[Skip to Content]
[Skip to Content Landing]

Breast Cancer TreatmentA Review

Educational Objective
To review the clinical management of patients with breast cancer.
1 Credit CME
Abstract

Importance  Breast cancer will be diagnosed in 12% of women in the United States over the course of their lifetimes and more than 250 000 new cases of breast cancer were diagnosed in the United States in 2017. This review focuses on current approaches and evolving strategies for local and systemic therapy of breast cancer.

Observations  Breast cancer is categorized into 3 major subtypes based on the presence or absence of molecular markers for estrogen or progesterone receptors and human epidermal growth factor 2 (ERBB2; formerly HER2): hormone receptor positive/ERBB2 negative (70% of patients), ERBB2 positive (15%-20%), and triple-negative (tumors lacking all 3 standard molecular markers; 15%). More than 90% of breast cancers are not metastatic at the time of diagnosis. For people presenting without metastatic disease, therapeutic goals are tumor eradication and preventing recurrence. Triple-negative breast cancer is more likely to recur than the other 2 subtypes, with 85% 5-year breast cancer–specific survival for stage I triple-negative tumors vs 94% to 99% for hormone receptor positive and ERBB2 positive. Systemic therapy for nonmetastatic breast cancer is determined by subtype: patients with hormone receptor–positive tumors receive endocrine therapy, and a minority receive chemotherapy as well; patients with ERBB2-positive tumors receive ERBB2-targeted antibody or small-molecule inhibitor therapy combined with chemotherapy; and patients with triple-negative tumors receive chemotherapy alone. Local therapy for all patients with nonmetastatic breast cancer consists of surgical resection, with consideration of postoperative radiation if lumpectomy is performed. Increasingly, some systemic therapy is delivered before surgery. Tailoring postoperative treatment based on preoperative treatment response is under investigation. Metastatic breast cancer is treated according to subtype, with goals of prolonging life and palliating symptoms. Median overall survival for metastatic triple-negative breast cancer is approximately 1 year vs approximately 5 years for the other 2 subtypes.

Conclusions and Relevance  Breast cancer consists of 3 major tumor subtypes categorized according to estrogen or progesterone receptor expression and ERBB2 gene amplification. The 3 subtypes have distinct risk profiles and treatment strategies. Optimal therapy for each patient depends on tumor subtype, anatomic cancer stage, and patient preferences.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Corresponding Author: Eric P. Winer, MD, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215 (eric_winer@dfci.harvard.edu).

Accepted for Publication: December 10, 2018.

Author Contributions: Drs Waks and Winer had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Both authors.

Acquisition, analysis, or interpretation of data: Waks.

Drafting of the manuscript: Both authors.

Critical revision of the manuscript for important intellectual content: Both authors.

Administrative, technical, or material support: Both authors.

Supervision: Both authors.

Conflict of Interest Disclosures: Dr Winer reported personal fees from Genentech, Roche, Lilly, Tessaro, GlaxoSmithKline, Leap Pharmaceuticals, Carrick Therapeutics, and Jounce Pharmaceuticals and stock options from Verastem outside the submitted work. No other disclosures were reported.

Additional Contributions: We gratefully acknowledge Jennifer Bellon, MD (Dana-Farber Cancer Institute, Boston, Massachusetts), and Tari King, MD (Brigham and Women’s Hospital, Boston, Massachusetts), for their assistance in reviewing portions of this manuscript. They did not receive compensation for their contributions.

