[Skip to Content]
[Skip to Content Landing]

Effect of Ciprofloxacin on Susceptibility to Aortic Dissection and Rupture in Mice

Educational Objective To examine whether ciprofloxacin administration increases the susceptibility to aortic dissection and rupture in a laboratory model.
1 Credit CME
Key Points

Question  Does ciprofloxacin increase susceptibility to aortic dissection and rupture in mice?

Findings  This study showed that ciprofloxacin significantly increased the incidence of aortic dissection and rupture in a mouse model of moderate, sporadic aortic aneurysm and dissection. In these mice, ciprofloxacin decreased lysyl oxidase expression and activity, increased MMP levels and activity, and increased elastic fiber fragmentation and cell injury, which may contribute to increased susceptibility to stress-induced aortic destruction.

Meaning  Ciprofloxacin should be used with caution in patients with aortic dilatation, as well as in those at high risk for aortic aneurysm and dissection.


Importance  Fluoroquinolones are among the most commonly prescribed antibiotics. Recent clinical studies indicated an association between fluoroquinolone use and increased risk of aortic aneurysm and dissection (AAD). This alarming association has raised concern, especially in patients with AAD with risk of rupture and in individuals at risk for developing AAD.

Objective  To examine the effect of ciprofloxacin on AAD development in mice.

Design, Setting, and Participants  In a mouse model of moderate, sporadic AAD, 4-week-old male and female C57BL/6J mice were challenged with a high-fat diet and low-dose angiotensin infusion (1000 ng/min/kg). Control unchallenged mice were fed a normal diet and infused with saline. After randomization, challenged and unchallenged mice received ciprofloxacin (100 mg/kg/d) or vehicle through daily gavage during angiotensin or saline infusion. Aortic aneurysm and dissection development and aortic destruction were compared between mice. The direct effects of ciprofloxacin on aortic smooth muscle cells were examined in cultured cells.

Results  No notable aortic destruction was observed in unchallenged mice that received ciprofloxacin alone. Aortic challenge induced moderate aortic destruction with development of AAD in 17 of 38 mice (45%) and severe AAD in 9 (24%) but no rupture or death. However, challenged mice that received ciprofloxacin had severe aortic destruction and a significantly increased incidence of AAD (38 of 48 [79%]; P = .001; χ2 = 10.9), severe AAD (32 of 48 [67%]; P < .001; χ2 = 15.7), and rupture and premature death (7 of 48 [15%]; P = .01; χ2 = 6.0). The increased AAD incidence was observed in different aortic segments and was similar between male and female mice. Compared with aortic tissues from challenged control mice, those from challenged mice that received ciprofloxacin showed decreased expression of lysyl oxidase, an enzyme that is critical in the assembly and stabilization of elastic fibers and collagen. These aortas also showed increased matrix metalloproteinase levels and activity, elastic fiber fragmentation, and aortic cell injury. In cultured smooth muscle cells, ciprofloxacin treatment significantly reduced lysyl oxidase expression and activity, increased matrix metalloproteinase expression and activity, suppressed cell proliferation, and induced cell death. Furthermore, ciprofloxacin—a DNA topoisomerase inhibitor—caused nuclear and mitochondrial DNA damage and the release of DNA into the cytosol, subsequently inducing mitochondrial dysfunction, reactive oxygen species production, and activation of the cytosolic DNA sensor STING, which we further showed was involved in the suppression of lysyl oxidase expression and induction of matrix metalloproteinase expression.

Conclusions and Relevance  Ciprofloxacin increases susceptibility to aortic dissection and rupture in a mouse model of moderate, sporadic AAD. Ciprofloxacin should be used with caution in patients with aortic dilatation, as well as in those at high risk for AAD.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Accepted for Publication: April 22, 2018.

Corresponding Author: Scott A. LeMaire, MD (slemaire@bcm.edu), and Ying H. Shen, MD, PhD (hyshen@bcm.edu), Department of Surgery, Baylor College of Medicine, One Baylor Plaza, BCM 390, Houston, TX 77030.

Published Online: July 25, 2018. doi:10.1001/jamasurg.2018.1804

Author Contributions: Drs LeMaire and Shen had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: LeMaire, Coselli, Shen.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: LeMaire, Shen.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: LeMaire, L. Zhang, Ren, Shen.

Obtained funding: LeMaire, Shen.

