Advances in Diagnosis and Treatment of Venous Thromboembolism | Venous Thromboembolism | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

Venous ThromboembolismAdvances in Diagnosis and Treatment

Educational Objective
To review the clinical management of patients with venous thromboembolism.
1 Credit CME
Key Points

Question  What advances in diagnosis and treatment of venous thromboembolism have occurred in the past 5 years?

Findings  Alternative approaches have been developed for improvement and simplification of currently recommended diagnostic algorithms and for assessment of specific subgroups. The introduction of direct oral anticoagulants has resulted in simplified treatment of venous thromboembolism with a lower risk of bleeding. Decisions on initiation and duration of therapy can now be more carefully implemented.

Meaning  Advances in diagnosis and treatment enabled more patient-specific management of venous thromboembolism.


Importance  Venous thromboembolism (VTE), comprising deep vein thrombosis (DVT) and pulmonary embolism (PE), is a common and potentially fatal disease.

Objective  To summarize the advances in diagnosis and treatment of VTE of the past 5 years.

Evidence Review  A systematic search was conducted in EMBASE Classic, EMBASE, Ovid MEDLINE, and other nonindexed citations using broad terms for diagnosis and treatment of VTE to find systematic reviews and meta-analyses, randomized trials, and prospective cohort studies published between January 1, 2013, and July 31, 2018. The 10th edition of the American College of Chest Physicians Antithrombotic Therapy Guidelines was screened to identify additional studies. Screening of titles, abstracts, and, subsequently, full-text articles was performed in duplicate, as well as data extraction and risk-of-bias assessment of the included articles.

Findings  Thirty-two articles were included in this review. The application of an age-adjusted D-dimer threshold in patients with suspected PE has increased the number of patients in whom imaging can be withheld. The Pulmonary Embolism Rule-Out Criteria safely exclude PE when the pretest probability is low. The introduction of direct oral anticoagulants has allowed for a simplified treatment of VTE with a lower risk of bleeding regardless of etiology or extent of the VTE (except for massive PE) and has made extended secondary prevention more acceptable. Thrombolysis is best reserved for patients with massive PE or those with DVT and threatened limb loss. Insertion of inferior vena cava filters should be avoided unless anticoagulation is absolutely contraindicated in patients with recent acute VTE. Graduated compression stockings are no longer recommended to treat DVT but may be used when acute or chronic symptoms are present. Anticoagulation may no longer be indicated for patients with isolated distal DVT at low risk of recurrence.

Conclusions and Relevance  Over the past 5 years, substantial progress has been made in VTE management, allowing for diagnostic and therapeutic strategies tailored to individual patient characteristics, preferences, and values.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Corresponding Author: Philip S. Wells, MD, FRCPC, MSc, The Ottawa Hospital, 501 Smyth Rd, PO Box 206, Ottawa, ON K1H 8L6, Canada (

Accepted for Publication: September 7, 2018.

Correction: This article was corrected on December 18, 2018, for incorrect information in a figure.

Author Contributions: Drs Tritschler and Kraaijpoel had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Drs Tritschler and Kraaijpoel contributed equally to this work.

Concept and design: All authors.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Tritschler, Kraaijpoel, Wells.

Critical revision of the manuscript for important intellectual content: All authors.

Administrative, technical, or material support: Kraaijpoel.

Supervision: Kraaijpoel, Le Gal.

Conflict of Interest Disclosures: All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Dr Tritschler’s research is supported by a grant from the Swiss National Science Foundation (SNSF P2ZHP3_177999) and he has received travel and congress fees from Pfizer. Dr Le Gal holds an Early Researcher Award from the Province of Ontario, a “CP Has Heart” Cardiovascular Award from the Heart and Stroke Foundation of Ontario, and is the University of Ottawa Department of Medicine Chair on Diagnosis of Venous Thromboembolism. Dr Wells has received honoraria for advisory board meetings from Bayer Healthcare, Sanofi, and Daiichi Sankyo, and research funding from Bristol-Myers Squibb/Pfizer. No other disclosures were reported.