References
1.
Bray  F, Ferlay  J, Soerjomataram  I, Siegel  RL, Torre  LA, Jemal  A.  Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.  CA Cancer J Clin. 2018;68(6):394-424. doi:10.3322/caac.21492PubMedGoogle ScholarCrossref
2.
National Institutes of Health; National Cancer Institute. Surveillance, Epidemiology, and End Results Program. Cancer stat facts: female breast cancer. https://seer.cancer.gov/statfacts/html/breast.html. Accessed January 23, 2018.
3.
Caughran  J, Braun  TM, Breslin  TM,  et al.  The effect of the 2009 USPSTF breast cancer screening recommendations on breast cancer in Michigan: a longitudinal study.  Breast J. 2018;24(5):730-737. doi:10.1111/tbj.13034PubMedGoogle ScholarCrossref
4.
Morrow  M. Physical examination of the breast. In: Harris  JR, Lippman  ME, Morrow  M, Osborne  CK, eds.  Diseases of the Breast. Philadelphia, PA: Wolters Kluwer Health; 2014:chap 3.
5.
Dillon  D, Guidi  AJ, Schnitt  SJ. Pathology of invasive breast cancer. In: Harris  JR, Lippman  ME, Morrow  M, Osborne  CK, eds.  Diseases of the Breast. 5th ed. Philadelphia, PA: Wolters Kluwer Health; 2014.
6.
Joshi  H, Press  MF. Molecular oncology of breast cancer. In: Bland  KI, Copeland  EM, Klimberg  VS, Gradishar  WJ, eds.  The Breast. Philadelphia, PA: Elsevier; 2018:22. doi:10.1016/B978-0-323-35955-9.00022-2
7.
Hammond  ME, Hayes  DF, Dowsett  M,  et al.  American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer.  J Clin Oncol. 2010;28(16):2784-2795. doi:10.1200/JCO.2009.25.6529PubMedGoogle ScholarCrossref
8.
Piccart-Gebhart  MJ, Procter  M, Leyland-Jones  B,  et al; Herceptin Adjuvant (HERA) Trial Study Team.  Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer.  N Engl J Med. 2005;353(16):1659-1672. doi:10.1056/NEJMoa052306PubMedGoogle ScholarCrossref
9.
Wolff  AC, Hammond  ME, Hicks  DG,  et al; American Society of Clinical Oncology; College of American Pathologists.  Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update.  J Clin Oncol. 2013;31(31):3997-4013. doi:10.1200/JCO.2013.50.9984PubMedGoogle ScholarCrossref
10.
Denkert  C, Liedtke  C, Tutt  A, von Minckwitz  G.  Molecular alterations in triple-negative breast cancer-the road to new treatment strategies.  Lancet. 2017;389(10087):2430-2442. doi:10.1016/S0140-6736(16)32454-0PubMedGoogle ScholarCrossref
11.
Foulkes  WD, Smith  IE, Reis-Filho  JS.  Triple-negative breast cancer.  N Engl J Med. 2010;363(20):1938-1948. doi:10.1056/NEJMra1001389PubMedGoogle ScholarCrossref
12.
Howlader  N, Altekruse  SF, Li  CI,  et al.  US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status.  J Natl Cancer Inst. 2014;106(5):dju055. doi:10.1093/jnci/dju055PubMedGoogle ScholarCrossref
13.
Chavez-MacGregor  M, Mittendorf  EA, Clarke  CA, Lichtensztajn  DY, Hunt  KK, Giordano  SH.  Incorporating tumor characteristics to the American Joint Committee on Cancer Breast Cancer Staging System.  Oncologist. 2017;22(11):1292-1300. doi:10.1634/theoncologist.2017-0116PubMedGoogle ScholarCrossref
14.
Bardia  A, Mayer  IA, Diamond  JR,  et al.  Efficacy and Safety of anti-trop-2 antibody drug conjugate sacituzumab govitecan (IMMU-132) in heavily pretreated patients with metastatic triple-negative breast cancer.  J Clin Oncol. 2017;35(19):2141-2148. doi:10.1200/JCO.2016.70.8297PubMedGoogle ScholarCrossref
15.
Swain  SM, Baselga  J, Kim  SB,  et al; CLEOPATRA Study Group.  Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer.  N Engl J Med. 2015;372(8):724-734. doi:10.1056/NEJMoa1413513PubMedGoogle ScholarCrossref
16.
Robertson  JFR, Llombart-Cussac  A, Feltl  D,  et al. Fulvestrant 500 mg versus anastrazole as first-line treatment for advanced breast cancer: overall survival from the phase II 'first' study. In: San Antonio Breast Cancer Symposium; December 9-13, 2014; San Antonio, TX. Abstract S6-04.
17.