Administrative, technical, or material support: All authors.

Supervision: LeMaire, Coselli, Shen.

Conflict of Interest Disclosures: None reported.

Funding/Support: This study was supported by the Roderick D. MacDonald Research Fund at Baylor St Luke’s Medical Center (grant 17RDM004) and the National Institutes of Health (grant R01HL131980). Dr LeMaire’s work is supported in part by the Jimmy and Roberta Howell Professorship in Cardiovascular Surgery at Baylor College of Medicine.

Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Additional Contributions: We gratefully acknowledge Nicole Stancel, PhD, ELS, Scientific Publications at the Texas Heart Institute, for editorial support; Scott Weldon, MA, Division of Cardiothoracic Surgery, Baylor College of Medicine, for preparation of the promotional image; and Nicholas S. Zhang, Division of Cardiothoracic Surgery, Baylor College of Medicine, for technical support. Dr Stancel and Mr Weldon are employed by these institutions. Mr Zhang was not compensated.

Kochanek  KD, Murphy  SL, Xu  J, Tejada-Vera  B.  Deaths: final data for 2014.  Natl Vital Stat Rep. 2016;65(4):1-122.PubMedGoogle Scholar
Linder  JA, Huang  ES, Steinman  MA, Gonzales  R, Stafford  RS.  Fluoroquinolone prescribing in the United States: 1995 to 2002.  Am J Med. 2005;118(3):259-268. doi:10.1016/j.amjmed.2004.09.015PubMedGoogle ScholarCrossref
Mamdani  M, McNeely  D, Evans  G,  et al.  Impact of a fluoroquinolone restriction policy in an elderly population.  Am J Med. 2007;120(10):893-900. doi:10.1016/j.amjmed.2007.02.028PubMedGoogle ScholarCrossref
Zhang  Y, Steinman  MA, Kaplan  CM.  Geographic variation in outpatient antibiotic prescribing among older adults.  Arch Intern Med. 2012;172(19):1465-1471. doi:10.1001/archinternmed.2012.3717PubMedGoogle ScholarCrossref
Laohapensang  K, Rutherford  RB, Arworn  S.  Mycotic abdominal aortic aneurysm due to Streptococcus suis: a case report.  Surg Infect (Larchmt). 2010;11(2):179-181. doi:10.1089/sur.2008.111PubMedGoogle ScholarCrossref
Risse  J, Settembre  N, Mandry  D,  et al.  Infected abdominal aortic aneurysm attributable to haemophilus influenzae: rapid changes of imaging findings.  Circulation. 2015;132(7):613-615. doi:10.1161/CIRCULATIONAHA.115.016323PubMedGoogle ScholarCrossref
Thompson  PC, Wang  L, Columbo  J, Schanzer  A, Robinson  WP.  Durable results with in situ graft repair of ruptured salmonella aneurysm in a patient with autoimmune deficiency syndrome.  Int J Angiol. 2016;25(5):e131-e134. doi:10.1055/s-0035-1556840PubMedGoogle ScholarCrossref
Rodvold  KA, Neuhauser  M.  Pharmacokinetics and pharmacodynamics of fluoroquinolones.  Pharmacotherapy. 2001;21(10 Pt 2):233S-252S. doi:10.1592/phco.21.16.233S.33992PubMedGoogle ScholarCrossref
Mehlhorn  AJ, Brown  DA.  Safety concerns with fluoroquinolones.  Ann Pharmacother. 2007;41(11):1859-1866. doi:10.1345/aph.1K347PubMedGoogle ScholarCrossref
Huston  KA.  Achilles tendinitis and tendon rupture due to fluoroquinolone antibiotics.  N Engl J Med. 1994;331(11):748. doi:10.1056/NEJM199409153311116PubMedGoogle ScholarCrossref
Wise  BL, Peloquin  C, Choi  H, Lane  NE, Zhang  Y.  Impact of age, sex, obesity, and steroid use on quinolone-associated tendon disorders.  Am J Med. 2012;125(12):1228.e23-1228.e28. doi:10.1016/j.amjmed.2012.05.027PubMedGoogle ScholarCrossref
