[Skip to Content]
[Skip to Content Landing]

Imatinib Treatment for Locally Advanced or Metastatic Dermatofibrosarcoma ProtuberansA Systematic Review

Educational Objective
To recognize the utility of using imatinib for treating dermatofibrosarcoma protuberans (DFSP).
1 Credit CME
Key Points

Question  What are the outcomes associated with the use of imatinib in the treatment of metastatic or locally advanced dermatofibrosarcoma protuberans (DFSP)?

Findings  This systematic review finds that imatinib is associated with a complete or partial DFSP response in more than 60% of advanced cases, regardless of 400-mg or 800-mg daily dose. Severe adverse events occurred in about 15% of all cases.

Meaning  Imatinib should be considered a safe and effective therapy for advanced DFSP at a 400-mg/d starting dose.

Abstract

Importance  Dermatofibrosarcoma protuberans (DFSP) has the potential for local destruction and recurrence, although it carries a low risk of metastasis. Complete surgical resection with negative margins is considered the gold standard for treatment; however, there are cases that are unresectable owing to tumor extension or size or owing to risk of cosmetic and/or functional impairment. Imatinib treatment has been used for locally advanced or metastatic DFSP.

Objective  To evaluate the usefulness of imatinib for treating DFSP.

Evidence Review  We conducted a systematic review on the PubMed and Embase databases for articles published from September 2002 through October 2017 using the key words “dermatofibrosarcoma” or “dermatofibrosarcoma protuberans” AND “therapy” AND “imatinib.” References within retrieved articles were also reviewed to identify additional studies. Studies of adults with histologically proven DFSP treated with imatinib as monotherapy or as an adjuvant or neoadjuvant therapy to surgery were included. Extracted data were analyzed using descriptive statistics. PRISMA guidelines were followed. All analysis took place October through December 2017.

Findings  Nine studies met inclusion criteria; 152 patients were included. The calculated mean patient age was 49.3 years (range, 20-73 years). Calculated mean tumor diameter was 9.9 cm (range, 1.2-49.0 cm). When COL1A1-PDGFβ protein translocation (collagen, type 1, alpha 1–platelet-derived growth factor β) was reported, it was present in 90.9% of patients (111 of 122). Complete response was seen in 5.2% of patients (8 of 152), partial response in 55.2% (84 of 152), stable disease in 27.6% (42 of 152), and progression in 9.2% (14 of 152). Four of the 152 patients (2.6%) were excluded from the analysis owing to unknown or unevaluable response. There were no differences in response rate using 400-mg or 800-mg daily doses (67.5% or 27 of 40 patients for 400-mg dose vs 67.1% or 49 of 73 patients for 800-mg dose complete or partial response; P > .99). Adverse events were present in at least 73.5% of cases (78 of 106); severe adverse events were present in 15.1% of cases (20 of 132).

Conclusions and Relevance  Imatinib is a useful directed therapy in patients with DFSP who are not surgical candidates owing to disease extension or significant cosmetic or functional impairment. There seems to be no difference between 400- or 800-mg daily doses.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Accepted for Publication: November 4, 2018.

Corresponding Author: Kishwer S. Nehal, MD, Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 16 E 60th St, New York, NY 10022 (nehalk@mskcc.org).

Published Online: January 2, 2019. doi:10.1001/jamadermatol.2018.4940

Author Contributions: Drs Navarrete-Dechent and Nehal had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Navarrete-Dechent, Barker, Nehal.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Navarrete-Dechent, Mori, Dickson, Nehal.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Navarrete-Dechent.

Obtained funding: Navarrete-Dechent, Nehal.

Administrative, technical, or material support: Navarrete-Dechent, Mori, Nehal.

Supervision: Navarrete-Dechent, Barker, Nehal.

Conflict of Interest Disclosures: None reported.

Funding/Support: This research was funded in part by a grant from the National Cancer Institute/National Institutes of Health (P30-CA008748) made to the Memorial Sloan Kettering Cancer Center.

