[Skip to Content]
[Skip to Content Landing]

Effect of Digital Cognitive Behavioral Therapy for Insomnia on Health, Psychological Well-being, and Sleep-Related Quality of Life: A Randomized Clinical Trial

Educational Objective
To investigate the effect of digital cognitive behavioral therapy (dCBT) for insomnia on functional health, psychological well-being, and sleep-related quality of life and to determine whether a reduction in insomnia symptoms was a mediating factor.
1 Credit CME
Key Points

Questions  Can digital cognitive behavioral therapy for insomnia improve functional health, psychological well-being, and sleep-related quality of life, and does a reduction in insomnia symptoms mediate these potential improvements?

Findings  In a 2-arm, parallel-group randomized clinical trial that included 1711 persons, digital cognitive behavioral therapy significantly improved insomnia symptoms, functional health, psychological well-being, and sleep-related quality of life at 4, 8, and 24 weeks after initiation of treatment. Improvements at 8 and 24 weeks were mediated by improvements in insomnia at week 4 and 8, respectively.

Meaning  Treating insomnia with digital cognitive behavioral therapy could be a therapeutic pathway for addressing self-reported health, well-being, and quality of life.

Abstract

Importance  Digital cognitive behavioral therapy (dCBT) is a scalable and effective intervention for treating insomnia. Most people with insomnia, however, seek help because of the daytime consequences of poor sleep, which adversely affects quality of life.

Objectives  To investigate the effect of dCBT for insomnia on functional health, psychological well-being, and sleep-related quality of life and to determine whether a reduction in insomnia symptoms was a mediating factor.

Design, Setting, and Participants  This online, 2-arm, parallel-group randomized trial comparing dCBT for insomnia with sleep hygiene education (SHE) evaluated 1711 participants with self-reported symptoms of insomnia. Participants were recruited between December 1, 2015, and December 1, 2016, and dCBT was delivered using web and/or mobile channels plus treatment as usual; SHE comprised a website and a downloadable booklet plus treatment as usual. Online assessments took place at 0 (baseline), 4 (midtreatment), 8 (posttreatment), and 24 (follow-up) weeks. Programs were completed within 12 weeks after inclusion.

Main Outcomes and Measures  Primary outcomes were scores on self-reported measures of functional health (Patient-Reported Outcomes Measurement Information System: Global Health Scale; range, 10-50; higher scores indicate better health); psychological well-being (Warwick-Edinburgh Mental Well-being Scale; range, 14-70; higher scores indicate greater well-being); and sleep-related quality of life (Glasgow Sleep Impact Index; range, 1-100; higher scores indicate greater impairment). Secondary outcomes comprised mood, fatigue, sleepiness, cognitive failures, work productivity, and relationship satisfaction. Insomnia was assessed with the Sleep Condition Indicator (range: 0-32; higher scores indicate better sleep).

Results  Of the 1711 participants included in the intention-to-treat analysis, 1329 (77.7%) were female, mean (SD) age was 48.0 (13.8) years, and 1558 (91.1%) were white. Use of dCBT was associated with a small improvement in functional health compared with SHE (adjusted difference [95% CI] at week 4, 0.90 [0.40-1.40]; week 8, 1.76 [1.24-2.28]; week 24, 1.76 [1.22-2.30]) and psychological well-being (adjusted difference [95% CI] at week 4, 1.04 [0.28-1.80]; week 8, 2.68 [1.89-3.47]; week 24, 2.95 [2.13-3.76]), and with a large improvement in sleep-related quality of life (at week 4, −8.76 [−11.83 to −5.69]; week 8, –17.60 [−20.81 to −14.39]; week 24, −18.72 [−22.04 to −15.41]) (all P < .01). A large improvement in insomnia mediated these outcomes (range mediated, 45.5%-84.0%).

Conclusions and Relevance  Use of dCBT is effective in improving functional health, psychological well-being, and sleep-related quality of life in people reporting insomnia symptoms. A reduction in insomnia symptoms mediates these improvements. These results confirm that dCBT improves both daytime and nighttime aspects of insomnia, strengthening existing recommendations of CBT as the treatment of choice for insomnia.