Wahl  PM, Gagne  JJ, Wasser  TE,  et al.  Early steps in the development of a claims-based targeted healthcare safety monitoring system and application to three empirical examples.  Drug Saf. 2012;35(5):407-416. doi:10.2165/11594770-000000000-00000PubMedGoogle ScholarCrossref
US Food and Drug Administration. Fluoroquinolone antimicrobial drugs information. https://www.fda.gov/Drugs/DrugSafety/InformationbyDrugClass/ucm346750.htm. Accessed June 26, 2018.
Lee  CC, Lee  MT, Chen  YS,  et al.  Risk of aortic dissection and aortic aneurysm in patients taking oral fluoroquinolone.  JAMA Intern Med. 2015;175(11):1839-1847. doi:10.1001/jamainternmed.2015.5389PubMedGoogle ScholarCrossref
Daneman  N, Lu  H, Redelmeier  DA.  Fluoroquinolones and collagen associated severe adverse events: a longitudinal cohort study.  BMJ Open. 2015;5(11):e010077. doi:10.1136/bmjopen-2015-010077PubMedGoogle ScholarCrossref
US Food and Drug Administration. FDA Drug Safety Communication: FDA updates warnings for oral and injectable fluoroquinolone antibiotics due to disabling side effects. https://www.fda.gov/Drugs/DrugSafety/ucm511530.htm. Accessed February 13, 2018.
Shen  YH, Zhang  L, Ren  P,  et al.  AKT2 confers protection against aortic aneurysms and dissections.  Circ Res. 2013;112(4):618-632. doi:10.1161/CIRCRESAHA.112.300735PubMedGoogle ScholarCrossref
Ren  P, Hughes  M, Krishnamoorthy  S,  et al.  Critical role of ADAMTS-4 in the development of sporadic aortic aneurysm and dissection in mice.  Sci Rep. 2017;7(1):12351. doi:10.1038/s41598-017-12248-zPubMedGoogle ScholarCrossref
Williams  RJ  III, Attia  E, Wickiewicz  TL, Hannafin  JA.  The effect of ciprofloxacin on tendon, paratenon, and capsular fibroblast metabolism.  Am J Sports Med. 2000;28(3):364-369. doi:10.1177/03635465000280031401PubMedGoogle ScholarCrossref
Tsai  WC, Hsu  CC, Tang  FT, Wong  AM, Chen  YC, Pang  JH.  Ciprofloxacin-mediated cell proliferation inhibition and G2/M cell cycle arrest in rat tendon cells.  Arthritis Rheum. 2008;58(6):1657-1663. doi:10.1002/art.23518PubMedGoogle ScholarCrossref
Tsai  WC, Hsu  CC, Chen  HC,  et al.  Ciprofloxacin-mediated inhibition of tenocyte migration and down-regulation of focal adhesion kinase phosphorylation.  Eur J Pharmacol. 2009;607(1-3):23-26. doi:10.1016/j.ejphar.2009.02.006PubMedGoogle ScholarCrossref
Holtom  PD, Pavkovic  SA, Bravos  PD, Patzakis  MJ, Shepherd  LE, Frenkel  B.  Inhibitory effects of the quinolone antibiotics trovafloxacin, ciprofloxacin, and levofloxacin on osteoblastic cells in vitro.  J Orthop Res. 2000;18(5):721-727. doi:10.1002/jor.1100180507PubMedGoogle ScholarCrossref
Li  P, Cheng  NN, Chen  BY, Wang  YM.  In vivo and in vitro chondrotoxicity of ciprofloxacin in juvenile rats.  Acta Pharmacol Sin. 2004;25(10):1262-1266.PubMedGoogle Scholar
Somekh  E, Douer  D, Shaked  N, Rubinstein  E.  In vitro effects of ciprofloxacin and pefloxacin on growth of normal human hematopoietic progenitor cells and on leukemic cell lines.  J Pharmacol Exp Ther. 1989;248(1):415-418.PubMedGoogle Scholar
Somekh  E, Lev  B, Schwartz  E, Barzilai  A, Rubinstein  E.  The effect of ciprofloxacin and pefloxacin on bone marrow engraftment in the spleen of mice.  J Antimicrob Chemother. 1989;23(2):247-251. doi:10.1093/jac/23.2.247PubMedGoogle ScholarCrossref
