Donor, Recipient, and Operative Factors Associated With Increased Endothelial Cell Loss in the Cornea Preservation Time Study | Cornea | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

Donor, Recipient, and Operative Factors Associated With Increased Endothelial Cell Loss in the Cornea Preservation Time Study

Educational Objective
To evaluate the associations of donor, recipient, and operative factors with endothelial cell density 3 years after Descemet stripping automated endothelial keratoplasty in the Cornea Preservation Time Study.
1 Credit CME
Key Points

Question  What donor, recipient, and operative factors are associated with endothelial cell density 3 years after Descemet stripping automated endothelial keratoplasty (DSAEK) in the Cornea Preservation Time Study cohort?

Findings  In this study, donors with diabetes, diagnosis of pseudophakic/aphakic corneal edema in the recipient, and operative complications were associated with lower endothelial cell density at 3 years.

Meaning  Optimizing donor selection and minimizing surgical trauma could help minimize endothelial cell loss and improve graft survival after DSAEK. Mechanisms whereby corneal tissue from diabetes in donors and pseudophakic/aphakic corneal edema in recipients affect endothelial cell density warrant further study.


Importance  Determining factors associated with endothelial cell loss after Descemet stripping automated endothelial keratoplasty (DSAEK) could improve long-term graft survival.

Objective  To evaluate the associations of donor, recipient, and operative factors with endothelial cell density (ECD) 3 years after DSAEK in the Cornea Preservation Time Study.

Design, Setting, and Participants  This cohort study was a secondary analysis of data collected in a multicenter, double-masked, randomized clinical trial. Forty US clinical sites with 70 surgeons participated, with donor corneas provided by 23 US eye banks. Individuals undergoing DSAEK for Fuchs dystrophy or pseudophakic/aphakic corneal edema were included.

Interventions  The DSAEK procedure, with random assignment of a donor cornea with a preservation time of 0 to 7 days or 8 to 14 days.

Main Outcomes and Measures  Endothelial cell density at 3 years as determined by a reading center from eye bank and clinical specular or confocal central endothelial images.

Results  The study included 1090 participants (median age, 70 years) with 1330 affected eyes (240 bilateral cases [22.0%]), who underwent DSAEK for Fuchs dystrophy (1255 eyes [94.4%]) or pseudophakic/aphakic corneal edema (PACE) (75 eyes [5.6%]). Of these, 801 eyes (60.2%) belonged to women and 1207 (90.8%) to white individuals. A total of 749 participants (913 eyes; 164 [21.9%] bilateral cases) had functioning grafts with acceptable endothelial images preoperatively and at 3 years postoperatively and were included in this analysis. Factors associated with a lower ECD at 3 years (estimated effect with 99% CI) in the final multivariable model included donors with diabetes (−103 [−196 to −9] cells/mm2), lower screening ECD (−234 [−331 to −137] per 500 cells/mm2), recipient diagnosis of PACE (−257 [−483 to −31] in cells/mm2), and operative complications (−324 [−516 to −133] in cells/mm2). Endothelial cell loss (ECL) from a preoperative measurement to a 3-year postoperative measurement was 47% (99% CI, 42%-52%) for participants receiving tissue from donors with diabetes vs 43% (99% CI, 39%-48%) without diabetes; it was 53% (99% CI, 44%-62%) for participants diagnosed with PACE vs 44% (99% CI, 39%-49%) for those diagnosed with Fuchs dystrophy, and 55% (99% CI, 48%-63%) in participants who experienced operative complications vs 44% (99% CI, 39%-48%) in those who did not. No other donor, recipient, or operative factors were significantly associated with 3-year ECD.

Conclusions and Relevance  Donor diabetes, lower screening ECD, a PACE diagnosis in the recipient, and operative complications were associated with lower ECD at 3 years after DSAEK surgery and may be associated with long-term graft success. While causation cannot be inferred, further studies on the association of donor diabetes and PACE in recipients with lower 3-year ECD warrant further study.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Corresponding Author: Jonathan H. Lass, MD, University Hospitals Cleveland Medical Center, 11100 Euclid Ave, Cleveland, OH 44106 (

Accepted for Publication: September 26, 2018.