Anderson  FA  Jr, Wheeler  HB, Goldberg  RJ,  et al.  A population-based perspective of the hospital incidence and case-fatality rates of deep vein thrombosis and pulmonary embolism: the Worcester DVT Study.  Arch Intern Med. 1991;151(5):933-938. doi:10.1001/archinte.1991.00400050081016PubMedGoogle ScholarCrossref
Silverstein  MD, Heit  JA, Mohr  DN, Petterson  TM, O’Fallon  WM, Melton  LJ  III.  Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study.  Arch Intern Med. 1998;158(6):585-593. doi:10.1001/archinte.158.6.585PubMedGoogle ScholarCrossref
Naess  IA, Christiansen  SC, Romundstad  P, Cannegieter  SC, Rosendaal  FR, Hammerstrøm  J.  Incidence and mortality of venous thrombosis: a population-based study.  J Thromb Haemost. 2007;5(4):692-699. doi:10.1111/j.1538-7836.2007.02450.xPubMedGoogle ScholarCrossref
Tagalakis  V, Patenaude  V, Kahn  SR, Suissa  S.  Incidence of and mortality from venous thromboembolism in a real-world population: the Q-VTE Study Cohort.  Am J Med. 2013;126(9):832.e13-832. doi:10.1016/j.amjmed.2013.02.024PubMedGoogle ScholarCrossref
Huang  W, Goldberg  RJ, Anderson  FA, Kiefe  CI, Spencer  FA.  Secular trends in occurrence of acute venous thromboembolism: the Worcester VTE Study (1985-2009).  Am J Med. 2014;127(9):829-39. doi:10.1016/j.amjmed.2014.03.041PubMedGoogle ScholarCrossref
Smith  SB, Geske  JB, Kathuria  P,  et al.  Analysis of national trends in admissions for pulmonary embolism.  Chest. 2016;150(1):35-45. doi:10.1016/j.chest.2016.02.638PubMedGoogle ScholarCrossref
Carrier  M, Righini  M, Wells  PS,  et al.  Subsegmental pulmonary embolism diagnosed by computed tomography: incidence and clinical implications: a systematic review and meta-analysis of the management outcome studies.  J Thromb Haemost. 2010;8(8):1716-1722. doi:10.1111/j.1538-7836.2010.03938.xPubMedGoogle ScholarCrossref
Stein  PD, Matta  F, Alrifai  A, Rahman  A.  Trends in case fatality rate in pulmonary embolism according to stability and treatment.  Thromb Res. 2012;130(6):841-846. doi:10.1016/j.thromres.2012.07.011PubMedGoogle ScholarCrossref
Mahan  CE, Borrego  ME, Woersching  AL,  et al.  Venous thromboembolism: annualised United States models for total, hospital-acquired and preventable costs utilising long-term attack rates.  Thromb Haemost. 2012;108(2):291-302.PubMedGoogle Scholar
Kearon  C, Akl  EA, Ornelas  J,  et al.  Antithrombotic therapy for VTE disease: CHEST guideline and expert panel report.  Chest. 2016;149(2):315-352. doi:10.1016/j.chest.2015.11.026PubMedGoogle ScholarCrossref
Shea  BJ, Grimshaw  JM, Wells  GA,  et al.  Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews.  BMC Med Res Methodol. 2007;7:10. doi:10.1186/1471-2288-7-10PubMedGoogle ScholarCrossref
Scottish Intercollegiate Guidelines Network. SIGN 50: A Guideline Developer’s Handbook. 2015. Accessed September 18, 2018.
Dronkers  CEA, van der Hulle  T, Le Gal  G,  et al; Subcommittee on Predictive and Diagnostic Variables in Thrombotic Disease.  Towards a tailored diagnostic standard for future diagnostic studies in pulmonary embolism: communication from the SSC of the ISTH.  J Thromb Haemost. 2017;15(5):1040-1043. doi:10.1111/jth.13654PubMedGoogle ScholarCrossref
Dronkers  CEA, Ende-Verhaar  YM, Kyrle  PA,  et al; Subcommittee on Predictive and Diagnostic Variables in Thrombotic Disease.  Disease prevalence dependent failure rate in diagnostic management studies on suspected deep vein thrombosis: communication from the SSC of the ISTH.  J Thromb Haemost. 2017;15(11):2270-2273. doi:10.1111/jth.13805PubMedGoogle ScholarCrossref