Davies  C, Godwin  J, Gray  R,  et al; Early Breast Cancer Trialists’ Collaborative Group (EBCTCG).  Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials.  Lancet. 2011;378(9793):771-784. doi:10.1016/S0140-6736(11)60993-8PubMedGoogle ScholarCrossref
18.
Early Breast Cancer Trialists’ Collaborative Group (EBCTCG).  Aromatase inhibitors versus tamoxifen in early breast cancer: patient-level meta-analysis of the randomised trials.  Lancet. 2015;386(10001):1341-1352. doi:10.1016/S0140-6736(15)61074-1PubMedGoogle ScholarCrossref
19.
Pagani  O, Regan  MM, Walley  BA,  et al; TEXT and SOFT Investigators; International Breast Cancer Study Group.  Adjuvant exemestane with ovarian suppression in premenopausal breast cancer.  N Engl J Med. 2014;371(2):107-118. doi:10.1056/NEJMoa1404037PubMedGoogle ScholarCrossref
20.
Francis  PA, Pagani  O, Fleming  GF,  et al; SOFT and TEXT Investigators and the International Breast Cancer Study Group.  Tailoring adjuvant endocrine therapy for premenopausal breast cancer.  N Engl J Med. 2018;379(2):122-137. doi:10.1056/NEJMoa1803164PubMedGoogle ScholarCrossref
21.
Pan  H, Gray  R, Braybrooke  J,  et al; EBCTCG.  20-Year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years.  N Engl J Med. 2017;377(19):1836-1846. doi:10.1056/NEJMoa1701830PubMedGoogle ScholarCrossref
22.
Davies  C, Pan  H, Godwin  J,  et al; Adjuvant Tamoxifen: Longer Against Shorter (ATLAS) Collaborative Group.  Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial.  Lancet. 2013;381(9869):805-816. doi:10.1016/S0140-6736(12)61963-1PubMedGoogle ScholarCrossref
23.
Gray  RG, Rea  D, Handley  D, Bowden  SJ, Perry  P.  aTTom: Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years in 6,953 women with early breast cancer.  J Clin Oncol. 2013;31(18 suppl). doi:10.1200/jco.2013.31.18_suppl.5Google Scholar
24.
Goss  PE, Ingle  JN, Pritchard  KI,  et al.  Extending aromatase-inhibitor adjuvant therapy to 10 years.  N Engl J Med. 2016;375(3):209-219. doi:10.1056/NEJMoa1604700PubMedGoogle ScholarCrossref
25.
Sparano  JA, Gray  RJ, Makower  DF,  et al.  Prospective validation of a 21-gene expression assay in breast cancer.  N Engl J Med. 2015;373(21):2005-2014. doi:10.1056/NEJMoa1510764PubMedGoogle ScholarCrossref
26.
Gluz  O, Nitz  UA, Christgen  M,  et al.  West German Study Group Phase III PlanB Trial: first prospective outcome data for the 21-gene recurrence score assay and concordance of prognostic markers by central and local pathology assessment.  J Clin Oncol. 2016;34(20):2341-2349. doi:10.1200/JCO.2015.63.5383PubMedGoogle ScholarCrossref
27.
Sparano  JA, Gray  RJ, Makower  DF,  et al.  Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer.  N Engl J Med. 2018;379(2):111-121. doi:10.1056/NEJMoa1804710PubMedGoogle ScholarCrossref
28.
Jasem  J, Fisher  CM, Amini  A,  et al.  The 21-gene recurrence score assay for node-positive, early-stage breast cancer and impact of RxPONDER Trial on chemotherapy decision-making: have clinicians already decided?  J Natl Compr Canc Netw. 2017;15(4):494-503. doi:10.6004/jnccn.2017.0049PubMedGoogle ScholarCrossref
29.
Cardoso  F, van’t Veer  LJ, Bogaerts  J,  et al; MINDACT Investigators.  70-Gene signature as an aid to treatment decisions in early-stage breast cancer.  N Engl J Med. 2016;375(8):717-729. doi:10.1056/NEJMoa1602253PubMedGoogle ScholarCrossref
30.
Harris  LN, Ismaila  N, McShane  LM,  et al; American Society of Clinical Oncology.  Use of biomarkers to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer: American Society of Clinical Oncology Clinical Practice Guideline.  J Clin Oncol. 2016;34(10):1134-1150. doi:10.1200/JCO.2015.65.2289PubMedGoogle ScholarCrossref
31.
Krop  I, Ismaila  N, Andre  F,  et al.  Use of biomarkers to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer: American Society of Clinical Oncology clinical practice guideline focused update.  J Clin Oncol. 2017;35(24):2838-2847. doi:10.1200/JCO.2017.74.0472PubMedGoogle ScholarCrossref