Correction: This article was corrected on December 13, 2018, to correct a P value in the Table. The P value for the Multivariable Model in the Diabetic donor row was presented as .01 but should be .005. The error has been corrected.

Published Online: October 26, 2018. doi:10.1001/jamaophthalmol.2018.5669

Author Contributions: Dr Lass and Ms Ayala had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Lass, Benetz, Patel, Szczotka- Flynn, O'Brien, Maguire, Ayala.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Lass, Benetz, Patel, Szczotka-Flynn, O'Brien.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: O'Brien, Maguire.

Obtained funding: Lass, Ayala.

Administrative, technical, or material support: All authors.

Study supervision: Lass, Benetz, Patel, Szczotka-Flynn, Ayala.

Conflict of Interest Disclosures: Drs Terry and Lee report financial relationships with Bausch & Lomb, which manufactures corneal storage solutions (considered relevant to this work). Dr Terry reports receiving royalties for endothelial keratoplasty surgical instruments and educational grants. Dr Lee reports receiving speaker’s bureau fees. No other disclosures were reported.

Funding/Support: This study was supported by cooperative agreements with the National Eye Institute/National Institutes of Health(grants EY20797 and EY20798). Additional support was provided by Eye Bank Association of America, The Cornea Society, Vision Share, Inc, Alabama Eye Bank, Cleveland Eye Bank Foundation, Eversight, Eye Bank for Sight Restoration, Iowa Lions Eye Bank, Lions Eye Bank of Albany, San Diego Eye Bank, and SightLife.

Role of the Funder/Sponsor: The National Eye Institute had roles in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, and approval of the manuscript; and decision to submit the manuscript for publication. The other sponsors had no role in the design and conduct of the study; management, analysis, and interpretation of the data; preparation, review, and approval of the manuscript; and decision to submit the manuscript for publication, but provided additional support for ancillary work pertaining to this study.

Group Members: The Cornea Preservation Time Study Group members are as follows: Operations Committee: Jonathan Lass, MD; Allison Ayala, MS; Beth Ann Benetz, MA; Loretta Szczotka-Flynn, OD, PhD; Roy Beck, MD, PhD; Robin Gal, MSPH; and Maryann Redford, DDS, MPH. Executive Committee: Operations Committee as well as Anthony J. Aldave, MD; Steven P. Dunn, MD; Ty L. McCall, MD; Lisa Navarro; Sudeep Pramanik, MD; Kevin W. Ross, MS, MPH; George O. Rosenwasser, MD; Mark A. Terry, MD; and David T. Verdier, MD; Eye Bank Advisory Committee: Kevin W. Ross, MS MPH (chair); Patricia Dahl, BS; Donna C. Drury, BS, MBA; Sameera M. Farazdaghi, BS, MPH; Caroline K. Hoover, CEBT; Jeffery G. Penta, AS, BS, MBA; Mark C. Soper BS, CEBT; Chris G. Stoeger, CEBT, MBA; Doyce V. Williams, CEBT, CTBS, BS, MA; Data and Safety Monitoring Committee: David C. Musch, PhD, MPH (DSMC chair), William Bourne, MD, Kathryn A. Colby, MD, PhD, Marian Fisher, PhD, Rabbi Samuel Fishman, Maryann Redford, DDS, MPH; Clinical Site Principal Investigators: Anthony Aldave, MD; Gregg Berdy, MD; John Bokosky, MD; Christopher Croasdale, MD; Yassine Daoud, MD; Steven Dunn, MD; Thomas Gillette, MD; Kenneth Goins, MD; Pankaj Gupta, MD; Kristen Hammersmith, MD; Sadeer Hannush, MD; David Hardten, MD; Bennie Jeng, MD; Marc Jones, MD; William Lahners, MD; W. Barry Lee, MD; Marian Macsai, MD; Thomas Mauger, MD; Kenneth Maverick, MD; Tyrone McCall, MD; Woodford Van Meter, MD; Shahzad Mian, MD; Mark Mifflin, MD; Verinder Nirankari, MD; Michael Nordlund, MD, PhD; Matthew Oliva, MD; Sanjay Patel, MD; Sudeep Pramanik, MD; Irving Raber, MD; Michael Raizman, MD; Jennifer Rose-Nussbaumer, MD; George Rosenwasser, MD; Robert Schultze, MD; John Seedor, MD; Neda Shamie, MD; Jonathan Song, MD; Walter Stark, MD; R. Doyle Stulting, MD, PhD; Alan Sugar, MD; Shachar Tauber, MD; Mark Terry, MD; Kristina Thomas, MD; Elmer Tu, MD; David Verdier, MD; and Sonia Yoo, MD. Eye Bank Principal Investigators: Victoria Adler, RN, BSN, CPTC, CEBT; Wilfred Caraballo; Patricia Dahl, BS; Gregory Dorn, CEBT; Donna Drury, BS, MBA; Sameera Farazdaghi, BS, MPH; Elizabeth Fout-Caraza, MHSA; Patrick Gore, RN, CEBT; Veronique Grimes, COMT, CEBT; Caroline Hoover, CEBT; Debora Van Klinken, CEBT; Nai Liang, CEBT; Tina Mays, CEBT; Kristen McCoy, BS; Wade McEntire, MPH; Eric Meinecke, BA; Jeffrey Penta, AS, BS, MBA; Kevin Ross, MS, MPH; Mikelanne Schipper; Gregory Schmidt, BS, CEBT; Chris Stoeger, CEBT, MBA; Michael Tramber, MBA, BS, CEBT, CTBS.