Trial Registration  isrctn.org identifier: ISRCTN60530898

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ from JAMA Network is your new home for CME and MOC from a source you trust. Earn AMA PRA Category 1 CME Credit™ from relevant articles, audio, and Clinical Challenge image quizzes, explore interactives and videos, and – depending on your specialty or state – have your MOC points automatically transferred to the relevant board. Learn more about CME

Article Information

Accepted for Publication: August 4, 2018.

Corresponding Author: Colin A. Espie, PhD, Sleep & Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, United Kingdom (colin.espie@ndcn.ox.ac.uk).

Published Online: September 25, 2018. doi:10.1001/jamapsychiatry.2018.2745

Author Contributions: Dr Espie had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Espie, Kyle, Gordon, Drake, Siriwardena, Cape, Ong, Sheaves, Foster, Freeman, Costa-Font, Luik.

Acquisition, analysis, or interpretation of data: Emsley, Kyle, Gordon, Drake, Costa-Font, Marsden, Luik.

Drafting of the manuscript: Espie, Emsley, Kyle, Marsden, Luik.

Critical revision of the manuscript for important intellectual content: Espie, Emsley, Kyle, Gordon, Drake, Siriwardena, Cape, Ong, Sheaves, Foster, Freeman, Costa-Font, Luik.

Statistical analysis: Emsley, Marsden.

Administrative, technical, or material support: Kyle, Gordon, Siriwardena, Sheaves, Freeman, Luik.

Supervision: Espie, Gordon, Costa-Font.

Conflict of Interest Disclosures: Dr Espie reports being a cofounder, chief medical officer, and shareholder of and receiving salary from Big Health Ltd and being a developer of Sleepio. Drs Kyle and Drake report receiving nonfinancial support from Big Health Ltd (provision of Sleepio for use in clinical trials). Dr Cape reports providing clinical advice and support to Sleepio and receiving payment from Big Health Ltd. Dr Ong reports receiving nonfinancial support from Big Health Ltd (provision of Sleepio for use in clinical trials), providing consultancy support for Sleepio, and receiving payment from Big Health Ltd. Dr Sheaves reports providing monthly support for an online discussion forum run by Sleepio and receiving payment from Big Health Ltd. Dr Freeman reports being a cofounder of the University of Oxford spinout company, Oxford VR; receiving nonfinancial support from Big Health Ltd (provision of Sleepio for use in clinical trials); and being supported by an NIHR Research Professorship. Dr Luik held a research position at the University of Oxford during the conduct of the study that was funded by Big Health Ltd. No other conflicts were reported.

Funding/Support: The study was funded by Big Health Ltd. The work was supported in part by the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, NIHR Oxford Health Biomedical Research Centre, NIHR Biomedical Research Centre at South London, Maudsley National Health Service (NHS) Foundation Trust, King’s College London, and the Dr Mortimer & Theresa Sackler Foundation.

Role of the Funder/Sponsor: Big Health Ltd was involved in the design and conduct of the study; collection, management, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication. The funder was not involved in the analysis of the data. Other funders had no role in the design and conduct of the study, collection of the data, data analysis, management, interpretation, or review or approval of the manuscript.

Disclaimer: The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. Dr Freeman is supported by an NIHR Research Professorship.

Meeting Presentation: This paper was presented at the 24th Congress of the European Sleep Research Society; September 25, 2018; Basel, Switzerland.

Additional Contribution: Alasdair Henry, PhD, Big Health Ltd, helped with formatting the manuscript, which was performed as part of his regular duties; he was not additionally compensated. Sleepio was provided to participants at no cost. The study was conducted at the University of Oxford, Sleep & Circadian Neuroscience Institute. The University of Oxford has a memorandum of understanding with Big Health for the conduct of joint research.

