE, DeJesus  E, Crofoot  G,  et al. A randomized trial of bictegravir or dolutegravir with entricitabine and tenofovir alafenamide (F/TAF) followed by open label switch to bictegravir/F/TAF fixed dose combination. Presented at: IDWeek; October 4-8, 2017; San Diego, CA.
55.
Di Giambenedetto  S, Fabbiani  M, Quiros Roldan  E,  et al; Atlas-M Study Group.  Treatment simplification to atazanavir/ritonavir + lamivudine versus maintenance of atazanavir/ritonavir + two NRTIs in virologically suppressed HIV-1-infected patients: 48 week results from a randomized trial (ATLAS-M).  J Antimicrob Chemother. 2017;72(4):1163-1171.PubMedGoogle Scholar
56.
Perez-Molina  JA, Rubio  R, Rivero  A,  et al; GeSIDA 7011 Study Group.  Simplification to dual therapy (atazanavir/ritonavir + lamivudine) versus standard triple therapy [atazanavir/ritonavir + two nucleos(t)ides] in virologically stable patients on antiretroviral therapy: 96 week results from an open-label, non-inferiority, randomized clinical trial (SALT study).  J Antimicrob Chemother. 2017;72(1):246-253. doi:10.1093/jac/dkw379PubMedGoogle ScholarCrossref
57.
Pulido  F, Ribera  E, Lagarde  M,  et al; DUAL-GESIDA-8014-RIS-EST45 Study Group.  Dual therapy with darunavir and ritonavir plus lamivudine vs triple therapy with darunavir and ritonavir plus tenofovir disoproxil fumarate and emtricitabine or abacavir and lamivudine for maintenance of human immunodeficiency virus type 1 viral suppression: randomized, open-label, noninferiority DUAL-GESIDA 8014-RIS-EST45 trial.  Clin Infect Dis. 2017;65(12):2112-2118. doi:10.1093/cid/cix734PubMedGoogle ScholarCrossref
58.
Joly  V, Burdet  C, Landman  R,  et al. Promising results of dolutegravir + lamivudine maintenance in ANRS 167 LAMIDOL trial [abstract 458]. Presented at: 24th Conference on Retroviruses and Opportunistic Infections (CROI); February 13-16, 2017; Seattle, WA
59.
Taiwo  BO, Marconi  VC, Berzins  B,  et al.  Dolutegravir plus lamivudine maintains human immunodeficiency virus-1 suppression through week 48 in a pilot randomized trial.  Clin Infect Dis. 2018;66(11):1794-1797. doi:10.1093/cid/cix1131PubMedGoogle ScholarCrossref
60.
Armenia  D, Di Carlo  D, Calcagno  A,  et al.  Pre-existent NRTI and NNRTI resistance impacts on maintenance of virological suppression in HIV-1-infected patients who switch to a tenofovir/emtricitabine/rilpivirine single-tablet regimen.  J Antimicrob Chemother. 2017;72(3):855-865.PubMedGoogle Scholar
61.
Huhn  GD, Tebas  P, Gallant  J,  et al.  A randomized, open-label trial to evaluate switching to elvitegravir/cobicistat/emtricitabine/tenofovir alafenamide plus darunavir in treatment-experienced HIV-1-infected adults.  J Acquir Immune Defic Syndr. 2017;74(2):193-200. doi:10.1097/QAI.0000000000001193PubMedGoogle ScholarCrossref
62.
Brenner  BG, Thomas  R, Blanco  JL,  et al.  Development of a G118R mutation in HIV-1 integrase following a switch to dolutegravir monotherapy leading to cross-resistance to integrase inhibitors.  J Antimicrob Chemother. 2016;71(7):1948-1953. doi:10.1093/jac/dkw071PubMedGoogle ScholarCrossref
63.
Wijting  I, Rokx  C, Boucher  C,  et al.  Dolutegravir as maintenance monotherapy for HIV (DOMONO): a phase 2, randomised non-inferiority trial.  Lancet HIV. 2017;4(12):e547-e554. doi:10.1016/S2352-3018(17)30152-2PubMedGoogle ScholarCrossref
64.
Galli  L, Spagnuolo  V, Bigoloni  A,  et al; MODAt Study Group.  Atazanavir/ritonavir monotherapy: 96 week efficacy, safety and bone mineral density from the MODAt randomized trial.  J Antimicrob Chemother. 2016;71(6):1637-1642. doi:10.1093/jac/dkw031PubMedGoogle ScholarCrossref
65.