Role of the Funder/Sponsor: The funder had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

References
1.
Criscione  VD, Weinstock  MA.  Descriptive epidemiology of dermatofibrosarcoma protuberans in the United States, 1973 to 2002.  J Am Acad Dermatol. 2007;56(6):968-973. doi:10.1016/j.jaad.2006.09.006PubMedGoogle ScholarCrossref
2.
Mendenhall  WM, Zlotecki  RA, Scarborough  MT.  Dermatofibrosarcoma protuberans.  Cancer. 2004;101(11):2503-2508. doi:10.1002/cncr.20678PubMedGoogle ScholarCrossref
3.
Bowne  WB, Antonescu  CR, Leung  DH,  et al.  Dermatofibrosarcoma protuberans: a clinicopathologic analysis of patients treated and followed at a single institution.  Cancer. 2000;88(12):2711-2720. doi:10.1002/1097-0142(20000615)88:12<2711::AID-CNCR9>3.0.CO;2-MPubMedGoogle ScholarCrossref
4.
Acosta  AE, Vélez  CS.  Dermatofibrosarcoma protuberans.  Curr Treat Options Oncol. 2017;18(9):56. doi:10.1007/s11864-017-0498-5PubMedGoogle ScholarCrossref
5.
Thway  K, Noujaim  J, Jones  RL, Fisher  C.  Dermatofibrosarcoma protuberans: pathology, genetics, and potential therapeutic strategies.  Ann Diagn Pathol. 2016;25:64-71. doi:10.1016/j.anndiagpath.2016.09.013PubMedGoogle ScholarCrossref
6.
Kreicher  KL, Kurlander  DE, Gittleman  HR, Barnholtz-Sloan  JS, Bordeaux  JS.  Incidence and survival of primary dermatofibrosarcoma protuberans in the United States.  Dermatol Surg. 2016;42(suppl 1):S24-S31. doi:10.1097/DSS.0000000000000300PubMedGoogle ScholarCrossref
7.
Mentzel  T, Beham  A, Katenkamp  D, Dei Tos  AP, Fletcher  CD.  Fibrosarcomatous (“high-grade”) dermatofibrosarcoma protuberans: clinicopathologic and immunohistochemical study of a series of 41 cases with emphasis on prognostic significance.  Am J Surg Pathol. 1998;22(5):576-587. doi:10.1097/00000478-199805000-00009PubMedGoogle ScholarCrossref
8.
Criscito  MC, Martires  KJ, Stein  JA.  Prognostic factors, treatment, and survival in dermatofibrosarcoma protuberans.  JAMA Dermatol. 2016;152(12):1365-1371. doi:10.1001/jamadermatol.2016.1886PubMedGoogle ScholarCrossref
9.
Rutkowski  P, Klimczak  A, Ługowska  I,  et al.  Long-term results of treatment of advanced dermatofibrosarcoma protuberans (DFSP) with imatinib mesylate: the impact of fibrosarcomatous transformation.  Eur J Surg Oncol. 2017;43(6):1134-1141. doi:10.1016/j.ejso.2017.03.011PubMedGoogle ScholarCrossref
10.
Fields  RC, Hameed  M, Qin  LX,  et al.  Dermatofibrosarcoma protuberans (DFSP): predictors of recurrence and the use of systemic therapy.  Ann Surg Oncol. 2011;18(2):328-336. doi:10.1245/s10434-010-1316-5PubMedGoogle ScholarCrossref
11.
Rutkowski  P, Debiec-Rychter  M.  Current treatment options for dermatofibrosarcoma protuberans.  Expert Rev Anticancer Ther. 2015;15(8):901-909. doi:10.1586/14737140.2015.1052799PubMedGoogle ScholarCrossref
12.
Lowe  GC, Onajin  O, Baum  CL,  et al.  A comparison of Mohs micrographic surgery and wide local excision for treatment of dermatofibrosarcoma protuberans with long-term follow-up: the Mayo Clinic experience.  Dermatol Surg. 2017;43(1):98-106. doi:10.1097/DSS.0000000000000910PubMedGoogle ScholarCrossref
13.
Sirvent  N, Maire  G, Pedeutour  F.  Genetics of dermatofibrosarcoma protuberans family of tumors: from ring chromosomes to tyrosine kinase inhibitor treatment.  Genes Chromosomes Cancer. 2003;37(1):1-19. doi:10.1002/gcc.10202PubMedGoogle ScholarCrossref