References
1.
American Psychiatric Association.  Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Arlington, VA: American Psychiatric Association; 2013.
2.
Ohayon  MM.  Epidemiology of insomnia: what we know and what we still need to learn.  Sleep Med Rev. 2002;6(2):97-111. doi:10.1053/smrv.2002.0186PubMedGoogle ScholarCrossref
3.
Lichstein  KL.  Epidemiology of Sleep: Age, Gender, and Ethnicity. Mahwah, NJ: Lawrence Erlbaum Assoc; 2004.
4.
Morphy  H, Dunn  KM, Lewis  M, Boardman  HF, Croft  PR.  Epidemiology of insomnia: a longitudinal study in a UK population.  Sleep. 2007;30(3):274-280.PubMedGoogle Scholar
5.
Pigeon  WR, Bishop  TM, Krueger  KM.  Insomnia as a precipitating factor in new onset mental illness: a systematic review of recent findings.  Curr Psychiatry Rep. 2017;19(8):44. doi:10.1007/s11920-017-0802-xPubMedGoogle ScholarCrossref
6.
Khan  MS, Aouad  R.  The effects of insomnia and sleep loss on cardiovascular disease.  Sleep Med Clin. 2017;12(2):167-177. doi:10.1016/j.jsmc.2017.01.005PubMedGoogle ScholarCrossref
7.
Vgontzas  AN, Liao  D, Pejovic  S, Calhoun  S, Karataraki  M, Bixler  EO.  Insomnia with objective short sleep duration is associated with type 2 diabetes: a population-based study.  Diabetes Care. 2009;32(11):1980-1985. doi:10.2337/dc09-0284PubMedGoogle ScholarCrossref
8.
Cappuccio  FP, D’Elia  L, Strazzullo  P, Miller  MA.  Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis.  Diabetes Care. 2010;33(2):414-420. doi:10.2337/dc09-1124PubMedGoogle ScholarCrossref
9.
Kyle  SD, Morgan  K, Espie  CA.  Insomnia and health-related quality of life.  Sleep Med Rev. 2010;14(1):69-82. doi:10.1016/j.smrv.2009.07.004PubMedGoogle ScholarCrossref
10.
Espie  CA, Kyle  SD, Hames  P, Cyhlarova  E, Benzeval  M.  The daytime impact of DSM-5 insomnia disorder: comparative analysis of insomnia subtypes from the Great British Sleep Survey.  J Clin Psychiatry. 2012;73(12):e1478-e1484. doi:10.4088/JCP.12m07954PubMedGoogle ScholarCrossref
11.
Roth  T, Ancoli-Israel  S.  Daytime consequences and correlates of insomnia in the United States: results of the 1991 National Sleep Foundation Survey: II.  Sleep. 1999;22(suppl 2):S354-S358.PubMedGoogle Scholar
12.
Morin  CM, LeBlanc  M, Daley  M, Gregoire  JP, Mérette  C.  Epidemiology of insomnia: prevalence, self-help treatments, consultations, and determinants of help-seeking behaviors.  Sleep Med. 2006;7(2):123-130. doi:10.1016/j.sleep.2005.08.008PubMedGoogle ScholarCrossref
13.
Qaseem  A, Kansagara  D, Forciea  MA, Cooke  M, Denberg  TD; Clinical Guidelines Committee of the American College of Physicians.  Management of chronic insomnia disorder in adults: a clinical practice guideline from the American College of Physicians.  Ann Intern Med. 2016;165(2):125-133. doi:10.7326/M15-2175PubMedGoogle ScholarCrossref
14.
Riemann  D, Baglioni  C, Bassetti  C,  et al.  European guideline for the diagnosis and treatment of insomnia.  J Sleep Res. 2017;26(6):675-700. doi:10.1111/jsr.12594PubMedGoogle ScholarCrossref
15.
Wilson  SJ, Nutt  DJ, Alford  C,  et al.  British Association for Psychopharmacology consensus statement on evidence-based treatment of insomnia, parasomnias and circadian rhythm disorders.  J Psychopharmacol. 2010;24(11):1577-1601. doi:10.1177/0269881110379307PubMedGoogle ScholarCrossref