32.
Albain  KS, Barlow  WE, Shak  S,  et al; Breast Cancer Intergroup of North America.  Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial.  Lancet Oncol. 2010;11(1):55-65. doi:10.1016/S1470-2045(09)70314-6PubMedGoogle ScholarCrossref
33.
Duffy  MJ, Harbeck  N, Nap  M,  et al.  Clinical use of biomarkers in breast cancer: updated guidelines from the European Group on Tumor Markers (EGTM).  Eur J Cancer. 2017;75:284-298. doi:10.1016/j.ejca.2017.01.017PubMedGoogle ScholarCrossref
34.
Peto  R, Davies  C, Godwin  J,  et al; Early Breast Cancer Trialists’ Collaborative Group (EBCTCG).  Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials.  Lancet. 2012;379(9814):432-444. doi:10.1016/S0140-6736(11)61625-5PubMedGoogle ScholarCrossref
35.
Bonadonna  G, Brusamolino  E, Valagussa  P,  et al.  Combination chemotherapy as an adjuvant treatment in operable breast cancer.  N Engl J Med. 1976;294(8):405-410. doi:10.1056/NEJM197602192940801PubMedGoogle ScholarCrossref
36.
Fisher  B, Brown  AM, Dimitrov  NV,  et al.  Two months of doxorubicin-cyclophosphamide with and without interval reinduction therapy compared with 6 months of cyclophosphamide, methotrexate, and fluorouracil in positive-node breast cancer patients with tamoxifen-nonresponsive tumors: results from the National Surgical Adjuvant Breast and Bowel Project B-15.  J Clin Oncol. 1990;8(9):1483-1496. doi:10.1200/JCO.1990.8.9.1483PubMedGoogle ScholarCrossref
37.
Henderson  IC, Berry  DA, Demetri  GD,  et al. Improved disease-free and overall survival from the addition of sequential paclitaxel but not from the escalation of doxorubicin dose level in the adjuvant chemotherapy of patients with node-positive primary breast cancer. In: American Society of Clinical Oncology Annual Meeting; May 16-19, 1998; Los Angeles, CA. Abstract 101a.
38.
Sparano  JA, Wang  M, Martino  S,  et al.  Weekly paclitaxel in the adjuvant treatment of breast cancer.  N Engl J Med. 2008;358(16):1663-1671. doi:10.1056/NEJMoa0707056PubMedGoogle ScholarCrossref
39.
Martín  M, Seguí  MA, Antón  A,  et al; GEICAM 9805 Investigators.  Adjuvant docetaxel for high-risk, node-negative breast cancer.  N Engl J Med. 2010;363(23):2200-2210. doi:10.1056/NEJMoa0910320PubMedGoogle ScholarCrossref
40.
Citron  ML, Berry  DA, Cirrincione  C,  et al.  Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741.  J Clin Oncol. 2003;21(8):1431-1439. doi:10.1200/JCO.2003.09.081PubMedGoogle ScholarCrossref
41.
Gray  R, Bradley  R, Braybrooke  J,  et al. Increasing the dose intensity of adjuvant chemotherapy: an EBCTCG meta-analysis. In: San Antonio Breast Cancer Symposium; December 5-7, 2017; San Antonio, TX. Abstract GS1-01.
42.
Jones  S, Holmes  FA, O’Shaughnessy  J,  et al.  Docetaxel with cyclophosphamide is associated with an overall survival benefit compared with doxorubicin and cyclophosphamide: 7-year follow-up of US Oncology Research Trial 9735.  J Clin Oncol. 2009;27(8):1177-1183. doi:10.1200/JCO.2008.18.4028PubMedGoogle ScholarCrossref
43.
Blum  JL, Flynn  PJ, Yothers  G,  et al.  Anthracyclines in early breast cancer: the ABC Trials-USOR 06-090, NSABP B-46-I/USOR 07132, and NSABP B-49 (NRG Oncology).  J Clin Oncol. 2017;35(23):2647-2655. doi:10.1200/JCO.2016.71.4147PubMedGoogle ScholarCrossref
44.
Masuda  N, Lee  SJ, Ohtani  S,  et al.  Adjuvant capecitabine for breast cancer after preoperative chemotherapy.  N Engl J Med. 2017;376(22):2147-2159. doi:10.1056/NEJMoa1612645PubMedGoogle ScholarCrossref
45.
von Minckwitz  G, Loibl  S, Schneeweiss  A,  et al. Early survival analysis of the randomized phase II trial investigating the addition of carboplatin to neoadjuvant therapy for triple-negative and HER2-positive early breast cancer (GeparSixto). In: San Antonio Breast Cancer Symposium; December 8-12, 2015; San Antonio, TX. Abstract S2-04.
46.