14.
Simon  MP, Pedeutour  F, Sirvent  N,  et al.  Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma.  Nat Genet. 1997;15(1):95-98. doi:10.1038/ng0197-95PubMedGoogle ScholarCrossref
15.
Rubin  BP, Schuetze  SM, Eary  JF,  et al.  Molecular targeting of platelet-derived growth factor B by imatinib mesylate in a patient with metastatic dermatofibrosarcoma protuberans.  J Clin Oncol. 2002;20(17):3586-3591. doi:10.1200/JCO.2002.01.027PubMedGoogle ScholarCrossref
16.
Bashir  S, Tariq  M, Aslam  HM,  et al.  Orbital dermatofibrosarcoma protuberans with intracranial extension preceded by recurrent leiomyoma of the orbit: a case report.  J Med Case Rep. 2015;9:96. doi:10.1186/s13256-015-0561-4PubMedGoogle ScholarCrossref
17.
Fontecilla  NM, Kittler  NW, Geskin  L,  et al.  Recurrent dermatofibrosarcoma protuberans treated with neoadjuvant imatinib mesylate followed by Mohs micrographic surgery.  JAAD Case Rep. 2017;3(6):467-469. doi:10.1016/j.jdcr.2017.06.019PubMedGoogle ScholarCrossref
18.
Rutkowski  P, Van Glabbeke  M, Rankin  CJ,  et al; European Organisation for Research and Treatment of Cancer Soft Tissue/Bone Sarcoma Group; Southwest Oncology Group.  Imatinib mesylate in advanced dermatofibrosarcoma protuberans: pooled analysis of two phase II clinical trials.  J Clin Oncol. 2010;28(10):1772-1779. doi:10.1200/JCO.2009.25.7899PubMedGoogle ScholarCrossref
19.
National Comprehensive Cancer Network. Dermatofibrosarcoma protuberans (Version 1.2018). 2017; https://www.nccn.org/professionals/physician_gls/pdf/dfsp.pdf. Accessed October 27, 2017.
20.
Saiag  P, Grob  JJ, Lebbe  C,  et al.  Diagnosis and treatment of dermatofibrosarcoma protuberans: European consensus-based interdisciplinary guideline.  Eur J Cancer. 2015;51(17):2604-2608. doi:10.1016/j.ejca.2015.06.108PubMedGoogle ScholarCrossref
21.
Jørgensen  L, Paludan-Müller  AS, Laursen  DR,  et al.  Evaluation of the Cochrane tool for assessing risk of bias in randomized clinical trials: overview of published comments and analysis of user practice in Cochrane and non-Cochrane reviews.  Syst Rev. 2016;5:80. doi:10.1186/s13643-016-0259-8PubMedGoogle ScholarCrossref
22.
Hozo  SP, Djulbegovic  B, Hozo  I.  Estimating the mean and variance from the median, range, and the size of a sample.  BMC Med Res Methodol. 2005;5:13. doi:10.1186/1471-2288-5-13PubMedGoogle ScholarCrossref
23.
McArthur  GA, Demetri  GD, van Oosterom  A,  et al.  Molecular and clinical analysis of locally advanced dermatofibrosarcoma protuberans treated with imatinib: Imatinib Target Exploration Consortium Study B2225.  J Clin Oncol. 2005;23(4):866-873. doi:10.1200/JCO.2005.07.088PubMedGoogle ScholarCrossref
24.
Han  A, Chen  EH, Niedt  G, Sherman  W, Ratner  D.  Neoadjuvant imatinib therapy for dermatofibrosarcoma protuberans.  Arch Dermatol. 2009;145(7):792-796. doi:10.1001/archdermatol.2009.140PubMedGoogle ScholarCrossref
25.
Ugurel  S, Mentzel  T, Utikal  J,  et al.  Neoadjuvant imatinib in advanced primary or locally recurrent dermatofibrosarcoma protuberans: a multicenter phase II DeCOG trial with long-term follow-up.  Clin Cancer Res. 2014;20(2):499-510. doi:10.1158/1078-0432.CCR-13-1411PubMedGoogle ScholarCrossref
26.