Geersing  GJ, Zuithoff  NP, Kearon  C,  et al.  Exclusion of deep vein thrombosis using the Wells rule in clinically important subgroups: individual patient data meta-analysis.  BMJ. 2014;348:g1340. doi:10.1136/bmj.g1340PubMedGoogle ScholarCrossref
van Es  N, van der Hulle  T, van Es  J,  et al.  Wells rule and D-dimer testing to rule out pulmonary embolism: a systematic review and individual-patient data meta-analysis.  Ann Intern Med. 2016;165(4):253-261. doi:10.7326/M16-0031PubMedGoogle ScholarCrossref
Bates  SM, Jaeschke  R, Stevens  SM,  et al.  Diagnosis of DVT: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines.  Chest. 2012;141(2)(suppl):e351S-e418S. doi:10.1378/chest.11-2299PubMedGoogle ScholarCrossref
National Institute for Health and Clinical Excellence. Venous Thromboembolic Diseases: Diagnosis, Management and Thrombophilia Testing. London, England: National Institute for Health and Clinical Excellence; 2012. NICE Guideline CG144.
Konstantinides  SV, Torbicki  A, Agnelli  G,  et al; Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology.  2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism.  Eur Heart J. 2014;35(43):3033-3069, 3069a-3069k. doi:10.1093/eurheartj/ehu283PubMedGoogle ScholarCrossref
Mazzolai  L, Aboyans  V, Ageno  W,  et al.  Diagnosis and management of acute deep vein thrombosis: a joint consensus document from the European Society of Cardiology Working Groups of Aorta and Peripheral Circulation and Pulmonary Circulation and Right Ventricular Function [published online February 17, 2017].  Eur Heart J. doi:10.1093/eurheartj/ehx003PubMedGoogle Scholar
Kline  JA, Mitchell  AM, Kabrhel  C, Richman  PB, Courtney  DM.  Clinical criteria to prevent unnecessary diagnostic testing in emergency department patients with suspected pulmonary embolism.  J Thromb Haemost. 2004;2(8):1247-1255. doi:10.1111/j.1538-7836.2004.00790.xPubMedGoogle ScholarCrossref
Singh  B, Mommer  SK, Erwin  PJ, Mascarenhas  SS, Parsaik  AK.  Pulmonary Embolism Rule-Out Criteria (PERC) in pulmonary embolism—revisited: a systematic review and meta-analysis.  Emerg Med J. 2013;30(9):701-706. doi:10.1136/emermed-2012-201730PubMedGoogle ScholarCrossref
Righini  M, Le Gal  G, Perrier  A, Bounameaux  H.  More on: clinical criteria to prevent unnecessary diagnostic testing in emergency department patients with suspected pulmonary embolism.  J Thromb Haemost. 2005;3(1):188-189. doi:10.1111/j.1538-7836.2004.01097.xPubMedGoogle ScholarCrossref
Hugli  O, Righini  M, Le Gal  G,  et al.  The Pulmonary Embolism Rule-Out Criteria (PERC) rule does not safely exclude pulmonary embolism.  J Thromb Haemost. 2011;9(2):300-304. doi:10.1111/j.1538-7836.2010.04147.xPubMedGoogle ScholarCrossref
Penaloza  A, Soulié  C, Moumneh  T,  et al.  Pulmonary Embolism Rule-Out Criteria (PERC) rule in European patients with low implicit clinical probability (PERCEPIC): a multicentre, prospective, observational study.  Lancet Haematol. 2017;4(12):e615-e621. doi:10.1016/S2352-3026(17)30210-7PubMedGoogle ScholarCrossref
Freund  Y, Cachanado  M, Aubry  A,  et al; PROPER Investigator Group.  Effect of the Pulmonary Embolism Rule-Out Criteria on subsequent thromboembolic events among low-risk emergency department patients: the PROPER randomized clinical trial.  JAMA. 2018;319(6):559-566. doi:10.1001/jama.2017.21904PubMedGoogle ScholarCrossref