Disclaimer: The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Eye Institute or the National Institutes of Health.

Meeting Presentation: This paper was presented at the Cornea and Eye Banking Forum; October 26, 2018; Chicago, Illinois.

Lass  JH, Gal  RL, Dontchev  M,  et al; Cornea Donor Study Investigator Group.  Donor age and corneal endothelial cell loss 5 years after successful corneal transplantation: specular microscopy ancillary study results.  Ophthalmology. 2008;115(4):627-632.e8. doi:10.1016/j.ophtha.2008.01.004PubMedGoogle ScholarCrossref
Lass  JH, Beck  RW, Benetz  BA,  et al; Cornea Donor Study Investigator Group.  Baseline factors related to endothelial cell loss following penetrating keratoplasty.  Arch Ophthalmol. 2011;129(9):1149-1154. doi:10.1001/archophthalmol.2011.102PubMedGoogle ScholarCrossref
Lass  JH, Benetz  BA, Gal  RL,  et al; Writing Committee for the Cornea Donor Study Research Group.  Donor age and factors related to endothelial cell loss 10 years after penetrating keratoplasty: Specular Microscopy Ancillary Study.  Ophthalmology. 2013;120(12):2428-2435. doi:10.1016/j.ophtha.2013.08.044PubMedGoogle ScholarCrossref
Ing  JJ, Ing  HH, Nelson  LR, Hodge  DO, Bourne  WM.  Ten-year postoperative results of penetrating keratoplasty.  Ophthalmology. 1998;105(10):1855-1865. doi:10.1016/S0161-6420(98)91030-2PubMedGoogle ScholarCrossref
Patel  SV, Diehl  NN, Hodge  DO, Bourne  WM.  Donor risk factors for graft failure in a 20-year study of penetrating keratoplasty.  Arch Ophthalmol. 2010;128(4):418-425. doi:10.1001/archophthalmol.2010.27PubMedGoogle ScholarCrossref
Price  MO, Calhoun  P, Kollman  C, Price  FW  Jr, Lass  JH.  Descemet stripping endothelial keratoplasty: ten-year endothelial cell loss compared with penetrating keratoplasty.  Ophthalmology. 2016;123(7):1421-1427. doi:10.1016/j.ophtha.2016.03.011PubMedGoogle ScholarCrossref
Li  JY, Terry  MA, Goshe  J, Shamie  N, Davis-Boozer  D.  Graft rejection after Descemet’s stripping automated endothelial keratoplasty: graft survival and endothelial cell loss.  Ophthalmology. 2012;119(1):90-94. doi:10.1016/j.ophtha.2011.07.007PubMedGoogle ScholarCrossref
Lass  JH, Szczotka-Flynn  LB, Ayala  AR,  et al; Writing Committee for the Cornea Preservation Time Study Group.  Cornea preservation time study: methods and potential impact on the cornea donor pool in the United States.  Cornea. 2015;34(6):601-608. doi:10.1097/ICO.0000000000000417PubMedGoogle ScholarCrossref
Rosenwasser  GO, Szczotka-Flynn  LB, Ayala  AR,  et al; Cornea Preservation Time Study Group.  Effect of cornea preservation time on success of Descemet stripping automated endothelial keratoplasty: a randomized clinical trial.  JAMA Ophthalmol. 2017;135(12):1401-1409. doi:10.1001/jamaophthalmol.2017.4989PubMedGoogle ScholarCrossref
