[Skip to Content]
[Skip to Content Landing]

Characteristics of Spontaneous Spinal Cord Infarction and Proposed Diagnostic Criteria

Educational Objective
To identify the clinical and neuroimaging findings of patients with spontaneous spinal cord infarction.
1 Credit CME
Key Points

Questions  What are the clinical and neuroimaging findings of patients with a spontaneous spinal cord infarction (SCI), and can diagnostic criteria be established to facilitate an accurate diagnosis?

Findings  Of 133 patients with a spontaneous SCI, 102 (77%) reached nadir within 12 hours, while others had a stuttering decline. Magnetic resonance imaging shows confirmatory (eg, vertebral body infarct) and supportive findings while excluding other etiologies; cerebrospinal fluid was usually noninflammatory (92%).

Meaning  The validation of spinal cord infarction diagnostic criteria supports their utility.

Abstract

Importance  Spinal cord infarction (SCI) is often disabling, and the diagnosis can be challenging without an inciting event (eg, aortic surgery). Patients with a spontaneous SCI are often misdiagnosed as having transverse myelitis. Diagnostic criteria for SCI are lacking, hindering clinical care and research.

Objective  To describe the characteristics of spontaneous SCI and propose diagnostic criteria.

Design, Setting, and Participants  An institution-based search tool was used to identify patients evaluated at Mayo Clinic, Rochester, Minnesota, from January 1997 to December 2017 with a spontaneous SCI. Patients provided written consent to use their records for research. Participants were 18 years and older with a diagnosis of spontaneous SCI (n = 133), and controls were selected from a database of alternative myelopathy etiologies for validation of the proposed diagnostic criteria (n = 280).

Main Outcomes and Measures  A descriptive analysis of SCI was performed and used to propose diagnostic criteria, and the criteria were validated.

Results  Of 133 included patients with a spontaneous SCI, the median (interquartile range) age at presentation was 60 (52-69) years, and 101 (76%) had vascular risk factors. Rapid onset of severe deficits reaching nadir within 12 hours was typical (102 [77%]); some had a stuttering decline (31 [23%]). Sensory loss occurred in 126 patients (95%), selectively affecting pain/temperature in 49 (39%). Initial magnetic resonance imaging (MRI) spine results were normal in 30 patients (24%). Characteristic MRI T2-hyperintense patterns included owl eyes (82 [65%]) and pencil-like hyperintensity (50 [40%]); gadolinium enhancement (37 of 96 [39%]) was often linear and located in the anterior gray matter. Confirmatory MRI findings included diffusion-weighted imaging/apparent diffusion coefficient restriction (19 of 29 [67%]), adjacent dissection/occlusion (16 of 82 [20%]), and vertebral body infarction (11 [9%]). Cerebrospinal fluid showed mild inflammation in 7 of 89 patients (8%). Diagnostic criteria was proposed for definite, probable, and possible SCI of periprocedural and spontaneous onset. In the validation cohort (n = 280), 9 patients (3%) met criteria for possible SCI, and none met criteria for probable SCI.

Conclusions and Relevance  This large series of spontaneous SCIs provides clinical, laboratory, and MRI clues to SCI diagnosis. The diagnostic criteria proposed here will aid clinicians in making the correct diagnosis and ideally improve future care for patients with SCI. The validation of these criteria supports their utility in the evaluation of acute myelopathy.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Corresponding Author: Nicholas L. Zalewski, MD, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 (zalewski.nicholas@mayo.edu).

Accepted for Publication: July 14, 2018.

Published Online: September 24, 2018. doi:10.1001/jamaneurol.2018.2734

Author Contributions: Drs Zalewski and Flanagan had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Zalewski, Rabinstein, Kaufmann, Blessing, Flanagan.

Acquisition, analysis, or interpretation of data: Zalewski, Krecke, Brown, Wijdicks, Weinshenker, Kaufmann, Morris, Aksamit, Bartleson, Lanzino, Flanagan.