Zhao  B, Chignell  CF, Rammal  M,  et al.  Detection and prevention of ocular phototoxicity of ciprofloxacin and other fluoroquinolone antibiotics.  Photochem Photobiol. 2010;86(4):798-805. doi:10.1111/j.1751-1097.2010.00755.xPubMedGoogle ScholarCrossref
Kamocki  K, Nör  JE, Bottino  MC.  Effects of ciprofloxacin-containing antimicrobial scaffolds on dental pulp stem cell viability-In vitro studies.  Arch Oral Biol. 2015;60(8):1131-1137. doi:10.1016/j.archoralbio.2015.05.002PubMedGoogle ScholarCrossref
Vandenabeele  P, Galluzzi  L, Vanden Berghe  T, Kroemer  G.  Molecular mechanisms of necroptosis: an ordered cellular explosion.  Nat Rev Mol Cell Biol. 2010;11(10):700-714. doi:10.1038/nrm2970PubMedGoogle ScholarCrossref
Kaczmarek  A, Vandenabeele  P, Krysko  DV.  Necroptosis: the release of damage-associated molecular patterns and its physiological relevance.  Immunity. 2013;38(2):209-223. doi:10.1016/j.immuni.2013.02.003PubMedGoogle ScholarCrossref
Vanden Berghe  T, Linkermann  A, Jouan-Lanhouet  S, Walczak  H, Vandenabeele  P.  Regulated necrosis: the expanding network of non-apoptotic cell death pathways.  Nat Rev Mol Cell Biol. 2014;15(2):135-147. doi:10.1038/nrm3737PubMedGoogle ScholarCrossref
Zhou  W, Yuan  J.  SnapShot: necroptosis.  Cell. 2014;158(2):464-464.e1. doi:10.1016/j.cell.2014.06.041PubMedGoogle ScholarCrossref
Linkermann  A, Bräsen  JH, Darding  M,  et al.  Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury.  Proc Natl Acad Sci U S A. 2013;110(29):12024-12029. doi:10.1073/pnas.1305538110PubMedGoogle ScholarCrossref
Newton  K, Dugger  DL, Wickliffe  KE,  et al.  Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis.  Science. 2014;343(6177):1357-1360. doi:10.1126/science.1249361PubMedGoogle ScholarCrossref
Remijsen  Q, Goossens  V, Grootjans  S,  et al.  Depletion of RIPK3 or MLKL blocks TNF-driven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis.  Cell Death Dis. 2014;5:e1004. doi:10.1038/cddis.2013.531PubMedGoogle ScholarCrossref
Zhang  DW, Shao  J, Lin  J,  et al.  RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis.  Science. 2009;325(5938):332-336. doi:10.1126/science.1172308PubMedGoogle ScholarCrossref
Sun  L, Wang  H, Wang  Z,  et al.  Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase.  Cell. 2012;148(1-2):213-227. doi:10.1016/j.cell.2011.11.031PubMedGoogle ScholarCrossref
Zhao  J, Jitkaew  S, Cai  Z,  et al.  Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis.  Proc Natl Acad Sci U S A. 2012;109(14):5322-5327. doi:10.1073/pnas.1200012109PubMedGoogle ScholarCrossref
Dondelinger  Y, Declercq  W, Montessuit  S,  et al.  MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates.  Cell Rep. 2014;7(4):971-981. doi:10.1016/j.celrep.2014.04.026PubMedGoogle ScholarCrossref
Galluzzi  L, Kepp  O, Kroemer  G.  MLKL regulates necrotic plasma membrane permeabilization.  Cell Res. 2014;24(2):139-140. doi:10.1038/cr.2014.8PubMedGoogle ScholarCrossref
Czerny  M, Zimpfer  D, Fleck  T,  et al.  Successful treatment of an aortoesophageal fistula after emergency endovascular thoracic aortic stent-graft placement.  Ann Thorac Surg. 2005;80(3):1117-1120. doi:10.1016/j.athoracsur.2004.02.136PubMedGoogle ScholarCrossref
Viswanathan  R, Khee  TK, Chong  CF.  Perigraft infections due to salmonella after abdominal aortic aneurysm repair.  Singapore Med J. 2008;49(7):e183-e185.PubMedGoogle Scholar