16.
National Institutes of Health.  NIH State-of-the-Science Conference Statement on manifestations and management of chronic insomnia in adults.  NIH Consens State Sci Statements. 2005;22(2):1-30.PubMedGoogle Scholar
17.
van Straten  A, van der Zweerde  T, Kleiboer  A, Cuijpers  P, Morin  CM, Lancee  J.  Cognitive and behavioral therapies in the treatment of insomnia: a meta-analysis.  Sleep Med Rev. 2018;38:3-16. doi:10.1016/j.smrv.2017.02.001 doi:10.1016/j.smrv.2017.02.001PubMedGoogle ScholarCrossref
18.
Mitchell  MD, Gehrman  P, Perlis  M, Umscheid  CA.  Comparative effectiveness of cognitive behavioral therapy for insomnia: a systematic review.  BMC Fam Pract. 2012;13:40. doi:10.1186/1471-2296-13-40PubMedGoogle ScholarCrossref
19.
Riemann  D, Perlis  ML.  The treatments of chronic insomnia: a review of benzodiazepine receptor agonists and psychological and behavioral therapies.  Sleep Med Rev. 2009;13(3):205-214. doi:10.1016/j.smrv.2008.06.001PubMedGoogle ScholarCrossref
20.
Luik  AI, Kyle  SD, Espie  CA.  Digital cognitive behavioral therapy (dCBT) for insomnia: a state-of-the-science review.  Curr Sleep Med Rep. 2017;3(2):48-56. doi:10.1007/s40675-017-0065-4PubMedGoogle ScholarCrossref
21.
Seyffert  M, Lagisetty  P, Landgraf  J,  et al.  Internet-delivered cognitive behavioral therapy to treat insomnia: a systematic review and meta-analysis.  PLoS One. 2016;11(2):e0149139. doi:10.1371/journal.pone.0149139PubMedGoogle ScholarCrossref
22.
Zachariae  R, Lyby  MS, Ritterband  LM, O’Toole  MS.  Efficacy of internet-delivered cognitive-behavioral therapy for insomnia—a systematic review and meta-analysis of randomized controlled trials.  Sleep Med Rev. 2016;30:1-10. doi:10.1016/j.smrv.2015.10.004PubMedGoogle ScholarCrossref
23.
Peoples  AR, Garland  SN, Perlis  ML,  et al.  Effects of cognitive behavioral therapy for insomnia and armodafinil on quality of life in cancer survivors: a randomized placebo-controlled trial.  J Cancer Surviv. 2017;11(3):401-409. doi:10.1007/s11764-017-0597-0PubMedGoogle ScholarCrossref
24.
Morin  CM, Beaulieu-Bonneau  S, Bélanger  L,  et al.  Cognitive-behavior therapy singly and combined with medication for persistent insomnia: impact on psychological and daytime functioning.  Behav Res Ther. 2016;87:109-116. doi:10.1016/j.brat.2016.09.002PubMedGoogle ScholarCrossref
25.
Van Houdenhove  L, Buyse  B, Gabriëls  L, Van den Bergh  O.  Treating primary insomnia: clinical effectiveness and predictors of outcomes on sleep, daytime function and health-related quality of life.  J Clin Psychol Med Settings. 2011;18(3):312-321. doi:10.1007/s10880-011-9250-7PubMedGoogle ScholarCrossref
26.
Palermo  TM, Beals-Erickson  S, Bromberg  M, Law  E, Chen  M.  A single arm pilot trial of brief cognitive behavioral therapy for insomnia in adolescents with physical and psychiatric comorbidities.  J Clin Sleep Med. 2017;13(3):401-410. doi:10.5664/jcsm.6490PubMedGoogle ScholarCrossref
27.
Conley  S, Redeker  NS.  Cognitive behavioral therapy for insomnia in the context of cardiovascular conditions.  Curr Sleep Med Rep. 2015;1(3):157-165. doi:10.1007/s40675-015-0019-7PubMedGoogle ScholarCrossref
28.