Girard  PM, Antinori  A, Arribas  JR,  et al.  Week 96 efficacy and safety of darunavir/ritonavir monotherapy vs. darunavir/ritonavir with two nucleoside reverse transcriptase inhibitors in the PROTEA trial.  HIV Med. 2017;18(1):5-12. doi:10.1111/hiv.12386PubMedGoogle ScholarCrossref
66.
Aboud  M, Kaplan  R, Lombaard  J,  et al. Superior efficacy of dolutegravir (DTG) plus 2 nucleoside reverse transcriptase inhibitors (NRTIs) compared with lopinavir/ritonavir (LPV/RTV) plus 2 NRTIs in second-line treatment: interim data from the DAWNING study. Presented at: 9th International AIDS Society Conference on HIV Science; July 23-27, 2017; Paris, France.
67.
Lewis  S, Fessel  J, Emu  B,  et al.  Long-acting ibalizumab 17 in patients with multi-drug resistant HIV-1: a 24-week 18 study.  Top Antivir Med. 2017;25(suppl 1):185s.Google Scholar
68.
Emu  B, Fessel  WJ, Schrader  S,  et al. 48-Week safety and efficacy on-treatment analysis of ibalizumab in patients with multi-drug resistant HIV-1. Presented at: IDWeek; October 6, 2017; San Diego, CA.
69.
DiNenno  EA, Prejean  J, Irwin  K,  et al.  Recommendations for HIV screening of gay, bisexual, and other men who have sex with men—United States, 2017.  MMWR Morb Mortal Wkly Rep. 2017;66(31):830-832. doi:10.15585/mmwr.mm6631a3PubMedGoogle ScholarCrossref
70.
Hoornenborg  E, Achterbergh  RCA, Schim van der Loeff  MF,  et al; Amsterdam PrEP Project team in the HIV Transmission Elimination AMsterdam Initiative, MOSAIC Study Group.  MSM starting preexposure prophylaxis are at risk of hepatitis C virus infection.  AIDS. 2017;31(11):1603-1610. doi:10.1097/QAD.0000000000001522PubMedGoogle ScholarCrossref
71.
Girometti  N, Gutierrez  A, Nwokolo  N, McOwan  A, Whitlock  G.  High HIV incidence in men who have sex with men following an early syphilis diagnosis: is there room for pre-exposure prophylaxis as a prevention strategy?  Sex Transm Infect. 2017;93(5):320-322. doi:10.1136/sextrans-2016-052865PubMedGoogle ScholarCrossref
72.
Katz  DA, Dombrowski  JC, Bell  TR, Kerani  RP, Golden  MR.  HIV incidence among men who have sex with men after diagnosis with sexually transmitted infections.  Sex Transm Dis. 2016;43(4):249-254. doi:10.1097/OLQ.0000000000000423PubMedGoogle ScholarCrossref
73.
Branson  BM.  The future of HIV testing.  J Acquir Immune Defic Syndr. 2010;55(suppl 2):S102-S105. doi:10.1097/QAI.0b013e3181fbca44PubMedGoogle ScholarCrossref
74.
Braun  DL, Kouyos  RD, Balmer  B, Grube  C, Weber  R, Günthard  HF.  Frequency and spectrum of unexpected clinical manifestations of primary HIV-1 infection.  Clin Infect Dis. 2015;61(6):1013-1021. doi:10.1093/cid/civ398PubMedGoogle ScholarCrossref
75.
Crowell  TA, Colby  DJ, Pinyakorn  S,  et al; RV254/SEARCH010 Study Group.  Acute retroviral syndrome is associated with high viral burden, CD4 depletion, and immune activation in systemic and tissue compartments.  Clin Infect Dis. 2018;66(10):1540-1549. doi:10.1093/cid/cix1063PubMedGoogle ScholarCrossref
76.
LeGrand  S, Muessig  KE, Horvath  KJ, Rosengren  AL, Hightow-Weidman  LB.  Using technology to support HIV self-testing among MSM.  Curr Opin HIV AIDS. 2017;12(5):425-431. doi:10.1097/COH.0000000000000400PubMedGoogle ScholarCrossref
77.
Koullias  Y, Sax  PE, Fields  NF, Walensky  RP, Hyle  EP.  Should we be testing for baseline integrase resistance in patients newly diagnosed with human immunodeficiency virus?  Clin Infect Dis. 2017;65(8):1274-1281. doi:10.1093/cid/cix542PubMedGoogle ScholarCrossref
78.
Stekler  JD, McKernan  J, Milne  R,  et al.  Lack of resistance to integrase inhibitors among antiretroviral-naive subjects with primary HIV-1 infection, 2007-2013.  Antivir Ther. 2015;20(1):77-80. doi:10.3851/IMP2780PubMedGoogle ScholarCrossref
79.