Heinrich  MC, Joensuu  H, Demetri  GD,  et al; Imatinib Target Exploration Consortium Study B2225.  Phase II, open-label study evaluating the activity of imatinib in treating life-threatening malignancies known to be associated with imatinib-sensitive tyrosine kinases.  Clin Cancer Res. 2008;14(9):2717-2725. doi:10.1158/1078-0432.CCR-07-4575PubMedGoogle ScholarCrossref
27.
Wang  C, Luo  Z, Chen  J,  et al.  Target therapy of unresectable or metastatic dermatofibrosarcoma protuberans with imatinib mesylate: an analysis on 22 Chinese patients.  Medicine (Baltimore). 2015;94(17):e773. doi:10.1097/MD.0000000000000773PubMedGoogle ScholarCrossref
28.
Stacchiotti  S, Pantaleo  MA, Negri  T,  et al.  Efficacy and biological activity of imatinib in metastatic dermatofibrosarcoma protuberans (DFSP).  Clin Cancer Res. 2016;22(4):837-846. doi:10.1158/1078-0432.CCR-15-1243PubMedGoogle ScholarCrossref
29.
Kérob  D, Porcher  R, Vérola  O,  et al.  Imatinib mesylate as a preoperative therapy in dermatofibrosarcoma: results of a multicenter phase II study on 25 patients.  Clin Cancer Res. 2010;16(12):3288-3295. doi:10.1158/1078-0432.CCR-09-3401PubMedGoogle ScholarCrossref
30.
Tazzari  M, Indio  V, Vergani  B,  et al.  Adaptive immunity in fibrosarcomatous dermatofibrosarcoma protuberans and response to imatinib treatment.  J Invest Dermatol. 2017;137(2):484-493. doi:10.1016/j.jid.2016.06.634PubMedGoogle ScholarCrossref
31.
Ugurel  S, Becker  JC.  Imatinib in dermatofibrosarcoma: targeted therapy or immunotherapy?  J Invest Dermatol. 2017;137(2):277-279. doi:10.1016/j.jid.2016.10.027PubMedGoogle ScholarCrossref
32.
Saab  J, Rosenthal  IM, Wang  L,  et al.  Dermatofibrosarcoma protuberans-like tumor with COL1A1 copy number gain in the absence of t(17;22).  Am J Dermatopathol. 2017;39(4):304-309. doi:10.1097/DAD.0000000000000746PubMedGoogle ScholarCrossref
33.
van Oosterom  AT, Judson  I, Verweij  J,  et al; European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group.  Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a phase I study.  Lancet. 2001;358(9291):1421-1423. doi:10.1016/S0140-6736(01)06535-7PubMedGoogle ScholarCrossref
34.
Verweij  J, Casali  PG, Zalcberg  J,  et al.  Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial.  Lancet. 2004;364(9440):1127-1134. doi:10.1016/S0140-6736(04)17098-0PubMedGoogle ScholarCrossref
35.
Pretel-Irazabal  M, Tuneu-Valls  A, Ormaechea-Pérez  N.  Adverse skin effects of imatinib, a tyrosine kinase inhibitor.  Actas Dermosifiliogr. 2014;105(7):655-662. doi:10.1016/j.ad.2013.01.009PubMedGoogle ScholarCrossref
36.
Ransohoff  JD, Kwong  BY.  Cutaneous adverse events of targeted therapies for hematolymphoid malignancies.  Clin Lymphoma Myeloma Leuk. 2017;17(12):834-851. doi:10.1016/j.clml.2017.07.005PubMedGoogle ScholarCrossref
37.
Hochhaus  A, O’Brien  SG, Guilhot  F,  et al; IRIS Investigators.  Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia.  Leukemia. 2009;23(6):1054-1061. doi:10.1038/leu.2009.38PubMedGoogle ScholarCrossref
38.
Druker  BJ, Guilhot  F, O’Brien  SG,  et al; IRIS Investigators.  Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia.  N Engl J Med. 2006;355(23):2408-2417. doi:10.1056/NEJMoa062867PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Topics
State Requirements