Dixon  S, Morgan  K, Mathers  N, Thompson  J, Tomeny  M.  Impact of cognitive behavior therapy on health-related quality of life among adult hypnotic users with chronic insomnia.  Behav Sleep Med. 2006;4(2):71-84. doi:10.1207/s15402010bsm0402_1PubMedGoogle ScholarCrossref
29.
Espie  CA, Fleming  L, Cassidy  J,  et al.  Randomized controlled clinical effectiveness trial of cognitive behavior therapy compared with treatment as usual for persistent insomnia in patients with cancer.  J Clin Oncol. 2008;26(28):4651-4658. doi:10.1200/JCO.2007.13.9006PubMedGoogle ScholarCrossref
30.
Espie  CA, Kyle  SD, Miller  CB, Ong  J, Hames  P, Fleming  L.  Attribution, cognition and psychopathology in persistent insomnia disorder: outcome and mediation analysis from a randomized placebo-controlled trial of online cognitive behavioural therapy.  Sleep Med. 2014;15(8):913-917. doi:10.1016/j.sleep.2014.03.001PubMedGoogle ScholarCrossref
31.
Pillai  V, Anderson  JR, Cheng  P,  et al.  The anxiolytic effects of cognitive behavior therapy for insomnia: preliminary results from a web-delivered protocol.  J Sleep Med Disord. 2015;2(2):1017.Google Scholar
32.
Manber  R, Edinger  JD, Gress  JL, San Pedro-Salcedo  MG, Kuo  TF, Kalista  T.  Cognitive behavioral therapy for insomnia enhances depression outcome in patients with comorbid major depressive disorder and insomnia.  Sleep. 2008;31(4):489-495. doi:10.1093/sleep/31.4.489PubMedGoogle ScholarCrossref
33.
Freeman  D, Sheaves  B, Goodwin  GM,  et al.  The effects of improving sleep on mental health (OASIS): a randomised controlled trial with mediation analysis.  Lancet Psychiatry. 2017;4(10):749-758. doi:10.1016/S2215-0366(17)30328-0PubMedGoogle ScholarCrossref
34.
Christensen  H, Batterham  PJ, Gosling  JA,  et al.  Effectiveness of an online insomnia program (SHUTi) for prevention of depressive episodes (the GoodNight Study): a randomised controlled trial.  Lancet Psychiatry. 2016;3(4):333-341. doi:10.1016/S2215-0366(15)00536-2PubMedGoogle ScholarCrossref
35.
Alessi  C, Martin  JL, Fiorentino  L,  et al.  Cognitive behavioral therapy for insomnia in older veterans using nonclinician sleep coaches: randomized controlled trial.  J Am Geriatr Soc. 2016;64(9):1830-1838. doi:10.1111/jgs.14304PubMedGoogle ScholarCrossref
36.
Omvik  S, Sivertsen  B, Pallesen  S, Bjorvatn  B, Havik  OE, Nordhus  IH.  Daytime functioning in older patients suffering from chronic insomnia: treatment outcome in a randomized controlled trial comparing CBT with zopiclone.  Behav Res Ther. 2008;46(5):623-641. doi:10.1016/j.brat.2008.02.013PubMedGoogle ScholarCrossref
37.
Hewitt  CE, Torgerson  DJ.  Is restricted randomisation necessary?  BMJ. 2006;332(7556):1506-1508. doi:10.1136/bmj.332.7556.1506PubMedGoogle ScholarCrossref
38.
Espie  CA, Luik  AI, Cape  J,  et al.  Digital cognitive behavioural therapy for insomnia versus sleep hygiene education: the impact of improved sleep on functional health, quality of life and psychological well-being: study protocol for a randomised controlled trial.  Trials. 2016;17(1):257. doi:10.1186/s13063-016-1364-7PubMedGoogle ScholarCrossref
39.
Espie  CA, Kyle  SD, Hames  P, Gardani  M, Fleming  L, Cape  J.  The Sleep Condition Indicator: a clinical screening tool to evaluate insomnia disorder.  BMJ Open. 2014;4(3):e004183. doi:10.1136/bmjopen-2013-004183PubMedGoogle ScholarCrossref