Ambrosioni  J, Nicolás  D, Manzardo  C,  et al.  Integrase strand-transfer inhibitor polymorphic and accessory resistance substitutions in patients with acute/recent HIV infection.  J Antimicrob Chemother. 2017;72(1):205-209. doi:10.1093/jac/dkw376PubMedGoogle ScholarCrossref
80.
Scherrer  AU, Yang  WL, Kouyos  RD,  et al; Swiss HIV Cohort Study.  Successful prevention of transmission of integrase resistance in the Swiss HIV Cohort Study.  J Infect Dis. 2016;214(3):399-402. doi:10.1093/infdis/jiw165PubMedGoogle ScholarCrossref
81.
Tostevin  A, White  E, Dunn  D,  et al; UK HIV Drug Resistance Database.  Recent trends and patterns in HIV-1 transmitted drug resistance in the United Kingdom.  HIV Med. 2017;18(3):204-213. doi:10.1111/hiv.12414PubMedGoogle ScholarCrossref
82.
Sax  PE, DeJesus  E, Mills  A,  et al; GS-US-236-0102 Study Team.  Co-formulated elvitegravir, cobicistat, emtricitabine, and tenofovir versus co-formulated efavirenz, emtricitabine, and tenofovir for initial treatment of HIV-1 infection: a randomised, double-blind, phase 3 trial, analysis of results after 48 weeks.  Lancet. 2012;379(9835):2439-2448. doi:10.1016/S0140-6736(12)60917-9PubMedGoogle ScholarCrossref
83.
Hunt  PW, Deeks  SG, Rodriguez  B,  et al.  Continued CD4 cell count increases in HIV-infected adults experiencing 4 years of viral suppression on antiretroviral therapy.  AIDS. 2003;17(13):1907-1915. doi:10.1097/00002030-200309050-00009PubMedGoogle ScholarCrossref
84.
Ford  N, Meintjes  G, Pozniak  A,  et al.  The future role of CD4 cell count for monitoring antiretroviral therapy.  Lancet Infect Dis. 2015;15(2):241-247. doi:10.1016/S1473-3099(14)70896-5PubMedGoogle ScholarCrossref
85.
Sauter  R, Huang  R, Ledergerber  B,  et al; Swiss HIV Cohort Study.  CD4/CD8 ratio and CD8 counts predict CD4 response in HIV-1-infected drug naive and in patients on cART.  Medicine (Baltimore). 2016;95(42):e5094. doi:10.1097/MD.0000000000005094PubMedGoogle ScholarCrossref
86.
Zaccarelli  M, Santoro  MM, Armenia  D,  et al.  Genotypic resistance test in proviral DNA can identify resistance mutations never detected in historical genotypic test in patients with low level or undetectable HIV-RNA.  J Clin Virol. 2016;82:94-100. doi:10.1016/j.jcv.2016.07.007PubMedGoogle ScholarCrossref
87.
Doyle  T, Dunn  DT, Ceccherini-Silberstein  F,  et al; CORONET Study Group.  Integrase inhibitor (INI) genotypic resistance in treatment-naive and raltegravir-experienced patients infected with diverse HIV-1 clades.  J Antimicrob Chemother. 2015;70(11):3080-3086. doi:10.1093/jac/dkv243PubMedGoogle ScholarCrossref
88.
Hurt  CB, Sebastian  J, Hicks  CB, Eron  JJ.  Resistance to HIV integrase strand transfer inhibitors among clinical specimens in the United States, 2009-2012.  Clin Infect Dis. 2014;58(3):423-431. doi:10.1093/cid/cit697PubMedGoogle ScholarCrossref
89.
Gunthard  HF, Calvez  V, Paredes  R,  et al.  HIV drug resistance: 2018 review and recommendations of the International Antiviral Society–USA 1440 Panel  [published online July 20, 2018].  Clin Infect Dis. doi:10.1093/cid/ciy463Google Scholar
90.
Gandhi  RT, Zheng  L, Bosch  RJ,  et al; AIDS Clinical Trials Group A5244 Team.  The effect of raltegravir intensification on low-level residual viremia in HIV-infected patients on antiretroviral therapy: a randomized controlled trial.  PLoS Med. 2010;7(8):e1000321. doi:10.1371/journal.pmed.1000321PubMedGoogle ScholarCrossref
91.
 U=U taking off in 2017.  Lancet HIV. 2017;4(11):e475. doi:10.1016/S2352-3018(17)30183-2PubMedGoogle ScholarCrossref
92.