Choi  SJ, Lee  JS, Cheong  MH, Byun  SS, Hyun  IY.  F-18 FDG PET/CT in the management of infected abdominal aortic aneurysm due to salmonella.  Clin Nucl Med. 2008;33(7):492-495. doi:10.1097/RLU.0b013e31817793a0PubMedGoogle ScholarCrossref
Lemaire  X, Dehecq  C, Cattoen  C,  et al.  Spondylodiscitis and an aortic aneurysm due to Campylobacter coli.  Ann Clin Microbiol Antimicrob. 2010;9:8. doi:10.1186/1476-0711-9-8PubMedGoogle ScholarCrossref
Stahlmann  R, Lode  H.  Safety considerations of fluoroquinolones in the elderly: an update.  Drugs Aging. 2010;27(3):193-209. doi:10.2165/11531490-000000000-00000PubMedGoogle ScholarCrossref
Stahlmann  R, Lode  HM.  Risks associated with the therapeutic use of fluoroquinolones.  Expert Opin Drug Saf. 2013;12(4):497-505. doi:10.1517/14740338.2013.796362PubMedGoogle ScholarCrossref
Sendzik  J, Shakibaei  M, Schäfer-Korting  M, Lode  H, Stahlmann  R.  Synergistic effects of dexamethasone and quinolones on human-derived tendon cells.  Int J Antimicrob Agents. 2010;35(4):366-374. doi:10.1016/j.ijantimicag.2009.10.009PubMedGoogle ScholarCrossref
Menon  A, Pettinari  L, Martinelli  C,  et al.  New insights in extracellular matrix remodeling and collagen turnover related pathways in cultured human tenocytes after ciprofloxacin administration.  Muscles Ligaments Tendons J. 2013;3(3):122-131.PubMedGoogle Scholar
Orobello  NC, Dirain  CO, Schultz  G, Milne-Davies  BA, Ng  MR, Antonelli  PJ.  Ciprofloxacin decreases collagen in mouse tympanic membrane fibroblasts.  Otolaryngol Head Neck Surg. 2016;155(1):127-132. doi:10.1177/0194599816633671PubMedGoogle ScholarCrossref
Sharma  C, Velpandian  T, Baskar Singh  S, Ranjan Biswas  N, Bihari Vajpayee  R, Ghose  S.  Effect of fluoroquinolones on the expression of matrix metalloproteinase in debrided cornea of rats.  Toxicol Mech Methods. 2011;21(1):6-12. doi:10.3109/15376516.2010.529183PubMedGoogle ScholarCrossref
Shakibaei  M, Stahlmann  R.  Ultrastructure of Achilles tendon from rats after treatment with fleroxacin.  Arch Toxicol. 2001;75(2):97-102. doi:10.1007/s002040000203PubMedGoogle ScholarCrossref
Corps  AN, Harrall  RL, Curry  VA, Fenwick  SA, Hazleman  BL, Riley  GP.  Ciprofloxacin enhances the stimulation of matrix metalloproteinase 3 expression by interleukin-1beta in human tendon-derived cells: a potential mechanism of fluoroquinolone-induced tendinopathy.  Arthritis Rheum. 2002;46(11):3034-3040. doi:10.1002/art.10617PubMedGoogle ScholarCrossref
Tsai  WC, Hsu  CC, Chen  CP,  et al.  Ciprofloxacin up-regulates tendon cells to express matrix metalloproteinase-2 with degradation of type I collagen.  J Orthop Res. 2011;29(1):67-73. doi:10.1002/jor.21196PubMedGoogle ScholarCrossref
Bujor  AM, Haines  P, Padilla  C,  et al.  Ciprofloxacin has antifibrotic effects in scleroderma fibroblasts via downregulation of Dnmt1 and upregulation of Fli1.  Int J Mol Med. 2012;30(6):1473-1480. doi:10.3892/ijmm.2012.1150PubMedGoogle ScholarCrossref
Kagan  HM, Li  W.  Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell.  J Cell Biochem. 2003;88(4):660-672. doi:10.1002/jcb.10413PubMedGoogle ScholarCrossref
Guo  DC, Regalado  ES, Gong  L,  et al; University of Washington Center for Mendelian Genomics.  LOX mutations predispose to thoracic aortic aneurysms and dissections.  Circ Res. 2016;118(6):928-934. doi:10.1161/CIRCRESAHA.115.307130PubMedGoogle ScholarCrossref