Lass  JH, Benetz  BA, Verdier  DD,  et al; Cornea Preservation Time Study Group.  Corneal endothelial cell loss 3 years after successful Descemet stripping automated endothelial keratoplasty in the Cornea Preservation Time Study: a randomized clinical trial.  JAMA Ophthalmol. 2017;135(12):1394-1400. doi:10.1001/jamaophthalmol.2017.4970PubMedGoogle ScholarCrossref
Terry  MA, Aldave  AJ, Szczotka  LB,  et al.  Donor, recipient, and operative factors associated with graft success in the Cornea Preservation Time Study.  Ophthalmology. 2018;125:1700-09. doi:10.1016/j.ophtha.2018.08.002Google Scholar
Lass  JH, Riddlesworth  TD, Gal  RL,  et al; Cornea Donor Study Research Group.  The effect of donor diabetes history on graft failure and endothelial cell density 10 years after penetrating keratoplasty.  Ophthalmology. 2015;122(3):448-456. doi:10.1016/j.ophtha.2014.09.012PubMedGoogle ScholarCrossref
Mannis  MJ, Holland  EJ, Gal  RL,  et al; Writing Committee for the Cornea Donor Study Research Group.  The effect of donor age on penetrating keratoplasty for endothelial disease: graft survival after 10 years in the Cornea Donor Study.  Ophthalmology. 2013;120(12):2419-2427. doi:10.1016/j.ophtha.2013.08.026PubMedGoogle ScholarCrossref
Benetz  BA, Gal  RL, Ruedy  KJ,  et al; Cornea Donor Study Group.  Specular microscopy ancillary study methods for donor endothelial cell density determination of Cornea Donor Study images.  Curr Eye Res. 2006;31(4):319-327. doi:10.1080/02713680500536738PubMedGoogle ScholarCrossref
Sayegh  RR, Benetz  BA, Lass  JH. Specular microscopy. In: Mannis  MJ, Holland  EJ, eds.  Cornea: Fundamentals, Diagnosis, Management. Vol 1. New York, NY: Elsevier; 2016:160-179.
Derksen  S, Keselman  HJ.  Backward, forward, and stepwise automated subset selection algorithms: frequency of obtaining authentic and noise variable.  Br J Math Stat Psychol. 1992;45:265-282. doi:10.1111/j.2044-8317.1992.tb00992.xGoogle ScholarCrossref
R Development Core Team.  A Language and Environment for Statistical Computing. Vienna, Austria: The R Foundation for Statistical Computing. 2018.
Kim  J, Kim  CS, Sohn  E, Jeong  IH, Kim  H, Kim  JS.  Involvement of advanced glycation end products, oxidative stress and nuclear factor-kappa B in the development of diabetic keratopathy.  Graefes Arch Clin Exp Ophthalmol. 2011;249(4):529-536. doi:10.1007/s00417-010-1573-9PubMedGoogle ScholarCrossref
Skeie  JM, Aldrich  BT, Goldstein  AS, Schmidt  GA, Reed  CR, Greiner  MA.  Proteomic analysis of corneal endothelial cell-Descemet membrane tissues reveals influence of insulin dependence and disease severity in type 2 diabetes mellitus.  PLoS One. 2018;13(3):e0192287. doi:10.1371/journal.pone.0192287PubMedGoogle ScholarCrossref
Lass  JH, Spurney  RV, Dutt  RM,  et al.  A morphologic and fluorophotometric analysis of the corneal endothelium in type I diabetes mellitus and cystic fibrosis.  Am J Ophthalmol. 1985;100(6):783-788. doi:10.1016/S0002-9394(14)73367-7PubMedGoogle ScholarCrossref
Larsson  LI, Bourne  WM, Pach  JM, Brubaker  RF.  Structure and function of the corneal endothelium in diabetes mellitus type I and type II.  Arch Ophthalmol. 1996;114(1):9-14. doi:10.1001/archopht.1996.01100130007001PubMedGoogle ScholarCrossref