Rodger  AJ, Cambiano  V, Bruun  T,  et al; PARTNER Study Group.  Sexual activity without condoms and risk of HIV transmission in serodifferent couples when the HIV-positive partner is using suppressive antiretroviral therapy.  JAMA. 2016;316(2):171-181. doi:10.1001/jama.2016.5148PubMedGoogle ScholarCrossref
93.
Dailey  AF, Hoots  BE, Hall  HI,  et al.  Vital signs: human immunodeficiency virus testing and diagnosis delays—United States.  MMWR Morb Mortal Wkly Rep. 2017;66(47):1300-1306. doi:10.15585/mmwr.mm6647e1PubMedGoogle ScholarCrossref
94.
Elgalib  A, Fidler  S, Sabapathy  K.  Hospital-based routine HIV testing in high-income countries: a systematic literature review.  HIV Med. 2018;19(3):195-205. doi:10.1111/hiv.12568PubMedGoogle ScholarCrossref
95.
Mugavero  MJ, Westfall  AO, Cole  SR,  et al; Centers for AIDS Research Network of Integrated Clinical Systems (CNICS).  Beyond core indicators of retention in HIV care: missed clinic visits are independently associated with all-cause mortality.  Clin Infect Dis. 2014;59(10):1471-1479. doi:10.1093/cid/ciu603PubMedGoogle ScholarCrossref
96.
Pence  B, Mugavero  M, Boswell  S,  et al. Who will show? predicting missed visits in the CFAR Network of Integrated Systems (CNICS) cohort of patients in HIV care in the United States. Presented at: 11th International Conference on HIV Treatment and Prevention Adherence; May 9-11, 2016; Fort Lauderdale, FL.
97.
Hart-Malloy  R, Brown  S, Bogucki  K, Tesoriero  J.  Implementing data-to-care initiatives for HIV in New York state: assessing the value of community health centers identifying persons out of care for health department follow-up.  AIDS Care. 2018;30(3):391-396. doi:10.1080/09540121.2017.1363851PubMedGoogle ScholarCrossref
98.
Magnus  M, Herwehe  J, Gruber  D,  et al.  Improved HIV-related outcomes associated with implementation of a novel public health information exchange.  Int J Med Inform. 2012;81(10):e30-e38. doi:10.1016/j.ijmedinf.2012.06.005PubMedGoogle ScholarCrossref
99.
Metsch  LR, Feaster  DJ, Gooden  L,  et al.  Effect of patient navigation with or without financial incentives on viral suppression among hospitalized patients with HIV infection and substance use: a randomized clinical trial.  JAMA. 2016;316(2):156-170. doi:10.1001/jama.2016.8914PubMedGoogle ScholarCrossref
100.
Giordano  TP, Cully  J, Amico  KR,  et al.  A randomized trial to test a peer mentor intervention to improve outcomes in persons hospitalized with HIV infection.  Clin Infect Dis. 2016;63(5):678-686. doi:10.1093/cid/ciw322PubMedGoogle ScholarCrossref
101.
El-Sadr  WM, Donnell  D, Beauchamp  G,  et al; HPTN 065 Study Team.  Financial incentives for linkage to care and viral suppression among HIV-positive patients: a randomized clinical trial (HPTN 065).  JAMA Intern Med. 2017;177(8):1083-1092. doi:10.1001/jamainternmed.2017.2158PubMedGoogle ScholarCrossref
102.
McNairy  ML, Lamb  MR, Gachuhi  AB,  et al.  Effectiveness of a combination strategy for linkage and retention in adult HIV care in Swaziland: the Link4Health cluster randomized trial.  PLoS Med. 2017;14(11):e1002420. doi:10.1371/journal.pmed.1002420PubMedGoogle ScholarCrossref
103.
Elul  B, Lamb  MR, Lahuerta  M,  et al.  A combination intervention strategy to improve linkage to and retention in HIV care following diagnosis in Mozambique: a cluster-randomized study.  PLoS Med. 2017;14(11):e1002433. doi:10.1371/journal.pmed.1002433PubMedGoogle ScholarCrossref
104.
Dombrowski  JC, Galagan  S, Ramchandani  M, Dhanireddy  S, Harrington  RD, Golden  MR. Improved outcomes with maximum assistance, low-threshold HIV care (the “MAX CLINIC”). Presented at: 25th Conference on Retroviruses and Opportunistic Infections (CROI); March 4-7, 2018; Boston, MA.
105.