van der Hulle  T, Cheung  WY, Kooij  S,  et al; YEARS Study Group.  Simplified diagnostic management of suspected pulmonary embolism (the YEARS study): a prospective, multicentre, cohort study.  Lancet. 2017;390(10091):289-297. doi:10.1016/S0140-6736(17)30885-1PubMedGoogle ScholarCrossref
Pomero  F, Dentali  F, Borretta  V,  et al.  Accuracy of emergency physician-performed ultrasonography in the diagnosis of deep-vein thrombosis: a systematic review and meta-analysis.  Thromb Haemost. 2013;109(1):137-145. doi:10.1160/TH12-07-0473PubMedGoogle ScholarCrossref
Abdalla  G, Fawzi Matuk  R, Venugopal  V,  et al.  The diagnostic accuracy of magnetic resonance venography in the detection of deep venous thrombosis: a systematic review and meta-analysis.  Clin Radiol. 2015;70(8):858-871. doi:10.1016/j.crad.2015.04.007PubMedGoogle ScholarCrossref
Da Costa Rodrigues  J, Alzuphar  S, Combescure  C, Le Gal  G, Perrier  A.  Diagnostic characteristics of lower limb venous compression ultrasonography in suspected pulmonary embolism: a meta-analysis.  J Thromb Haemost. 2016;14(9):1765-1772. doi:10.1111/jth.13407PubMedGoogle ScholarCrossref
Squizzato  A, Pomero  F, Allione  A,  et al.  Diagnostic accuracy of magnetic resonance imaging in patients with suspected pulmonary embolism: a bivariate meta-analysis.  Thromb Res. 2017;154:64-72. doi:10.1016/j.thromres.2017.03.027PubMedGoogle ScholarCrossref
Phillips  JJ, Straiton  J, Staff  RT.  Planar and SPECT ventilation/perfusion imaging and computed tomography for the diagnosis of pulmonary embolism: a systematic review and meta-analysis of the literature, and cost and dose comparison.  Eur J Radiol. 2015;84(7):1392-1400. doi:10.1016/j.ejrad.2015.03.013PubMedGoogle ScholarCrossref
Aujesky  D, Roy  PM, Verschuren  F,  et al.  Outpatient versus inpatient treatment for patients with acute pulmonary embolism: an international, open-label, randomised, non-inferiority trial.  Lancet. 2011;378(9785):41-48. doi:10.1016/S0140-6736(11)60824-6PubMedGoogle ScholarCrossref
Zondag  W, Mos  IC, Creemers-Schild  D,  et al; Hestia Study Investigators.  Outpatient treatment in patients with acute pulmonary embolism: the Hestia Study.  J Thromb Haemost. 2011;9(8):1500-1507. doi:10.1111/j.1538-7836.2011.04388.xPubMedGoogle ScholarCrossref
Piran  S, Le Gal  G, Wells  PS,  et al.  Outpatient treatment of symptomatic pulmonary embolism: a systematic review and meta-analysis.  Thromb Res. 2013;132(5):515-519. doi:10.1016/j.thromres.2013.08.012PubMedGoogle ScholarCrossref
Lozano  F, Trujillo-Santos  J, Barrón  M,  et al; RIETE Investigators.  Home versus in-hospital treatment of outpatients with acute deep venous thrombosis of the lower limbs.  J Vasc Surg. 2014;59(5):1362-1367. doi:10.1016/j.jvs.2013.11.091PubMedGoogle ScholarCrossref
Kearon  C, Ageno  W, Cannegieter  SC, Cosmi  B, Geersing  GJ, Kyrle  PA; Subcommittees on Control of Anticoagulation, and Predictive and Diagnostic Variables in Thrombotic Disease.  Categorization of patients as having provoked or unprovoked venous thromboembolism: guidance from the SSC of ISTH.  J Thromb Haemost. 2016;14(7):1480-1483. doi:10.1111/jth.13336PubMedGoogle ScholarCrossref
Schulman  S, Kearon  C; Subcommittee on Control of Anticoagulation of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis.  Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients.  J Thromb Haemost. 2005;3(4):692-694. doi:10.1111/j.1538-7836.2005.01204.xPubMedGoogle ScholarCrossref