Sikov  WM, Berry  DA, Perou  CM,  et al. Event-free and overall survival following neoadjuvant weekly paclitaxel and dose-dense AC +/− carboplatin and/or bevacizumab in triple-negative breast cancer: outcomes from CALGB 40603 (Alliance). In: San Antonio Breast Cancer Symposium; December 8-12, 2015; San Antonio, TX. Abstract S2–05.
47.
Cortazar  P, Zhang  L, Untch  M,  et al.  Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis.  Lancet. 2014;384(9938):164-172. doi:10.1016/S0140-6736(13)62422-8PubMedGoogle ScholarCrossref
48.
Romond  EH, Perez  EA, Bryant  J,  et al.  Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer.  N Engl J Med. 2005;353(16):1673-1684. doi:10.1056/NEJMoa052122PubMedGoogle ScholarCrossref
49.
Slamon  D, Eiermann  W, Robert  N,  et al; Breast Cancer International Research Group.  Adjuvant trastuzumab in HER2-positive breast cancer.  N Engl J Med. 2011;365(14):1273-1283. doi:10.1056/NEJMoa0910383PubMedGoogle ScholarCrossref
50.
Breast Cancer. National Comprehensive Cancer Network: National Clinical Practice Guidelines in Oncology. Version 3. 2018. https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf.
51.
Pivot  X, Romieu  G, Debled  M,  et al; PHARE trial investigators.  6 Months versus 12 months of adjuvant trastuzumab for patients with HER2-positive early breast cancer (PHARE): a randomised phase 3 trial.  Lancet Oncol. 2013;14(8):741-748. doi:10.1016/S1470-2045(13)70225-0PubMedGoogle ScholarCrossref
52.
Cameron  D, Piccart-Gebhart  MJ, Gelber  RD,  et al; Herceptin Adjuvant (HERA) Trial Study Team.  11 Years’ follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the HERceptin Adjuvant (HERA) trial.  Lancet. 2017;389(10075):1195-1205. doi:10.1016/S0140-6736(16)32616-2PubMedGoogle ScholarCrossref
53.
Earl  HM, Hiller  L, Vallier  A-L,  et al.  PERSEPHONE: 6 versus 12 months (m) of adjuvant trastuzumab in patients (pts) with HER2 positive (+) early breast cancer (EBC): randomised phase 3 non-inferiority trial with definitive 4-year (yr) disease-free survival (DFS) results.  J Clin Oncol. 2018;36(15_suppl). doi:10.1200/JCO.2018.36.15_suppl.506Google Scholar
54.
Joensuu  H, Kellokumpu-Lehtinen  PL, Bono  P,  et al; FinHer Study Investigators.  Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer.  N Engl J Med. 2006;354(8):809-820. doi:10.1056/NEJMoa053028PubMedGoogle ScholarCrossref
55.
Tolaney  SM, Barry  WT, Guo  H,  et al.  Seven-year follow-up of adjuvant paclitaxel and trastuzumb (APT trial) for node-negative, HER2+ breast cancer.  J Clin Oncol. 2017;35(15 suppl). doi:10.1200/JCO.2017.35.15_suppl.511Google Scholar
56.
von Minckwitz  G, Procter  M, de Azambuja  E,  et al; APHINITY Steering Committee and Investigators.  Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer.  N Engl J Med. 2017;377(2):122-131. doi:10.1056/NEJMoa1703643PubMedGoogle ScholarCrossref
57.
Martin  M, Holmes  FA, Ejlertsen  B,  et al; ExteNET Study Group.  Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-year analysis of a randomised, double-blind, placebo-controlled, phase 3 trial.  Lancet Oncol. 2017;18(12):1688-1700. doi:10.1016/S1470-2045(17)30717-9PubMedGoogle ScholarCrossref
58.
Fisher  B, Anderson  S, Bryant  J,  et al.  Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer.  N Engl J Med. 2002;347(16):1233-1241. doi:10.1056/NEJMoa022152PubMedGoogle ScholarCrossref
59.
Krag  DN, Anderson  SJ, Julian  TB,  et al.  Sentinel-lymph-node resection compared with conventional axillary-lymph-node dissection in clinically node-negative patients with breast cancer: overall survival findings from the NSABP B-32 randomised phase 3 trial.  Lancet Oncol. 2010;11(10):927-933. doi:10.1016/S1470-2045(10)70207-2PubMedGoogle ScholarCrossref
60.