Shenoy  R, Khandekar  R, Bialasiewicz  A, Al Muniri  A.  Corneal endothelium in patients with diabetes mellitus: a historical cohort study.  Eur J Ophthalmol. 2009;19(3):369-375. doi:10.1177/112067210901900307PubMedGoogle ScholarCrossref
Liaboe  CA, Aldrich  BT, Carter  PC,  et al.  Assessing the impact of diabetes mellitus on donor corneal endothelial cell density.  Cornea. 2017;36(5):561-566. doi:10.1097/ICO.0000000000001174PubMedGoogle ScholarCrossref
McNamara  NA, Brand  RJ, Polse  KA, Bourne  WM.  Corneal function during normal and high serum glucose levels in diabetes.  Invest Ophthalmol Vis Sci. 1998;39(1):3-17.PubMedGoogle Scholar
Ziadi  M, Moiroux  P, d’Athis  P, Bron  A, Brun  JM, Creuzot-Garcher  C.  Assessment of induced corneal hypoxia in diabetic patients.  Cornea. 2002;21(5):453-457. doi:10.1097/00003226-200207000-00004PubMedGoogle ScholarCrossref
Aldrich  BT, Schlötzer-Schrehardt  U, Skeie  JM,  et al.  Mitochondrial and morphologic alterations in native human corneal endothelial cells associated with diabetes mellitus.  Invest Ophthalmol Vis Sci. 2017;58(4):2130-2138. doi:10.1167/iovs.16-21094PubMedGoogle ScholarCrossref
Schwarz  C, Aldrich  BT, Burckart  KA,  et al.  Descemet membrane adhesion strength is greater in diabetics with advanced disease compared to healthy donor corneas.  Exp Eye Res. 2016;153:152-158. doi:10.1016/j.exer.2016.10.015PubMedGoogle ScholarCrossref
Price  MO, Lisek  M, Feng  MT, Price  FW  Jr.  Effect of donor and recipient diabetes status on Descemet membrane endothelial keratoplasty adherence and survival.  Cornea. 2017;36(10):1184-1188.PubMedGoogle Scholar
Vislisel  JM, Liaboe  CA, Wagoner  MD,  et al.  Graft survival of diabetic versus nondiabetic donor tissue after initial keratoplasty.  Cornea. 2015;34(4):370-374. doi:10.1097/ICO.0000000000000378PubMedGoogle ScholarCrossref
Nishimura  JK, Hodge  DO, Bourne  WM.  Initial endothelial cell density and chronic endothelial cell loss rate in corneal transplants with late endothelial failure.  Ophthalmology. 1999;106(10):1962-1965. doi:10.1016/S0161-6420(99)90409-8PubMedGoogle ScholarCrossref
Lass  JH, Sugar  A, Benetz  BA,  et al; Cornea Donor Study Investigator Group.  Endothelial cell density to predict endothelial graft failure after penetrating keratoplasty.  Arch Ophthalmol. 2010;128(1):63-69. doi:10.1001/archophthalmol.2010.128.63PubMedGoogle ScholarCrossref
Potapenko  IO, Samolov  B, Armitage  MC, Byström  B, Hjortdal  J.  Donor endothelial cell count does not correlate with Descemet stripping automated endothelial keratoplasty transplant survival after 2 years of follow-up.  Cornea. 2017;36(6):649-654. doi:10.1097/ICO.0000000000001189PubMedGoogle ScholarCrossref