Drafting of the manuscript: Zalewski, Morris.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Zalewski.

Administrative, technical, or material support: Kaufmann, Morris, Bartleson.

Supervision: Rabinstein, Wijdicks, Morris, Aksamit, Lanzino, Flanagan.

Conflict of Interest Disclosures: Dr Weinshenker receives royalties from RSR Ltd, University of Oxford, Hospices Civils de Lyon, and MVZ Labor PD Dr Volkmann und Kollegen GbR for a patent of neuromyelitis optica–IgG as a diagnostic test for neuromyelitis optica and related disorders; serves as a member of an adjudication committee for clinical trials in neuromyelitis optica being conducted by MedImmune and Alexion Pharmaceuticals; is a consultant for Caladrius Biosciences and BrainStorm Cell Therapeutics regarding potential clinical trials for neuromyelitis optica; and serves as a member of a data safety monitoring committee for clinical trials conducted by Novartis. Dr Lanzino is a consultant for Medtronic.

References
1.
Robertson  CE, Brown  RD  Jr, Wijdicks  EF, Rabinstein  AA.  Recovery after spinal cord infarcts: long-term outcome in 115 patients.  Neurology. 2012;78(2):114-121. doi:10.1212/WNL.0b013e31823efc93PubMedGoogle ScholarCrossref
2.
Zalewski  NLRA, Rabinstein  AA, Krecke  KN,  et al.  Spinal cord infarction: clinical and imaging insights from the periprocedural setting.  J Neurol Sci. 2018;388:162-167. doi:10.1016/j.jns.2018.03.029PubMedGoogle ScholarCrossref
3.
Sandson  TA, Friedman  JH.  Spinal cord infarction: report of 8 cases and review of the literature.  Medicine (Baltimore). 1989;68(5):282-292. doi:10.1097/00005792-198909000-00003PubMedGoogle ScholarCrossref
4.
Barreras  P, Fitzgerald  KC, Mealy  MA,  et al.  Clinical biomarkers differentiate myelitis from vascular and other causes of myelopathy.  Neurology. 2018;90(1):e12-e21. doi:10.1212/WNL.0000000000004765PubMedGoogle ScholarCrossref
5.
Zalewski  NL, Flanagan  EP, Keegan  BM.  Evaluation of idiopathic transverse myelitis revealing specific myelopathy diagnoses.  Neurology. 2018;90(2):e96-e102. doi:10.1212/WNL.0000000000004796PubMedGoogle ScholarCrossref
6.
Kirshblum  SC, Burns  SP, Biering-Sorensen  F,  et al.  International standards for neurological classification of spinal cord injury (revised 2011).  J Spinal Cord Med. 2011;34(6):535-546. doi:10.1179/204577211X13207446293695PubMedGoogle ScholarCrossref
7.
Flanagan  EP, Kaufmann  TJ, Krecke  KN,  et al.  Discriminating long myelitis of neuromyelitis optica from sarcoidosis.  Ann Neurol. 2016;79(3):437-447. doi:10.1002/ana.24582PubMedGoogle ScholarCrossref
8.
Zalewski  NL, Morris  PP, Weinshenker  BG,  et al.  Ring-enhancing spinal cord lesions in neuromyelitis optica spectrum disorders.  J Neurol Neurosurg Psychiatry. 2017;88(3):218-225. doi:10.1136/jnnp-2016-314738PubMedGoogle ScholarCrossref
9.
AbdelRazek  MA, Mowla  A, Farooq  S, Silvestri  N, Sawyer  R, Wolfe  G.  Fibrocartilaginous embolism: a comprehensive review of an under-studied cause of spinal cord infarction and proposed diagnostic criteria.  J Spinal Cord Med. 2016;39(2):146-154. doi:10.1080/10790268.2015.1116726PubMedGoogle ScholarCrossref