Lee  VS, Halabi  CM, Hoffman  EP,  et al; Brigham Genomic Medicine.  Loss of function mutation in LOX causes thoracic aortic aneurysm and dissection in humans.  Proc Natl Acad Sci U S A. 2016;113(31):8759-8764. doi:10.1073/pnas.1601442113PubMedGoogle ScholarCrossref
Rabau  M, Nyska  A, Dayan  D.  In vitro effect of ciprofloxacin on HT-29 human colon carcinoma cell line: assessment of cell proliferation by thymidine uptake and silver nucleolar organizer regions (AgNOR) histomorphometry.  Arch Toxicol. 1995;70(2):124-126. doi:10.1007/BF02733673PubMedGoogle ScholarCrossref
Miclau  T, Edin  ML, Lester  GE, Lindsey  RW, Dahners  LE.  Effect of ciprofloxacin on the proliferation of osteoblast-like MG-63 human osteosarcoma cells in vitro.  J Orthop Res. 1998;16(4):509-512. doi:10.1002/jor.1100160417PubMedGoogle ScholarCrossref
Aranha  O, Wood  DP  Jr, Sarkar  FH.  Ciprofloxacin mediated cell growth inhibition, S/G2-M cell cycle arrest, and apoptosis in a human transitional cell carcinoma of the bladder cell line.  Clin Cancer Res. 2000;6(3):891-900.PubMedGoogle Scholar
Herold  C, Ocker  M, Ganslmayer  M, Gerauer  H, Hahn  EG, Schuppan  D.  Ciprofloxacin induces apoptosis and inhibits proliferation of human colorectal carcinoma cells.  Br J Cancer. 2002;86(3):443-448. doi:10.1038/sj.bjc.6600079PubMedGoogle ScholarCrossref
El-Rayes  BF, Grignon  R, Aslam  N, Aranha  O, Sarkar  FH.  Ciprofloxacin inhibits cell growth and synergises the effect of etoposide in hormone resistant prostate cancer cells.  Int J Oncol. 2002;21(1):207-211.PubMedGoogle Scholar
Aranha  O, Grignon  R, Fernandes  N, McDonnell  TJ, Wood  DP  Jr, Sarkar  FH.  Suppression of human prostate cancer cell growth by ciprofloxacin is associated with cell cycle arrest and apoptosis.  Int J Oncol. 2003;22(4):787-794.PubMedGoogle Scholar
Smart  DJ, Halicka  HD, Traganos  F, Darzynkiewicz  Z, Williams  GM.  Ciprofloxacin-induced G2 arrest and apoptosis in TK6 lymphoblastoid cells is not dependent on DNA double-strand break formation.  Cancer Biol Ther. 2008;7(1):113-119. doi:10.4161/cbt.7.1.5136PubMedGoogle ScholarCrossref
Bourikas  LA, Kolios  G, Valatas  V,  et al.  Ciprofloxacin decreases survival in HT-29 cells via the induction of TGF-beta1 secretion and enhances the anti-proliferative effect of 5-fluorouracil.  Br J Pharmacol. 2009;157(3):362-370. doi:10.1111/j.1476-5381.2009.00161.xPubMedGoogle ScholarCrossref
Koziel  R, Szczepanowska  J, Magalska  A, Piwocka  K, Duszynski  J, Zablocki  K.  Ciprofloxacin inhibits proliferation and promotes generation of aneuploidy in Jurkat cells.  J Physiol Pharmacol. 2010;61(2):233-239.PubMedGoogle Scholar
Phiboonchaiyanan  PP, Kiratipaiboon  C, Chanvorachote  P.  Ciprofloxacin mediates cancer stem cell phenotypes in lung cancer cells through caveolin-1-dependent mechanism.  Chem Biol Interact. 2016;250:1-11. doi:10.1016/j.cbi.2016.03.005PubMedGoogle ScholarCrossref
Azéma  J, Guidetti  B, Dewelle  J,  et al.  7-((4-Substituted)piperazin-1-yl) derivatives of ciprofloxacin: synthesis and in vitro biological evaluation as potential antitumor agents.  Bioorg Med Chem. 2009;17(15):5396-5407. doi:10.1016/j.bmc.2009.06.053PubMedGoogle ScholarCrossref
Suresh  N, Nagesh  HN, Sekhar  KV, Kumar  A, Shirazi  AN, Parang  K.  Synthesis of novel ciprofloxacin analogues and evaluation of their anti-proliferative effect on human cancer cell lines.  Bioorg Med Chem Lett. 2013;23(23):6292-6295. doi:10.1016/j.bmcl.2013.09.077PubMedGoogle ScholarCrossref