Gómez-Outes  A, Terleira-Fernández  AI, Lecumberri  R, Suárez-Gea  ML, Vargas-Castrillón  E.  Direct oral anticoagulants in the treatment of acute venous thromboembolism: a systematic review and meta-analysis.  Thromb Res. 2014;134(4):774-782. doi:10.1016/j.thromres.2014.06.020PubMedGoogle ScholarCrossref
Gómez-Outes  A, Lecumberri  R, Suárez-Gea  ML, Terleira-Fernández  AI, Monreal  M, Vargas-Castrillón  E.  Case fatality rates of recurrent thromboembolism and bleeding in patients receiving direct oral anticoagulants for the initial and extended treatment of venous thromboembolism: a systematic review.  J Cardiovasc Pharmacol Ther. 2015;20(5):490-500. doi:10.1177/1074248415575154PubMedGoogle ScholarCrossref
 Drugs for treatment and prevention of venous thromboembolism.  Med Lett Drugs Ther. 2018;60(1542):41-48.PubMedGoogle Scholar
Garcia  P, Ruiz  W, Loza Munárriz  C.  Warfarin initiation nomograms for venous thromboembolism.  Cochrane Database Syst Rev. 2016;(1):CD007699.PubMedGoogle Scholar
Li  X, Yang  J, Wang  X, Xu  Q, Zhang  Y, Yin  T.  Clinical benefits of pharmacogenetic algorithm-based warfarin dosing: meta-analysis of randomized controlled trials.  Thromb Res. 2015;135(4):621-629. doi:10.1016/j.thromres.2015.01.018PubMedGoogle ScholarCrossref
Verbelen  M, Weale  ME, Lewis  CM.  Cost-effectiveness of pharmacogenetic-guided treatment: are we there yet?  Pharmacogenomics J. 2017;17(5):395-402. doi:10.1038/tpj.2017.21PubMedGoogle ScholarCrossref
 Comparison table: some oral anticoagulants for VTE [published October 16, 2018].  JAMA. doi:10.1001/jama.2018.14347Google Scholar
Watson  L, Broderick  C, Armon  MP.  Thrombolysis for acute deep vein thrombosis.  Cochrane Database Syst Rev. 2016;11:CD002783.PubMedGoogle Scholar
Vedantham  S, Goldhaber  SZ, Julian  JA,  et al; ATTRACT Trial Investigators.  Pharmacomechanical catheter-directed thrombolysis for deep-vein thrombosis.  N Engl J Med. 2017;377(23):2240-2252. doi:10.1056/NEJMoa1615066PubMedGoogle ScholarCrossref
Engelberger  RP, Spirk  D, Willenberg  T,  et al.  Ultrasound-assisted versus conventional catheter-directed thrombolysis for acute iliofemoral deep vein thrombosis.  Circ Cardiovasc Interv. 2015;8(1):e002027. doi:10.1161/CIRCINTERVENTIONS.114.002027PubMedGoogle ScholarCrossref
Engelberger  RP, Stuck  A, Spirk  D,  et al.  Ultrasound-assisted versus conventional catheter-directed thrombolysis for acute iliofemoral deep vein thrombosis: 1-year follow-up data of a randomized-controlled trial.  J Thromb Haemost. 2017;15(7):1351-1360. doi:10.1111/jth.13709PubMedGoogle ScholarCrossref
Hao  Q, Dong  BR, Yue  J, Wu  T, Liu  GJ.  Thrombolytic therapy for pulmonary embolism.  Cochrane Database Syst Rev. 2015;(9):CD004437.PubMedGoogle Scholar
Riva  N, Puljak  L, Moja  L,  et al.  Multiple overlapping systematic reviews facilitate the origin of disputes: the case of thrombolytic therapy for pulmonary embolism.  J Clin Epidemiol. 2018;97:1-13. doi:10.1016/j.jclinepi.2017.11.012PubMedGoogle ScholarCrossref
Konstantinides  SV, Vicaut  E, Danays  T,  et al.  Impact of thrombolytic therapy on the long-term outcome of intermediate-risk pulmonary embolism.  J Am Coll Cardiol. 2017;69(12):1536-1544. doi:10.1016/j.jacc.2016.12.039PubMedGoogle ScholarCrossref