10.
Griepp  EB, Di Luozzo  G, Schray  D, Stefanovic  A, Geisbüsch  S, Griepp  RB.  The anatomy of the spinal cord collateral circulation.  Ann Cardiothorac Surg. 2012;1(3):350-357.PubMedGoogle Scholar
11.
Abou Al-Shaar  H, AbouAl-Shaar  I, Al-Kawi  MZ.  Acute cervical cord infarction in anterior spinal artery territory with acute swelling mimicking myelitis.  Neurosciences (Riyadh). 2015;20(4):372-375. doi:10.17712/nsj.2015.4.20150109PubMedGoogle ScholarCrossref
12.
Battey  TW, Karki  M, Singhal  AB,  et al.  Brain edema predicts outcome after nonlacunar ischemic stroke.  Stroke. 2014;45(12):3643-3648. doi:10.1161/STROKEAHA.114.006884PubMedGoogle ScholarCrossref
13.
Ducrocq  X, Lacour  JC, Debouverie  M, Bracard  S, Girard  F, Weber  M.  Cerebral ischemic accidents in young subjects: a prospective study of 296 patients aged 16 to 45 years  [in French].  Rev Neurol (Paris). 1999;155(8):575-582.PubMedGoogle Scholar
14.
Markus  HS, Hayter  E, Levi  C, Feldman  A, Venables  G, Norris  J; CADISS trial investigators.  Antiplatelet treatment compared with anticoagulation treatment for cervical artery dissection (CADISS): a randomised trial.  Lancet Neurol. 2015;14(4):361-367. doi:10.1016/S1474-4422(15)70018-9PubMedGoogle ScholarCrossref
15.
Sakurai  T, Wakida  K, Nishida  H.  Cervical posterior spinal artery syndrome: a case report and literature review.  J Stroke Cerebrovasc Dis. 2016;25(6):1552-1556. doi:10.1016/j.jstrokecerebrovasdis.2016.02.018PubMedGoogle ScholarCrossref
16.
Tubbs  RS, Blouir  MC, Singh  R,  et al.  Relationship between regional atherosclerosis and adjacent spinal cord histology.  Cureus. 2015;7(9):e329.PubMedGoogle Scholar
17.
Cuvinciuc  V, Viallon  M, Momjian-Mayor  I,  et al.  3D fat-saturated T1 SPACE sequence for the diagnosis of cervical artery dissection.  Neuroradiology. 2013;55(5):595-602. doi:10.1007/s00234-013-1141-1PubMedGoogle ScholarCrossref
18.
Brinjikji  W, Luetmer  PH, Comstock  B,  et al.  Systematic literature review of imaging features of spinal degeneration in asymptomatic populations.  AJNR Am J Neuroradiol. 2015;36(4):811-816. doi:10.3174/ajnr.A4173PubMedGoogle ScholarCrossref
19.
Udiya  AK, Shetty  GS, Singh  V, Phadke  RV.  “Owl eye sign”: anterior spinal artery syndrome.  Neurol India. 2015;63(3):459. doi:10.4103/0028-3886.158286PubMedGoogle ScholarCrossref
20.
Kister  I, Johnson  E, Raz  E, Babb  J, Loh  J, Shepherd  TM.  Specific MRI findings help distinguish acute transverse myelitis of neuromyelitis optica from spinal cord infarction.  Mult Scler Relat Disord. 2016;9:62-67. doi:10.1016/j.msard.2016.04.005PubMedGoogle ScholarCrossref
21.
Weidauer  S, Nichtweiss  M, Lanfermann  H, Zanella  FE.  Spinal cord infarction: MR imaging and clinical features in 16 cases.  Neuroradiology. 2002;44(10):851-857. doi:10.1007/s00234-002-0828-5PubMedGoogle ScholarCrossref
22.
Reynolds  JM, Belvadi  YS, Kane  AG, Poulopoulos  M.  Thoracic disc herniation leads to anterior spinal artery syndrome demonstrated by diffusion-weighted magnetic resonance imaging (DWI): a case report and literature review.  Spine J. 2014;14(6):e17-e22. doi:10.1016/j.spinee.2013.10.050PubMedGoogle ScholarCrossref