Ude  Z, Romero-Canelón  I, Twamley  B, Fitzgerald Hughes  D, Sadler  PJ, Marmion  CJ.  A novel dual-functioning ruthenium(II)-arene complex of an anti-microbial ciprofloxacin derivative: anti-proliferative and anti-microbial activity.  J Inorg Biochem. 2016;160:210-217. doi:10.1016/j.jinorgbio.2016.02.018PubMedGoogle ScholarCrossref
Mohammed  HHH, Abd El-Hafeez  AA, Abbas  SH, Abdelhafez  EMN, Abuo-Rahma  GEA.  New antiproliferative 7-(4-(N-substituted carbamoylmethyl)piperazin-1-yl) derivatives of ciprofloxacin induce cell cycle arrest at G2/M phase.  Bioorg Med Chem. 2016;24(19):4636-4646. doi:10.1016/j.bmc.2016.07.070PubMedGoogle ScholarCrossref
Hussy  P, Maass  G, Tümmler  B, Grosse  F, Schomburg  U.  Effect of 4-quinolones and novobiocin on calf thymus DNA polymerase alpha primase complex, topoisomerases I and II, and growth of mammalian lymphoblasts.  Antimicrob Agents Chemother. 1986;29(6):1073-1078. doi:10.1128/AAC.29.6.1073PubMedGoogle ScholarCrossref
Oomori  Y, Yasue  T, Aoyama  H, Hirai  K, Suzue  S, Yokota  T.  Effects of fleroxacin on HeLa cell functions and topoisomerase II.  J Antimicrob Chemother. 1988;22(suppl D):91-97. doi:10.1093/jac/22.Supplement_D.91PubMedGoogle ScholarCrossref
Pessina  A, Neri  MG, Muschiato  A, Mineo  E, Cocuzza  G.  Effect of fluoroquinolones on the in-vitro proliferation of myeloid precursor cells.  J Antimicrob Chemother. 1989;24(2):203-208. doi:10.1093/jac/24.2.203PubMedGoogle ScholarCrossref
Bredberg  A, Brant  M, Jaszyk  M.  Ciprofloxacin-induced inhibition of topoisomerase II in human lymphoblastoid cells.  Antimicrob Agents Chemother. 1991;35(3):448-450. doi:10.1128/AAC.35.3.448PubMedGoogle ScholarCrossref
Elsea  SH, McGuirk  PR, Gootz  TD, Moynihan  M, Osheroff  N.  Drug features that contribute to the activity of quinolones against mammalian topoisomerase II and cultured cells: correlation between enhancement of enzyme-mediated DNA cleavage in vitro and cytotoxic potential.  Antimicrob Agents Chemother. 1993;37(10):2179-2186. doi:10.1128/AAC.37.10.2179PubMedGoogle ScholarCrossref
Perrone  CE, Takahashi  KC, Williams  GM.  Inhibition of human topoisomerase IIalpha by fluoroquinolones and ultraviolet A irradiation.  Toxicol Sci. 2002;69(1):16-22. doi:10.1093/toxsci/69.1.16PubMedGoogle ScholarCrossref
Bromberg  KD, Burgin  AB, Osheroff  N.  Quinolone action against human topoisomerase IIalpha: stimulation of enzyme-mediated double-stranded DNA cleavage.  Biochemistry. 2003;42(12):3393-3398. doi:10.1021/bi027383tPubMedGoogle ScholarCrossref
Kloskowski  T, Gurtowska  N, Olkowska  J,  et al.  Ciprofloxacin is a potential topoisomerase II inhibitor for the treatment of NSCLC.  Int J Oncol. 2012;41(6):1943-1949. doi:10.3892/ijo.2012.1653PubMedGoogle ScholarCrossref
Bisacchi  GS, Hale  MRA.  “Double-edged” scaffold: antitumor power within the antibacterial quinolone.  Curr Med Chem. 2016;23(6):520-577. doi:10.2174/0929867323666151223095839PubMedGoogle ScholarCrossref
Fu  Y, Yang  Y, Zhou  S,  et al.  Ciprofloxacin containing Mannich base and its copper complex induce antitumor activity via different mechanism of action.  Int J Oncol. 2014;45(5):2092-2100. doi:10.3892/ijo.2014.2611PubMedGoogle ScholarCrossref
Wang  JC.  DNA topoisomerases.  Annu Rev Biochem. 1996;65:635-692. doi:10.1146/annurev.bi.65.070196.003223PubMedGoogle ScholarCrossref