Mismetti  P, Laporte  S, Pellerin  O,  et al; PREPIC2 Study Group.  Effect of a retrievable inferior vena cava filter plus anticoagulation vs anticoagulation alone on risk of recurrent pulmonary embolism: a randomized clinical trial.  JAMA. 2015;313(16):1627-1635. doi:10.1001/jama.2015.3780PubMedGoogle ScholarCrossref
Turner  TE, Saeed  MJ, Novak  E, Brown  DL.  Association of inferior vena cava filter placement for venous thromboembolic disease and a contraindication to anticoagulation with 30-day mortality.  JAMA Netw Open. 2018;1(3):e180452. doi:10.1001/jamanetworkopen.2018.0452Google ScholarCrossref
Reddy  S, Lakhter  V, Zack  CJ, Zhao  H, Chatterjee  S, Bashir  R.  Association between contemporary trends in inferior vena cava filter placement and the 2010 US Food and Drug Administration advisory.  JAMA Intern Med. 2017;177(9):1373-1374. doi:10.1001/jamainternmed.2017.2719PubMedGoogle ScholarCrossref
Subbiah  R, Aggarwal  V, Zhao  H, Kolluri  R, Chatterjee  S, Bashir  R.  Effect of compression stockings on post thrombotic syndrome in patients with deep vein thrombosis: a meta-analysis of randomised controlled trials.  Lancet Haematol. 2016;3(6):e293-e300. doi:10.1016/S2352-3026(16)30017-5PubMedGoogle ScholarCrossref
Raskob  GE, van Es  N, Verhamme  P,  et al; Hokusai VTE Cancer Investigators.  Edoxaban for the treatment of cancer-associated venous thromboembolism.  N Engl J Med. 2018;378(7):615-624. doi:10.1056/NEJMoa1711948PubMedGoogle ScholarCrossref
Young  AM, Marshall  A, Thirlwall  J,  et al.  Comparison of an oral factor Xa inhibitor with low molecular weight heparin in patients with cancer with venous thromboembolism: results of a randomized trial (SELECT-D).  J Clin Oncol. 2018;36(20):2017-2023. doi:10.1200/JCO.2018.78.8034PubMedGoogle ScholarCrossref
Khorana  AA, Noble  S, Lee  AYY,  et al.  Role of direct oral anticoagulants in the treatment of cancer-associated venous thromboembolism: guidance from the SSC of the ISTH.  J Thromb Haemost. 2018;16(9):1891-1894. doi:10.1111/jth.14219PubMedGoogle ScholarCrossref
Franco  L, Giustozzi  M, Agnelli  G, Becattini  C.  Anticoagulation in patients with isolated distal deep vein thrombosis: a meta-analysis.  J Thromb Haemost. 2017;15(6):1142-1154. doi:10.1111/jth.13677PubMedGoogle ScholarCrossref
Righini  M, Galanaud  JP, Guenneguez  H,  et al.  Anticoagulant therapy for symptomatic calf deep vein thrombosis (CACTUS): a randomised, double-blind, placebo-controlled trial.  Lancet Haematol. 2016;3(12):e556-e562. doi:10.1016/S2352-3026(16)30131-4PubMedGoogle ScholarCrossref
Palareti  G, Cosmi  B, Legnani  C,  et al; D-Dimer and Ultrasonography in Combination Italian Study Investigators.  D-dimer to guide the duration of anticoagulation in patients with venous thromboembolism: a management study.  Blood. 2014;124(2):196-203. doi:10.1182/blood-2014-01-548065PubMedGoogle ScholarCrossref
Kearon  C, Spencer  FA, O’Keeffe  D,  et al; D-Dimer Optimal Duration Study Investigators.  D-dimer testing to select patients with a first unprovoked venous thromboembolism who can stop anticoagulant therapy: a cohort study.  Ann Intern Med. 2015;162(1):27-34. doi:10.7326/M14-1275PubMedGoogle ScholarCrossref
Rodger  MA, Kahn  SR, Wells  PS,  et al.  Identifying unprovoked thromboembolism patients at low risk for recurrence who can discontinue anticoagulant therapy.  CMAJ. 2008;179(5):417-426. doi:10.1503/cmaj.080493PubMedGoogle ScholarCrossref
Rodger  MA, Le Gal  G, Anderson  DR,  et al; REVERSE II Study Investigators.  Validating the HERDOO2 rule to guide treatment duration for women with unprovoked venous thrombosis: multinational prospective cohort management study.  BMJ. 2017;356:j1065. doi:10.1136/bmj.j1065PubMedGoogle ScholarCrossref