40.
The Great British Sleep Survey. http://www.greatbritishsleepsurvey.com. Accessed September 12, 2018.
41.
The World Sleep Survey. http://www.worldsleepsurvey.com. Accessed September 12, 2018.
42.
Sleepio. https://www.sleepio.com. Accessed September 12, 2018.
43.
Espie  CA, Kyle  SD, Williams  C,  et al.  A randomized, placebo-controlled trial of online cognitive behavioral therapy for chronic insomnia disorder delivered via an automated media-rich web application.  Sleep. 2012;35(6):769-781. doi:10.5665/sleep.1872PubMedGoogle ScholarCrossref
44.
Espie  CA, Inglis  SJ, Tessier  S, Harvey  L.  The clinical effectiveness of cognitive behaviour therapy for chronic insomnia: implementation and evaluation of a sleep clinic in general medical practice.  Behav Res Ther. 2001;39(1):45-60. doi:10.1016/S0005-7967(99)00157-6PubMedGoogle ScholarCrossref
45.
Espie  CA, MacMahon  KM, Kelly  HL,  et al.  Randomized clinical effectiveness trial of nurse-administered small-group cognitive behavior therapy for persistent insomnia in general practice.  Sleep. 2007;30(5):574-584. doi:10.1093/sleep/30.5.574PubMedGoogle ScholarCrossref
46.
Espie  CA.  Overcoming Insomnia and Sleep Problems: A Self-help Guide Using Cognitive Behavioral Techniques. London, UK: Constable & Robinson Ltd; 2006.
47.
McGrath  ER, Espie  CA, Power  A,  et al.  Sleep to lower elevated blood pressure: a randomized controlled trial (SLEPT).  Am J Hypertens. 2017;30(3):319-327. doi:10.1093/ajh/hpw132PubMedGoogle ScholarCrossref
48.
Bostock  S, Luik  AI, Espie  CA.  Sleep and productivity benefits of digital cognitive behavioral therapy for insomnia: a randomized controlled trial conducted in the workplace environment.  J Occup Environ Med. 2016;58(7):683-689. doi:10.1097/JOM.0000000000000778PubMedGoogle ScholarCrossref
49.
Barnes  CM, Miller  JA, Bostock  S.  Helping employees sleep well: effects of cognitive behavioral therapy for insomnia on work outcomes.  J Appl Psychol. 2017; 102(1):104-113. doi:10.1037/apl0000154PubMedGoogle ScholarCrossref
50.
Cheng  P, Luik  AI, Fellman-Couture  C,  et al.  The efficacy of digital CBT for insomnia to reduce depression across demographic groups: a randomized controlled trial  [published online May 24, 2018].  Psychol Med. doi:10.1017/S0033291718001113PubMedGoogle Scholar
51.
American Academy of Sleep Medicine.  How to Sleep Better. Darien, IL: American Academy of Sleep Medicine; 2012.
52.
Hays  RD, Bjorner  JB, Revicki  DA, Spritzer  KL, Cella  D.  Development of physical and mental health summary scores from the Patient-Reported Outcomes Measurement Information System (PROMIS) global items.  Qual Life Res. 2009;18(7):873-880. doi:10.1007/s11136-009-9496-9PubMedGoogle ScholarCrossref
53.
Tennant  R, Hiller  L, Fishwick  R,  et al.  The Warwick-Edinburgh Mental Well-being Scale (WEMWBS): development and UK validation.  Health Qual Life Outcomes. 2007;5:63. doi:10.1186/1477-7525-5-63PubMedGoogle ScholarCrossref
54.
Kyle  SD, Crawford  MR, Morgan  K, Spiegelhalder  K, Clark  AA, Espie  CA.  The Glasgow Sleep Impact Index (GSII): a novel patient-centred measure for assessing sleep-related quality of life impairment in insomnia disorder.  Sleep Med. 2013;14(6):493-501. doi:10.1016/j.sleep.2012.10.023PubMedGoogle ScholarCrossref