23.
Nasr  DM, Rabinstein  A.  Spinal cord infarcts: risk factors, management, and prognosis.  Curr Treat Options Neurol. 2017;19(8):28. doi:10.1007/s11940-017-0464-3PubMedGoogle ScholarCrossref
24.
Rabinstein  AA.  Vascular myelopathies.  Continuum (Minneap Minn). 2015;21(1 spinal cord disorders):67-83. doi:10.1212/01.CON.0000461085.79241.e0PubMedGoogle Scholar
25.
Coselli  JS, LeMaire  SA, Schmittling  ZC, Köksoy  C.  Cerebrospinal fluid drainage in thoracoabdominal aortic surgery.  Semin Vasc Surg. 2000;13(4):308-314.PubMedGoogle Scholar
26.
Sugiura  J, Oshima  H, Abe  T,  et al.  The efficacy and risk of cerebrospinal fluid drainage for thoracoabdominal aortic aneurysm repair: a retrospective observational comparison between drainage and non-drainage.  Interact Cardiovasc Thorac Surg. 2017;24(4):609-614.PubMedGoogle Scholar
27.
Córdoba  JP, Larrarte  C, Medina  MC.  Experience in therapeutic plasma exchange by membrane filtration at an academic center in Colombia: registry of the first 500 sessions.  J Clin Apher. 2015;30(6):347-352. doi:10.1002/jca.21391PubMedGoogle ScholarCrossref
28.
Lemaire  A, Parquet  N, Galicier  L,  et al.  Plasma exchange in the intensive care unit: technical aspects and complications.  J Clin Apher. 2017;32(6):405-412. doi:10.1002/jca.21529PubMedGoogle ScholarCrossref
29.
Clark  SL, Rabinstein  AA.  Safety of intravenous immunoglobulin and plasma exchange in critically ill patients.  Neurol Res. 2015;37(7):593-598. doi:10.1179/1743132815Y.0000000017PubMedGoogle ScholarCrossref
30.
Benadiba  J, Robitaille  N, Lambert  G, Itaj  NK, Pastore  Y.  Intravenous immunoglobulin-associated thrombosis: is it such a rare event? report of a pediatric case and of the Quebec Hemovigilance System.  Transfusion. 2015;55(3):571-575. doi:10.1111/trf.12897PubMedGoogle ScholarCrossref
31.
Pollreisz  A, Assinger  A, Hacker  S,  et al.  Intravenous immunoglobulins induce CD32-mediated platelet aggregation in vitro.  Br J Dermatol. 2008;159(3):578-584. doi:10.1111/j.1365-2133.2008.08700.xPubMedGoogle ScholarCrossref
32.
Barsheshet  A, Marai  I, Appel  S, Zimlichman  E.  Acute ST elevation myocardial infarction during intravenous immunoglobulin infusion.  Ann N Y Acad Sci. 2007;1110:315-318. doi:10.1196/annals.1423.033PubMedGoogle ScholarCrossref
33.
St Sauver  JL, Grossardt  BR, Leibson  CL, Yawn  BP, Melton  LJ  III, Rocca  WA.  Generalizability of epidemiological findings and public health decisions: an illustration from the Rochester Epidemiology Project.  Mayo Clin Proc. 2012;87(2):151-160. doi:10.1016/j.mayocp.2011.11.009PubMedGoogle ScholarCrossref
34.
Zalewski  NL, Rabinstein  AA, Wijdicks  EFM,  et al.  Spontaneous posterior spinal artery infarction: an under-recognized cause of acute myelopathy  [published online July 25, 2018].  Neurology. doi:10.1212/WNL.0000000000006084Google Scholar
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Topics
State Requirements