Tosetto  A, Iorio  A, Marcucci  M,  et al.  Predicting disease recurrence in patients with previous unprovoked venous thromboembolism: a proposed prediction score (DASH).  J Thromb Haemost. 2012;10(6):1019-1025. doi:10.1111/j.1538-7836.2012.04735.xPubMedGoogle ScholarCrossref
Eichinger  S, Heinze  G, Jandeck  LM, Kyrle  PA.  Risk assessment of recurrence in patients with unprovoked deep vein thrombosis or pulmonary embolism: the Vienna prediction model.  Circulation. 2010;121(14):1630-1636. doi:10.1161/CIRCULATIONAHA.109.925214PubMedGoogle ScholarCrossref
Marik  PE, Cavallazzi  R.  Extended anticoagulant and aspirin treatment for the secondary prevention of thromboembolic disease: a systematic review and meta-analysis.  PLoS One. 2015;10(11):e0143252. doi:10.1371/journal.pone.0143252PubMedGoogle ScholarCrossref
Weitz  JI, Lensing  AWA, Prins  MH,  et al; EINSTEIN CHOICE Investigators.  Rivaroxaban or aspirin for extended treatment of venous thromboembolism.  N Engl J Med. 2017;376(13):1211-1222. doi:10.1056/NEJMoa1700518PubMedGoogle ScholarCrossref
Schulman  S, Kearon  C, Kakkar  AK,  et al; RE-MEDY Trial Investigators; RE-SONATE Trial Investigators.  Extended use of dabigatran, warfarin, or placebo in venous thromboembolism.  N Engl J Med. 2013;368(8):709-718. doi:10.1056/NEJMoa1113697PubMedGoogle ScholarCrossref
Büller  HR, Décousus  H, Grosso  MA,  et al; Hokusai-VTE Investigators.  Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism.  N Engl J Med. 2013;369(15):1406-1415. doi:10.1056/NEJMoa1306638PubMedGoogle ScholarCrossref
Raskob  G, Ageno  W, Cohen  AT,  et al.  Extended duration of anticoagulation with edoxaban in patients with venous thromboembolism: a post-hoc analysis of the Hokusai-VTE study.  Lancet Haematol. 2016;3(5):e228-e236. doi:10.1016/S2352-3026(16)00023-5PubMedGoogle ScholarCrossref
Kearon  C, Ginsberg  JS, Kovacs  MJ,  et al; Extended Low-Intensity Anticoagulation for Thrombo-Embolism Investigators.  Comparison of low-intensity warfarin therapy with conventional-intensity warfarin therapy for long-term prevention of recurrent venous thromboembolism.  N Engl J Med. 2003;349(7):631-639. doi:10.1056/NEJMoa035422PubMedGoogle ScholarCrossref
Agnelli  G, Buller  HR, Cohen  A,  et al; AMPLIFY-EXT Investigators.  Apixaban for extended treatment of venous thromboembolism.  N Engl J Med. 2013;368(8):699-708. doi:10.1056/NEJMoa1207541PubMedGoogle ScholarCrossref
Pollack  CV  Jr, Reilly  PA, van Ryn  J,  et al.  Idarucizumab for dabigatran reversal—full cohort analysis.  N Engl J Med. 2017;377(5):431-441. doi:10.1056/NEJMoa1707278PubMedGoogle ScholarCrossref
Connolly  SJ, Milling  TJ  Jr, Eikelboom  JW,  et al; ANNEXA-4 Investigators.  Andexanet alfa for acute major bleeding associated with factor Xa inhibitors.  N Engl J Med. 2016;375(12):1131-1141. doi:10.1056/NEJMoa1607887PubMedGoogle ScholarCrossref
van Es  N, Coppens  M, Schulman  S, Middeldorp  S, Büller  HR.  Direct oral anticoagulants compared with vitamin K antagonists for acute venous thromboembolism: evidence from phase 3 trials.  Blood. 2014;124(12):1968-1975. doi:10.1182/blood-2014-04-571232PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience

Lookup An Activity



My Saved Searches

You currently have no searches saved.

With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right