55.
Kroenke  K, Spitzer  RL, Williams  JB.  The PHQ-9: validity of a brief depression severity measure.  J Gen Intern Med. 2001;16(9):606-613. doi:10.1046/j.1525-1497.2001.016009606.xPubMedGoogle ScholarCrossref
56.
Spitzer  RL, Kroenke  K, Williams  JB, Löwe  B.  A brief measure for assessing generalized anxiety disorder: the GAD-7.  Arch Intern Med. 2006;166(10):1092-1097. doi:10.1001/archinte.166.10.1092PubMedGoogle ScholarCrossref
57.
Gradisar  M, Lack  L, Richards  H,  et al.  The Flinders Fatigue Scale: preliminary psychometric properties and clinical sensitivity of a new scale for measuring daytime fatigue associated with insomnia.  J Clin Sleep Med. 2007;3(7):722-728.PubMedGoogle Scholar
58.
Hendrick  SS, Dicke  A, Hendrick  C.  The Relationship Assessment Scale.  J Soc Pers Relat. 1998;15:137-142. doi:10.1177/0265407598151009Google ScholarCrossref
59.
Broadbent  DE, Cooper  PF, FitzGerald  P, Parkes  KR.  The Cognitive Failures Questionnaire (CFQ) and its correlates.  Br J Clin Psychol. 1982;21(pt 1):1-16. doi:10.1111/j.2044-8260.1982.tb01421.xPubMedGoogle ScholarCrossref
60.
Reilly  MC, Zbrozek  AS, Dukes  EM.  The validity and reproducibility of a work productivity and activity impairment instrument.  Pharmacoeconomics. 1993;4(5):353-365. doi:10.2165/00019053-199304050-00006PubMedGoogle ScholarCrossref
61.
Dolbier  CL, Webster  JA, McCalister  KT, Mallon  MW, Steinhardt  MA.  Reliability and validity of a single-item measure of job satisfaction.  Am J Health Promot. 2005;19(3):194-198. doi:10.4278/0890-1171-19.3.194PubMedGoogle ScholarCrossref
62.
Johns  MW.  A new method for measuring daytime sleepiness: the Epworth Sleepiness Scale.  Sleep. 1991;14(6):540-545. doi:10.1093/sleep/14.6.540PubMedGoogle ScholarCrossref
63.
Cheung  F, Lucas  RE.  Assessing the validity of single-item life satisfaction measures: results from three large samples.  Qual Life Res. 2014;23(10):2809-2818. doi:10.1007/s11136-014-0726-4PubMedGoogle ScholarCrossref
64.
Kyle  SD, Morgan  K, Spiegelhalder  K, Espie  CA.  No pain, no gain: an exploratory within-subjects mixed-methods evaluation of the patient experience of sleep restriction therapy (SRT) for insomnia.  Sleep Med. 2011;12(8):735-747. doi:10.1016/j.sleep.2011.03.016PubMedGoogle ScholarCrossref
65.
Gueorguieva  R, Krystal  JH.  Move over ANOVA: progress in analyzing repeated-measures data and its reflection in papers published in the Archives of General Psychiatry Arch Gen Psychiatry. 2004;61(3):310-317. doi:10.1001/archpsyc.61.3.310PubMedGoogle ScholarCrossref
66.
Baron  RM, Kenny  DA.  The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations.  J Pers Soc Psychol. 1986;51(6):1173-1182. doi:10.1037/0022-3514.51.6.1173PubMedGoogle ScholarCrossref
67.
Dunn  G, Emsley  R, Liu  H,  et al.  Evaluation and validation of social and psychological markers in randomised trials of complex interventions in mental health: a methodological research programme.  Health Technol Assess. 2015;19(93):1-115, v-vi. doi:10.3310/hta19930PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Topics
State Requirements