Hopkinson  CL, Romano  V, Kaye  RA,  et al; National Health Service Blood Transplant Ocular Tissue Advisory Group and Contributing Ophthalmologists (OTAG study 20).  The influence of donor and recipient gender incompatibility on corneal transplant rejection and failure.  Am J Transplant. 2017;17(1):210-217. doi:10.1111/ajt.13926PubMedGoogle ScholarCrossref
Borkar  DS, Veldman  P, Colby  KA.  Treatment of Fuchs endothelial dystrophy by Descemet stripping without endothelial keratoplasty.  Cornea. 2016;35(10):1267-1273. doi:10.1097/ICO.0000000000000915PubMedGoogle ScholarCrossref
Moloney  G, Petsoglou  C, Ball  M,  et al.  Descemetorhexis without grafting for Fuchs endothelial dystrophy-supplementation with topical ripasudil.  Cornea. 2017;36(6):642-648. doi:10.1097/ICO.0000000000001209PubMedGoogle ScholarCrossref
Aldave  AJ, Chen  JL, Zaman  AS, Deng  SX, Yu  F.  Outcomes after DSEK in 101 eyes with previous trabeculectomy and tube shunt implantation.  Cornea. 2014;33(3):223-229. doi:10.1097/ICO.0000000000000028PubMedGoogle ScholarCrossref
Anshu  A, Price  MO, Price  FW.  Descemet’s stripping endothelial keratoplasty: long-term graft survival and risk factors for failure in eyes with preexisting glaucoma.  Ophthalmology. 2012;119(10):1982-1987. doi:10.1016/j.ophtha.2012.04.031PubMedGoogle ScholarCrossref
Price  MO, Thompson  RW  Jr, Price  FW  Jr.  Risk factors for various causes of failure in initial corneal grafts.  Arch Ophthalmol. 2003;121(8):1087-1092. doi:10.1001/archopht.121.8.1087PubMedGoogle ScholarCrossref
Wacker  K, Baratz  KH, Maguire  LJ, McLaren  JW, Patel  SV.  Descemet stripping endothelial keratoplasty for Fuchs’ endothelial corneal dystrophy: five-year results of a prospective study.  Ophthalmology. 2016;123(1):154-160. doi:10.1016/j.ophtha.2015.09.023PubMedGoogle ScholarCrossref
Terry  MA, Straiko  MD, Goshe  JM,  et al.  Endothelial keratoplasty: prospective, randomized, masked clinical trial comparing an injector with forceps for tissue insertion.  Am J Ophthalmol. 2013;156(1):61-68.e3. doi:10.1016/j.ajo.2013.01.025PubMedGoogle ScholarCrossref
Foster  JB, Swan  KR, Vasan  RA, Greven  MA, Walter  KA.  Small-incision Descemet stripping automated endothelial keratoplasty: a comparison of small-incision tissue injector and forceps techniques.  Cornea. 2012;31(1):42-47. doi:10.1097/ICO.0b013e3182120f9dPubMedGoogle ScholarCrossref
Ang  M, Saroj  L, Htoon  HM, Kiew  S, Mehta  JS, Tan  D.  Comparison of a donor insertion device to sheets glide in Descemet stripping endothelial keratoplasty: 3-year outcomes.  Am J Ophthalmol. 2014;157(6):1163-1169.e3. doi:10.1016/j.ajo.2014.02.049PubMedGoogle ScholarCrossref
Khor  WB, Han  SB, Mehta  JS, Tan  DT.  Descemet stripping automated endothelial keratoplasty with a donor insertion device: clinical results and complications in 100 eyes.  Am J Ophthalmol. 2013;156(4):773-779. doi:10.1016/j.ajo.2013.05.012PubMedGoogle ScholarCrossref
Gangwani  V, Obi  A, Hollick  EJ.  A prospective study comparing EndoGlide and Busin glide insertion techniques in Descemet stripping endothelial keratoplasty.  Am J Ophthalmol. 2012;153(1):38-43.e1. doi:10.1016/j.ajo.2011.06.013PubMedGoogle ScholarCrossref