Thompson  MA, Mugavero  MJ, Amico  KR,  et al.  Guidelines for improving entry into and retention in care and antiretroviral adherence for persons with HIV: evidence-based recommendations from an International Association of Physicians in AIDS Care panel.  Ann Intern Med. 2012;156(11):817-833. doi:10.7326/0003-4819-156-11-201206050-00419PubMedGoogle ScholarCrossref
106.
Aidala  AA, Wilson  MG, Shubert  V,  et al.  Housing status, medical care, and health outcomes among people living with HIV/AIDS: a systematic review.  Am J Public Health. 2016;106(1):e1-e23. doi:10.2105/AJPH.2015.302905PubMedGoogle ScholarCrossref
107.
Clemenzi-Allen  AA, Geng  E, Christopoulos  KA,  et al. Degree of housing instability shows independent “dose-response” with HIV suppression. Presented at: 25th Conference on Retroviruses and Opportunistic Infections (CROI); March 4-7, 2018; Boston, MA.
108.
Bowen  EA, Canfield  J, Moore  S, Hines  M, Hartke  B, Rademacher  C.  Predictors of CD4 health and viral suppression outcomes for formerly homeless people living with HIV/AIDS in scattered site supportive housing.  AIDS Care. 2017;29(11):1458-1462. doi:10.1080/09540121.2017.1307920PubMedGoogle ScholarCrossref
109.
Spinelli  MA, Frongillo  EA, Sheira  LA,  et al.  Food insecurity is associated with poor HIV outcomes among women in the United States.  AIDS Behav. 2017;21(12):3473-3477. doi:10.1007/s10461-017-1968-2PubMedGoogle ScholarCrossref
110.
Palar  K, Napoles  T, Hufstedler  LL,  et al.  Comprehensive and medically appropriate food support is associated with improved HIV and diabetes health.  J Urban Health. 2017;94(1):87-99. doi:10.1007/s11524-016-0129-7PubMedGoogle ScholarCrossref
111.
Martinez  H, Palar  K, Linnemayr  S,  et al.  Tailored nutrition education and food assistance improve adherence to HIV antiretroviral therapy: evidence from Honduras.  AIDS Behav. 2014;18(suppl 5):S566-S577. doi:10.1007/s10461-014-0786-zPubMedGoogle ScholarCrossref
112.
Turan  B, Rogers  AJ, Rice  WS,  et al.  Association between perceived discrimination in healthcare settings and HIV medication adherence: mediating psychosocial mechanisms.  AIDS Behav. 2017;21(12):3431-3439. doi:10.1007/s10461-017-1957-5PubMedGoogle ScholarCrossref
113.
Rice  WS, Crockett  KB, Mugavero  MJ, Raper  JL, Atkins  GC, Turan  B.  Association between internalized HIV-related stigma and HIV care visit adherence.  J Acquir Immune Defic Syndr. 2017;76(5):482-487. doi:10.1097/QAI.0000000000001543PubMedGoogle ScholarCrossref
114.
Corless  IB, Hoyt  AJ, Tyer-Viola  L,  et al.  90-90-90-Plus: maintaining adherence to antiretroviral therapies.  AIDS Patient Care STDS. 2017;31(5):227-236. doi:10.1089/apc.2017.0009PubMedGoogle ScholarCrossref
115.
Pence  BW, Mills  JC, Bengtson  AM,  et al.  Association of increased chronicity of depression with HIV appointment attendance, treatment failure, and mortality among HIV-infected adults in the United States  [published online February 21, 2018].  JAMA Psychiatry. 2018. doi:10.1001/jamapsychiatry.2017.4726PubMedGoogle Scholar
116.
Mills  JC, Harman  JS, Cook  RL,  et al.  Comparative effectiveness of dual vs. single-action antidepressants on HIV clinical outcomes in HIV-infected people with depression.  AIDS. 2017;31(18):2515-2524. doi:10.1097/QAD.0000000000001618PubMedGoogle ScholarCrossref
117.
Walensky  RP, Horn  TH, Paltiel  AD.  The Epi-TAF for tenofovir disoproxil fumarate?  Clin Infect Dis. 2016;62(7):915-918. doi:10.1093/cid/civ1000PubMedGoogle ScholarCrossref
118.
Freedberg  KA, Losina  E, Weinstein  MC,  et al.  The cost effectiveness of combination antiretroviral therapy for HIV disease.  N Engl J Med. 2001;344(11):824-831. doi:10.1056/NEJM200103153441108PubMedGoogle ScholarCrossref
119.
Goldie  SJ, Yazdanpanah  Y, Losina  E,  et al.  Cost-effectiveness of HIV treatment in resource-poor settings—the case of Côte d’Ivoire.  N Engl J Med. 2006;355(11):1141-1153. doi:10.1056/NEJMsa060247PubMedGoogle ScholarCrossref
120.