Krag  DN, Anderson  SJ, Julian  TB,  et al; National Surgical Adjuvant Breast and Bowel Project.  Technical outcomes of sentinel-lymph-node resection and conventional axillary-lymph-node dissection in patients with clinically node-negative breast cancer: results from the NSABP B-32 randomised phase III trial.  Lancet Oncol. 2007;8(10):881-888. doi:10.1016/S1470-2045(07)70278-4PubMedGoogle ScholarCrossref
61.
Giuliano  AE, Hunt  KK, Ballman  KV,  et al.  Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: a randomized clinical trial.  JAMA. 2011;305(6):569-575. doi:10.1001/jama.2011.90PubMedGoogle ScholarCrossref
62.
Donker  M, van Tienhoven  G, Straver  ME,  et al.  Radiotherapy or surgery of the axilla after a positive sentinel node in breast cancer (EORTC 10981-22023 AMAROS): a randomised, multicentre, open-label, phase 3 non-inferiority trial.  Lancet Oncol. 2014;15(12):1303-1310. doi:10.1016/S1470-2045(14)70460-7PubMedGoogle ScholarCrossref
63.
Early Breast Cancer Trialists’ Collaborative Group (EBCTCG).  Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials.  Lancet Oncol. 2018;19(1):27-39. doi:10.1016/S1470-2045(17)30777-5PubMedGoogle ScholarCrossref
64.
Rastogi  P, Anderson  SJ, Bear  HD,  et al.  Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27.  J Clin Oncol. 2008;26(5):778-785. doi:10.1200/JCO.2007.15.0235PubMedGoogle ScholarCrossref
65.
Pilewskie  M, Morrow  M.  Axillary nodal management following neoadjuvant chemotherapy: a review.  JAMA Oncol. 2017;3(4):549-555. doi:10.1001/jamaoncol.2016.4163PubMedGoogle ScholarCrossref
66.
Darby  S, McGale  P, Correa  C,  et al; Early Breast Cancer Trialists’ Collaborative Group (EBCTCG).  Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials.  Lancet. 2011;378(9804):1707-1716. doi:10.1016/S0140-6736(11)61629-2PubMedGoogle ScholarCrossref
67.
Whelan  TJ, Pignol  JP, Levine  MN,  et al.  Long-term results of hypofractionated radiation therapy for breast cancer.  N Engl J Med. 2010;362(6):513-520. doi:10.1056/NEJMoa0906260PubMedGoogle ScholarCrossref
68.
Haviland  JS, Owen  JR, Dewar  JA,  et al; START Trialists’ Group.  The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials.  Lancet Oncol. 2013;14(11):1086-1094. doi:10.1016/S1470-2045(13)70386-3PubMedGoogle ScholarCrossref
69.
Coles  CE, Griffin  CL, Kirby  AM,  et al; IMPORT Trialists.  Partial-breast radiotherapy after breast conservation surgery for patients with early breast cancer (UK IMPORT LOW trial): 5-year results from a multicentre, randomised, controlled, phase 3, non-inferiority trial.  Lancet. 2017;390(10099):1048-1060. doi:10.1016/S0140-6736(17)31145-5PubMedGoogle ScholarCrossref
70.
Correa  C, Harris  EE, Leonardi  MC,  et al.  Accelerated partial breast irradiation: executive summary for the update of an ASTRO evidence-based consensus statement.  Pract Radiat Oncol. 2017;7(2):73-79. doi:10.1016/j.prro.2016.09.007PubMedGoogle ScholarCrossref
71.
Bartelink  H, Horiot  JC, Poortmans  PM,  et al.  Impact of a higher radiation dose on local control and survival in breast-conserving therapy of early breast cancer: 10-year results of the randomized boost versus no boost EORTC 22881-10882 trial.  J Clin Oncol. 2007;25(22):3259-3265. doi:10.1200/JCO.2007.11.4991PubMedGoogle ScholarCrossref
72.
Hughes  KS, Schnaper  LA, Bellon  JR,  et al.  Lumpectomy plus tamoxifen with or without irradiation in women age 70 years or older with early breast cancer: long-term follow-up of CALGB 9343.  J Clin Oncol. 2013;31(19):2382-2387. doi:10.1200/JCO.2012.45.2615PubMedGoogle ScholarCrossref
73.
Kunkler  IH, Williams  LJ, Jack  WJ, Cameron  DA, Dixon  JM; PRIME II investigators.  Breast-conserving surgery with or without irradiation in women aged 65 years or older with early breast cancer (PRIME II): a randomised controlled trial.  Lancet Oncol. 2015;16(3):266-273. doi:10.1016/S1470-2045(14)71221-5PubMedGoogle ScholarCrossref
74.
McGale  P, Taylor  C, Correa  C,  et al; EBCTCG (Early Breast Cancer Trialists’ Collaborative Group).  Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials.  Lancet. 2014;383(9935):2127-2135. doi:10.1016/S0140-6736(14)60488-8PubMedGoogle ScholarCrossref