Price  MO, Bidros  M, Gorovoy  M,  et al.  Effect of incision width on graft survival and endothelial cell loss after Descemet stripping automated endothelial keratoplasty.  Cornea. 2010;29:523-527. doi:10.1097/ICO.0b013e3181c11e5dPubMedGoogle ScholarCrossref
Terry  MA, Li  J, Goshe  J, Davis-Boozer  D.  Endothelial keratoplasty: the relationship between donor tissue size and donor endothelial survival.  Ophthalmology. 2011;118(10):1944-1949. doi:10.1016/j.ophtha.2011.02.023PubMedGoogle ScholarCrossref
Riddlesworth  TD, Kollman  C, Lass  JH,  et al.  A mathematical model to predict endothelial cell density following penetrating keratoplasty with selective dropout from graft failure.  Invest Ophthalmol Vis Sci. 2014;55(12):8409-8415. doi:10.1167/iovs.14-15683PubMedGoogle ScholarCrossref
Armitage  WJ, Dick  AD, Bourne  WM.  Predicting endothelial cell loss and long-term corneal graft survival.  Invest Ophthalmol Vis Sci. 2003;44(8):3326-3331. doi:10.1167/iovs.02-1255PubMedGoogle ScholarCrossref
Böhringer  D, Böhringer  S, Poxleitner  K,  et al.  Long-term graft survival in penetrating keratoplasty: the biexponential model of chronic endothelial cell loss revisited.  Cornea. 2010;29(10):1113-1117. doi:10.1097/ICO.0b013e3181d21d07PubMedGoogle ScholarCrossref
Williams  RS, Mayko  ZM, Friend  DJ, Straiko  MD, Clay  RD, Stoeger  CG.  Descemet membrane endothelial keratoplasty (DMEK) tissue preparation: a donor diabetes mellitus categorical risk stratification scale for assessing tissue suitability and reducing tissue loss.  Cornea. 2016;35(7):927-931. doi:10.1097/ICO.0000000000000892PubMedGoogle ScholarCrossref
Soper  MC, Marcovina  SM, Hoover  CK,  et al.  Validity of postmortem glycated hemoglobin to determine status of diabetes mellitus in corneal donors.  Cornea. 2017;36(8):942-947. doi:10.1097/ICO.0000000000001211PubMedGoogle ScholarCrossref
Centers for Disease Control and Prevention. Diabetes home: data and statistics. Published 2018. Accessed October 11, 2018.
Rodríguez-Calvo-de-Mora  M, Quilendrino  R, Ham  L,  et al.  Clinical outcome of 500 consecutive cases undergoing Descemet’s membrane endothelial keratoplasty.  Ophthalmology. 2015;122(3):464-470. doi:10.1016/j.ophtha.2014.09.004PubMedGoogle ScholarCrossref
Baydoun  L, Ham  L, Borderie  V,  et al.  Endothelial survival after Descemet membrane endothelial keratoplasty: effect of surgical indication and graft adherence status.  JAMA Ophthalmol. 2015;133(11):1277-1285. doi:10.1001/jamaophthalmol.2015.3064PubMedGoogle ScholarCrossref
Peraza-Nieves  J, Baydoun  L, Dapena  I,  et al.  Two-year clinical outcome of 500 consecutive cases undergoing Descemet membrane endothelial keratoplasty.  Cornea. 2017;36(6):655-660. doi:10.1097/ICO.0000000000001176PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience

Lookup An Activity



My Saved Searches

You currently have no searches saved.

With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right