Bayoumi  AM, Barnett  PG, Joyce  VR,  et al.  Cost-effectiveness of newer antiretroviral drugs in treatment-experienced patients with multidrug-resistant HIV disease.  J Acquir Immune Defic Syndr. 2013;64(4):382-391. doi:10.1097/QAI.0000000000000002PubMedGoogle ScholarCrossref
121.
Sutton  SS, Magagnoli  J, Hardin  JW.  Odds of viral suppression by single-tablet regimens, multiple-tablet regimens, and adherence level in HIV/AIDS patients receiving antiretroviral therapy.  Pharmacotherapy. 2017;37(2):204-213. doi:10.1002/phar.1889PubMedGoogle ScholarCrossref
122.
Clay  PG, Nag  S, Graham  CM, Narayanan  S.  Meta-analysis of studies comparing single and multi-tablet fixed dose combination HIV treatment regimens.  Medicine (Baltimore). 2015;94(42):e1677. doi:10.1097/MD.0000000000001677PubMedGoogle ScholarCrossref
123.
Walensky  RP, Sax  PE, Nakamura  YM,  et al.  Economic savings versus health losses: the cost-effectiveness of generic antiretroviral therapy in the United States.  Ann Intern Med. 2013;158(2):84-92. doi:10.7326/0003-4819-158-2-201301150-00002PubMedGoogle ScholarCrossref
124.
Crepaz  N, Tang  T, Marks  G, Mugavero  MJ, Espinoza  L, Hall  HI.  Durable viral suppression and transmission risk potential among persons with diagnosed HIV infection: United States, 2012-2013.  Clin Infect Dis. 2016;63(7):976-983. doi:10.1093/cid/ciw418PubMedGoogle ScholarCrossref
125.
Kuhar  DT, Henderson  DK, Struble  KA,  et al; US Public Health Service Working Group.  Updated US Public Health Service guidelines for the management of occupational exposures to human immunodeficiency virus and recommendations for postexposure prophylaxis  [published correction appears in Infect Control Hosp Epidemiol. 2013;34(11):1238].  Infect Control Hosp Epidemiol. 2013;34(9):875-892. doi:10.1086/672271PubMedGoogle ScholarCrossref
126.
Centers for Disease Control and Prevention (CDC). Updated guidelines for antiretroviral postexposure prophylaxis after sexual, injection drug use, or other nonoccupational exposure to HIV—United States, 2016. CDC website. https://www.cdc.gov/hiv/pdf/programresources/cdc-hiv-npep-guidelines.pdf. Published 2016. Accessed April 16, 2018.
127.
Lancki  N, Almirol  E, Alon  L, McNulty  M, Schneider  JA.  Preexposure prophylaxis guidelines have low sensitivity for identifying seroconverters in a sample of young black MSM in Chicago.  AIDS. 2018;32(3):383-392.PubMedGoogle Scholar
128.
Gilead Sciences. TRUVADA (emtricitabine and tenofovir disoproxil fumarate) [package insert]. Foster City, CA: Gilead Sciences Inc; 2014.
129.
Anderson  PL, Glidden  DV, Liu  A,  et al; iPrEx Study Team.  Emtricitabine-tenofovir concentrations and pre-exposure prophylaxis efficacy in men who have sex with men.  Sci Transl Med. 2012;4(151):151ra125. doi:10.1126/scitranslmed.3004006PubMedGoogle ScholarCrossref
130.
Cottrell  ML, Yang  KH, Prince  HM,  et al.  A translational pharmacology approach to predicting outcomes of HIV preexposure prophylaxis against HIV in men and women using tenofovir disoproxil fumarate with or without emtricitabine.  J Infect Dis. 2016;214(1):55-64. doi:10.1093/infdis/jiw077PubMedGoogle ScholarCrossref
131.
Molina  JM, Capitant  C, Spire  B,  et al; ANRS IPERGAY Study Group.  On-demand preexposure prophylaxis in men at high risk for HIV-1 infection.  N Engl J Med. 2015;373(23):2237-2246. doi:10.1056/NEJMoa1506273PubMedGoogle ScholarCrossref
132.
McCormack  S, Dunn  DT, Desai  M,  et al.  Pre-exposure prophylaxis to prevent the acquisition of HIV-1 infection (PROUD): effectiveness results from the pilot phase of a pragmatic open-label randomised trial.  Lancet. 2016;387(10013):53-60. doi:10.1016/S0140-6736(15)00056-2PubMedGoogle ScholarCrossref
133.