75.
Whelan  TJ, Olivotto  IA, Parulekar  WR,  et al; MA.20 Study Investigators.  Regional nodal irradiation in early-stage breast cancer.  N Engl J Med. 2015;373(4):307-316. doi:10.1056/NEJMoa1415340PubMedGoogle ScholarCrossref
76.
Poortmans  PM, Collette  S, Kirkove  C,  et al; EORTC Radiation Oncology and Breast Cancer Groups.  Internal mammary and medial supraclavicular irradiation in breast cancer.  N Engl J Med. 2015;373(4):317-327. doi:10.1056/NEJMoa1415369PubMedGoogle ScholarCrossref
77.
Mariotto  AB, Etzioni  R, Hurlbert  M, Penberthy  L, Mayer  M.  Estimation of the number of women living with metastatic breast cancer in the United States.  Cancer Epidemiol Biomarkers Prev. 2017;26(6):809-815. doi:10.1158/1055-9965.EPI-16-0889PubMedGoogle ScholarCrossref
78.
Finn  RS, Martin  M, Rugo  HS,  et al.  Palbociclib and letrozole in advanced breast cancer.  N Engl J Med. 2016;375(20):1925-1936. doi:10.1056/NEJMoa1607303PubMedGoogle ScholarCrossref
79.
Goetz  MP, Toi  M, Campone  M,  et al.  MONARCH 3: abemaciclib as initial therapy for advanced breast cancer.  J Clin Oncol. 2017;35(32):3638-3646. doi:10.1200/JCO.2017.75.6155PubMedGoogle ScholarCrossref
80.
Hortobagyi  GN, Stemmer  SM, Burris  HA,  et al.  Ribociclib as first-line therapy for hr-positive, advanced breast cancer.  N Engl J Med. 2016;375(18):1738-1748. doi:10.1056/NEJMoa1609709PubMedGoogle ScholarCrossref
81.
Baselga  J, Cortés  J, Kim  SB,  et al; CLEOPATRA Study Group.  Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer.  N Engl J Med. 2012;366(2):109-119. doi:10.1056/NEJMoa1113216PubMedGoogle ScholarCrossref
82.
Verma  S, Miles  D, Gianni  L,  et al; EMILIA Study Group.  Trastuzumab emtansine for HER2-positive advanced breast cancer.  N Engl J Med. 2012;367(19):1783-1791. doi:10.1056/NEJMoa1209124PubMedGoogle ScholarCrossref
83.
Kabraji  S, Ni  J, Lin  NU, Xie  S, Winer  EP, Zhao  JJ.  Drug resistance in HER2-positive breast cancer brain metastases: blame the barrier or the brain?  Clin Cancer Res. 2018;24(8):1795-1804. doi:10.1158/1078-0432.CCR-17-3351PubMedGoogle ScholarCrossref
84.
Tutt  A, Ellis  P, Kilburn  L,  et al. The TNT trial: a randomized phase III trial of carboplatin (C) compared with docetaxel (D) for patients with metastatic or recurrent locally advanced triple negative or BRCA1/2 breast cancer. In: San Antonio Breast Cancer Symposium; December 9-13, 2014. Abstract S3-01.
85.
Cardoso  F, Bedard  PL, Winer  EP,  et al; ESO-MBC Task Force.  International guidelines for management of metastatic breast cancer: combination vs sequential single-agent chemotherapy.  J Natl Cancer Inst. 2009;101(17):1174-1181. doi:10.1093/jnci/djp235PubMedGoogle ScholarCrossref
86.
Joensuu  H, Holli  K, Heikkinen  M,  et al.  Combination chemotherapy versus single-agent therapy as first- and second-line treatment in metastatic breast cancer: a prospective randomized trial.  J Clin Oncol. 1998;16(12):3720-3730. doi:10.1200/JCO.1998.16.12.3720PubMedGoogle ScholarCrossref
87.
von Minckwitz  G, du Bois  A, Schmidt  M,  et al.  Trastuzumab beyond progression in human epidermal growth factor receptor 2-positive advanced breast cancer: a German breast group 26/breast international group 03-05 study.  J Clin Oncol. 2009;27(12):1999-2006. doi:10.1200/JCO.2008.19.6618PubMedGoogle ScholarCrossref
88.
Sledge  GW  Jr, Toi  M, Neven  P,  et al.  MONARCH 2: abemaciclib in combination with fulvestrant in women with HR+/HER2- advanced breast cancer who had progressed while receiving endocrine therapy.  J Clin Oncol. 2017;35(25):2875-2884. doi:10.1200/JCO.2017.73.7585PubMedGoogle ScholarCrossref
89.
Dickler  MN, Tolaney  SM, Rugo  HS,  et al.  MONARCH 1, a phase II study of abemaciclib, a CDK4 and CDK6 inhibitor, as a single agent, in patients with refractory HR+/HER2- metastatic breast cancer.  Clin Cancer Res. 2017;23(17):5218-5224. doi:10.1158/1078-0432.CCR-17-0754PubMedGoogle ScholarCrossref