Zhang  H, Zhang  YW, Yasukawa  T, Dalla Rosa  I, Khiati  S, Pommier  Y.  Increased negative supercoiling of mtDNA in TOP1mt knockout mice and presence of topoisomerases IIα and IIβ in vertebrate mitochondria.  Nucleic Acids Res. 2014;42(11):7259-7267. doi:10.1093/nar/gku384PubMedGoogle ScholarCrossref
Kasiviswanathan  R, Collins  TR, Copeland  WC.  The interface of transcription and DNA replication in the mitochondria.  Biochim Biophys Acta. 2012;1819(9-10):970-978. doi:10.1016/j.bbagrm.2011.12.005PubMedGoogle ScholarCrossref
Aranha  O, Zhu  L, Alhasan  S, Wood  DP  Jr, Kuo  TH, Sarkar  FH.  Role of mitochondria in ciprofloxacin induced apoptosis in bladder cancer cells.  J Urol. 2002;167(3):1288-1294. doi:10.1016/S0022-5347(05)65283-4PubMedGoogle ScholarCrossref
Pouzaud  F, Dutot  M, Martin  C, Debray  M, Warnet  JM, Rat  P.  Age-dependent effects on redox status, oxidative stress, mitochondrial activity and toxicity induced by fluoroquinolones on primary cultures of rabbit tendon cells.  Comp Biochem Physiol C Toxicol Pharmacol. 2006;143(2):232-241. doi:10.1016/j.cbpc.2006.02.006PubMedGoogle ScholarCrossref
Barnhill  AE, Brewer  MT, Carlson  SA.  Adverse effects of antimicrobials via predictable or idiosyncratic inhibition of host mitochondrial components.  Antimicrob Agents Chemother. 2012;56(8):4046-4051. doi:10.1128/AAC.00678-12PubMedGoogle ScholarCrossref
Yu  M, Li  R, Zhang  J.  Repositioning of antibiotic levofloxacin as a mitochondrial biogenesis inhibitor to target breast cancer.  Biochem Biophys Res Commun. 2016;471(4):639-645. doi:10.1016/j.bbrc.2016.02.072PubMedGoogle ScholarCrossref
Song  M, Wu  H, Wu  S,  et al.  Antibiotic drug levofloxacin inhibits proliferation and induces apoptosis of lung cancer cells through inducing mitochondrial dysfunction and oxidative damage.  Biomed Pharmacother. 2016;84:1137-1143. doi:10.1016/j.biopha.2016.10.034PubMedGoogle ScholarCrossref
Wu  J, Sun  L, Chen  X,  et al.  Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA.  Science. 2013;339(6121):826-830. doi:10.1126/science.1229963PubMedGoogle ScholarCrossref
Ablasser  A, Goldeck  M, Cavlar  T,  et al.  cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING.  Nature. 2013;498(7454):380-384. doi:10.1038/nature12306PubMedGoogle ScholarCrossref
Zhang  X, Shi  H, Wu  J,  et al.  Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING.  Mol Cell. 2013;51(2):226-235. doi:10.1016/j.molcel.2013.05.022PubMedGoogle ScholarCrossref
Ouyang  S, Song  X, Wang  Y,  et al.  Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding.  Immunity. 2012;36(6):1073-1086. doi:10.1016/j.immuni.2012.03.019PubMedGoogle ScholarCrossref
Sun  L, Wu  J, Du  F, Chen  X, Chen  ZJ.  Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway.  Science. 2013;339(6121):786-791. doi:10.1126/science.1232458PubMedGoogle ScholarCrossref
Liu  Y, Jesus  AA, Marrero  B,  et al.  Activated STING in a vascular and pulmonary syndrome.  N Engl J Med. 2014;371(6):507-518. doi:10.1056/NEJMoa1312625PubMedGoogle ScholarCrossref
Jeremiah  N, Neven  B, Gentili  M,  et al.  Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations.  J Clin Invest. 2014;124(12):5516-5520. doi:10.1172/JCI79100PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience

Lookup An Activity



My Saved Searches

You currently have no searches saved.

With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right