Antoni  G, Tremblay  C, Charreau  I,  et al. On-demand PrEP with TDF/FTC remains highly effective among MSM with infrequent sexual intercourse: a sub-study of ANRS iPERGAY trial. Presented at: IAS Conference on HIV Science; July 23-27, 2017; Paris, France.
134.
Molina  JM, Charreau  I, Spire  B,  et al.  Efficacy, safety, and effect on sexual behaviour of on-demand pre-exposure prophylaxis for HIV in men who have sex with men: an observational cohort study.  Lancet HIV. 2017;4(9):e402-e410. doi:10.1016/S2352-3018(17)30089-9PubMedGoogle ScholarCrossref
135.
Molina  JM, Pialoux  G, Ohayon  M,  et al. One-year experience with pre-exposure prophylaxis (PrEP) implementation in France with TDF/FTC. Presented at: 9th International AIDS Society Conference on HIV Science; July 23-27, 2017; Paris, France.
136.
Balavoine  S, Noret  M, Loze  B,  et al. PrEP uptake, safety and efficacy in a hospital-based clinic in Paris. Presented at: 9th International AIDS Society Conference on HIV Science; July 23-26, 2017; Paris, France.
137.
European AIDS Clinical Society (EACS). EACS Guidelines Version 8.2. EACS website. http://www.eacsociety.org/files/guidelines_8.2-english.pdf. Published 2017. Accessed March 23, 2018.
138.
British HIV Association (BHIVA). Consultation version of the BHIVA/BASHH guidelines on the use of HIV pre-exposure prophylaxis (PrEP) 2017. BHIVA website. http://www.bhiva.org/PrEP-guidelines-consultation.aspx. Published 2017. Accessed March 23, 2018.
139.
Tan  DHS, Hull  MW, Yoong  D,  et al; Biomedical HIV Prevention Working Group of the CIHR Canadian HIV Trials Network.  Canadian guideline on HIV pre-exposure prophylaxis and nonoccupational postexposure prophylaxis.  CMAJ. 2017;189(47):E1448-E1458. doi:10.1503/cmaj.170494PubMedGoogle ScholarCrossref
140.
Mugwanya  KK, Wyatt  C, Celum  C,  et al; Partners PrEP Study Team.  Reversibility of glomerular renal function decline in HIV-uninfected men and women discontinuing emtricitabine-tenofovir disoproxil fumarate pre-exposure prophylaxis.  J Acquir Immune Defic Syndr. 2016;71(4):374-380. doi:10.1097/QAI.0000000000000868PubMedGoogle ScholarCrossref
141.
Delaugerre  C, Antoni  G, Mahjoub  N,  et al; IPERGAY Study Group.  Assessment of HIV screening tests for use in preexposure prophylaxis programs.  J Infect Dis. 2017;216(3):382-386.PubMedGoogle Scholar
142.
Hoornenborg  E, Prins  M, Achterbergh  RCA,  et al; Amsterdam PrEP Project Team in the HIV Transmission Elimination AMsterdam Consortium (H-TEAM).  Acquisition of wild-type HIV-1 infection in a patient on pre-exposure prophylaxis with high intracellular concentrations of tenofovir diphosphate: a case report.  Lancet HIV. 2017;4(11):e522-e528. doi:10.1016/S2352-3018(17)30132-7PubMedGoogle ScholarCrossref
143.
Donnell  D, Ramos  E, Celum  C,  et al; Partners PrEP Study Team.  The effect of oral preexposure prophylaxis on the progression of HIV-1 seroconversion.  AIDS. 2017;31(14):2007-2016. doi:10.1097/QAD.0000000000001577PubMedGoogle ScholarCrossref
144.
Knox  DC, Anderson  PL, Harrigan  PR, Tan  DH.  Multidrug-resistant HIV-1 infection despite preexposure prophylaxis.  N Engl J Med. 2017;376(5):501-502. doi:10.1056/NEJMc1611639PubMedGoogle ScholarCrossref
145.
Markowitz  M, Grossman  H, Anderson  PL,  et al.  Newly acquired infection with multidrug-resistant HIV-1 in a patient adherent to preexposure prophylaxis.  J Acquir Immune Defic Syndr. 2017;76(4):e104-e106. doi:10.1097/QAI.0000000000001534PubMedGoogle ScholarCrossref
146.
Krakower  P, Maloney  KM, Levine  K. Unplanned discontinuation of HIV pre-exposure prophylaxis during clinical care. Presented at: 2nd HIV Research for Prevention Conference (HIVR4P); October 17-21, 2016; Chicago, IL.
147.