90.
Schmid  P, Adams  S, Rugo  HS,  et al; IMpassion130 Trial Investigators.  Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer.  N Engl J Med. 2018;379(22):2108-2121. doi:10.1056/NEJMoa1809615PubMedGoogle ScholarCrossref
91.
Bowman  KM, Kumthekar  P.  Medical management of brain metastases and leptomeningeal disease in patients with breast carcinoma.  Future Oncol. 2018;14(4):391-407. doi:10.2217/fon-2017-0255PubMedGoogle ScholarCrossref
92.
Robson  M, Im  SA, Senkus  E,  et al.  Olaparib for metastatic breast cancer in patients with a germline BRCA mutation.  N Engl J Med. 2017;377(6):523-533. doi:10.1056/NEJMoa1706450PubMedGoogle ScholarCrossref
93.
Cortes-Ciriano  I, Lee  S, Park  WY, Kim  TM, Park  PJ.  A molecular portrait of microsatellite instability across multiple cancers.  Nat Commun. 2017;8:15180. doi:10.1038/ncomms15180PubMedGoogle ScholarCrossref
94.
Ben-Baruch  NE, Bose  R, Kavuri  SM, Ma  CX, Ellis  MJ.  HER2-mutated breast cancer responds to treatment with single-agent neratinib, a second-generation HER2/EGFR tyrosine kinase inhibitor.  J Natl Compr Canc Netw. 2015;13(9):1061-1064. doi:10.6004/jnccn.2015.0131PubMedGoogle ScholarCrossref
95.
Bose  R, Kavuri  SM, Searleman  AC,  et al.  Activating HER2 mutations in HER2 gene amplification negative breast cancer.  Cancer Discov. 2013;3(2):224-237. doi:10.1158/2159-8290.CD-12-0349PubMedGoogle ScholarCrossref
96.
Fribbens  C, O’Leary  B, Kilburn  L,  et al.  Plasma ESR1 mutations and the treatment of estrogen receptor-positive advanced breast cancer.  J Clin Oncol. 2016;34(25):2961-2968. doi:10.1200/JCO.2016.67.3061PubMedGoogle ScholarCrossref
97.
Jemal  A, Robbins  AS, Lin  CC,  et al.  Factors that contributed to black-white disparities in survival among nonelderly women with breast cancer between 2004 and 2013.  J Clin Oncol. 2018;36(1):14-24. doi:10.1200/JCO.2017.73.7932PubMedGoogle ScholarCrossref
98.
Hunt  BR, Whitman  S, Hurlbert  MS.  Increasing black:white disparities in breast cancer mortality in the 50 largest cities in the United States.  Cancer Epidemiol. 2014;38(2):118-123. doi:10.1016/j.canep.2013.09.009PubMedGoogle ScholarCrossref
99.
Shariff-Marco  S, Yang  J, John  EM,  et al.  Intersection of race/ethnicity and socioeconomic status in mortality after breast cancer.  J Community Health. 2015;40(6):1287-1299. doi:10.1007/s10900-015-0052-yPubMedGoogle ScholarCrossref
100.
Mouridsen  H, Giobbie-Hurder  A, Goldhirsch  A,  et al; BIG 1-98 Collaborative Group.  Letrozole therapy alone or in sequence with tamoxifen in women with breast cancer.  N Engl J Med. 2009;361(8):766-776. doi:10.1056/NEJMoa0810818PubMedGoogle ScholarCrossref
101.
Jones  SE, Savin  MA, Holmes  FA,  et al.  Phase III trial comparing doxorubicin plus cyclophosphamide with docetaxel plus cyclophosphamide as adjuvant therapy for operable breast cancer.  J Clin Oncol. 2006;24(34):5381-5387. doi:10.1200/JCO.2006.06.5391PubMedGoogle ScholarCrossref
102.
Turner  NC, Ro  J, André  F,  et al; PALOMA3 Study Group.  Palbociclib in hormone-receptor-positive advanced breast cancer.  N Engl J Med. 2015;373(3):209-219. doi:10.1056/NEJMoa1505270PubMedGoogle ScholarCrossref
103.
Slamon  DJ, Neven  P, Chia  S,  et al.  Phase III randomized study of ribociclib and fulvestrant in hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: MONALEESA-3.  J Clin Oncol. 2018;36(24):2465-2472. doi:10.1200/JCO.2018.78.9909PubMedGoogle ScholarCrossref
104.
Litton  JK, Rugo  HS, Ettl  J,  et al.  Talazoparib in patients with advanced breast cancer and a germline BRCA mutation.  N Engl J Med. 2018;379(8):753-763. doi:10.1056/NEJMoa1802905PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
Close
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close