Jain  S, Krakower  DS, Mayer  KH.  The transition from postexposure prophylaxis to preexposure prophylaxis: an emerging opportunity for biobehavioral HIV prevention.  Clin Infect Dis. 2015;60(suppl 3):S200-S204. doi:10.1093/cid/civ094PubMedGoogle ScholarCrossref
148.
Margolis  DA, Gonzalez-Garcia  J, Stellbrink  HJ,  et al.  Long-acting intramuscular cabotegravir and rilpivirine in adults with HIV-1 infection (LATTE-2): 96-week results of a randomised, open-label, phase 2b, non-inferiority trial.  Lancet. 2017;390(10101):1499-1510. doi:10.1016/S0140-6736(17)31917-7PubMedGoogle ScholarCrossref
149.
Markowitz  M, Frank  I, Grant  R,  et al. ÉCLAIR: phase 2A safety and PK study of cabotegravir LA in HIV-uninfected men [abstract 106]. Presented at: 23rd Conference on Retroviruses and Opportunistic Infections (CROI); February 22-25, 2016; Boston, MA.
150.
Baeten  J, Palanee-Phillips  T, Mgodi  N,  et al. High uptake and reduced HIV-1 incidence in an open-label trial of the dapivirine ring. Presented at: 25th Conference on Retroviruses and Opportunistic Infections (CROI); March 4-7, 2018; Boston, MA.
151.
Nel  A, van Niekerk  N, Van Baelen  B, Rosenberg  Z. HIV incidence and adherence in DREAM: an open-label trial of dapivirine vaginal ring. Presented at: 25th Conference on Retroviruses and Opportunistic Infections (CROI); March 4-7, 2018; Boston, MA.
152.
McCoy  LE, Burton  DR.  Identification and specificity of broadly neutralizing antibodies against HIV.  Immunol Rev. 2017;275(1):11-20. doi:10.1111/imr.12484PubMedGoogle ScholarCrossref
153.
Caskey  M, Klein  F, Lorenzi  JC,  et al.  Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117.  Nature. 2015;522(7557):487-491. doi:10.1038/nature14411PubMedGoogle ScholarCrossref
154.
Caskey  M, Schoofs  T, Gruell  H,  et al.  Antibody 10-1074 suppresses viremia in HIV-1-infected individuals.  Nat Med. 2017;23(2):185-191. doi:10.1038/nm.4268PubMedGoogle ScholarCrossref
155.
Huang  J, Kang  BH, Ishida  E,  et al.  Identification of a CD4-binding-site antibody to HIV that evolved near-pan neutralization breadth.  Immunity. 2016;45(5):1108-1121. doi:10.1016/j.immuni.2016.10.027PubMedGoogle ScholarCrossref
156.
Gaudinski  MR, Coates  EE, Houser  KV,  et al; VRC 606 Study Team.  Safety and pharmacokinetics of the Fc-modified HIV-1 human monoclonal antibody VRC01LS: a phase 1 open-label clinical trial in healthy adults.  PLoS Med. 2018;15(1):e1002493. doi:10.1371/journal.pmed.1002493PubMedGoogle ScholarCrossref
157.
Boesch  AW, Alter  G, Ackerman  ME.  Prospects for engineering HIV-specific antibodies for enhanced effector function and half-life.  Curr Opin HIV AIDS. 2015;10(3):160-169. doi:10.1097/COH.0000000000000149PubMedGoogle ScholarCrossref
158.
Fuchs  SP, Desrosiers  RC.  Promise and problems associated with the use of recombinant AAV for the delivery of anti-HIV antibodies.  Mol Ther Methods Clin Dev. 2016;3:16068. doi:10.1038/mtm.2016.68PubMedGoogle ScholarCrossref
159.
Hua  CK, Ackerman  ME.  Increasing the clinical potential and applications of anti-HIV antibodies.  Front Immunol. 2017;8:1655. doi:10.3389/fimmu.2017.01655PubMedGoogle ScholarCrossref
160.
Kong  R, Louder  MK, Wagh  K,  et al.  Improving neutralization potency and breadth by combining broadly reactive HIV-1 antibodies targeting major neutralization epitopes.  J Virol. 2015;89(5):2659-2671. doi:10.1128/JVI.03136-14PubMedGoogle ScholarCrossref
161.
Borducchi  E, Abbink  P, Nkolola  J, Lewis  MG, Geleziunas  R, Barouch  D. PGT121 combined with GS-9620 delays viral rebound in SHIV-infected rhesus monkeys. Presented at: 25th Conference on Retroviruses and Opportunistic Infections (CROI); March 4-7, 2018; Boston, MA.
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
Close
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close