Effect of MRI vs Conventional Treat-to-Target Strategies on Disease Activity Remission in RA | Rheumatoid Arthritis | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

Effect of Magnetic Resonance Imaging vs Conventional Treat-to-Target Strategies on Disease Activity Remission and Radiographic Progression in Rheumatoid ArthritisThe IMAGINE-RA Randomized Clinical Trial

Educational Objective
To learn whether magnetic resonance imaging (MRI) should be used to guide treatment in patients with rheumatoid arthritis.
1 Credit CME
Key Points

Question  Does a magnetic resonance imaging (MRI)–guided treat-to-target strategy aiming for imaging remission lead to an increased rate of disease activity remission (disease activity score in 28 joints–C-reactive protein [DAS28-CRP]  <2.6) rate and less radiographic progression in patients with rheumatoid arthritis in clinical remission?

Findings  In this randomized clinical trial that included 200 patients with rheumatoid arthritis with DAS28-CRP scores less than 3.2 and no swollen joints, an MRI-guided strategy compared with a conventional treat-to-target strategy resulted in DAS28-CRP remission rates of 85% vs 88%, respectively, and no radiographic progression (66% vs 62%, respectively). Neither comparison was statistically significant.

Meaning  Using MRI for treatment guidance in patients with rheumatoid arthritis did not improve the rate of disease activity remission or radiographic progression compared with a conventional treat-to-target strategy.

Abstract

Importance  Whether using magnetic resonance imaging (MRI) to guide treatment in patients with rheumatoid arthritis (RA) improves disease activity and slows joint damage progression is unknown.

Objective  To determine whether an MRI-guided treat-to-target strategy vs a conventional clinical treat-to-target strategy improves outcomes in patients with RA in clinical remission.

Design, Setting, and Participants  Two-year, randomized, multicenter trial conducted at 9 hospitals in Denmark. Two hundred patients with RA in clinical remission (disease activity score in 28 joints–C-reactive protein [DAS28-CRP] <3.2 and no swollen joints) were enrolled between April 2012 and June 2015. The final follow-up visit was April 2017.

Interventions  Patients were randomly allocated (1:1) to an MRI-guided vs a conventional treat-to-target strategy. In the MRI-guided group, the treatment goal was absence of MRI bone marrow edema combined with clinical remission, defined as DAS28-CRP of 3.2 or less and no swollen joints. In the conventional group, the treatment goal was clinical remission.

Main Outcomes and Measures  Co-primary outcomes were proportions of patients achieving DAS28-CRP remission (DAS28-CRP <2.6) and with no radiographic progression (no increase in total van der Heijde–modified Sharp score) at 24 months. Significance testing for the primary outcome was based on 1-sided testing. Secondary outcomes were clinical and MRI measures of disease activity, physical function, and quality of life.

Results  Of 200 patients randomized (133 women [67%]; mean [SD] age, 61.6 [10.5] years; median baseline DAS28-CRP, 1.9 [interquartile range, 1.7-2.2]; van der Heijde–modified Sharp score, 18.0 [interquartile range, 7.0-42.5]), 76 patients (76%) in the MRI-guided group and 95 (95%) in the conventional group completed the study. Of these, 64 (85%) vs 83 (88%), respectively, reached the primary clinical end point (risk difference, −4.8% [1-sided 95% CI, −13.6% to + ∞; 1-sided P = .19]) and 49 (66%) vs 58 (62%), respectively, reached the primary radiographic end point (risk difference, 4.7% [1-sided 95% CI, −7.0% to + ∞; 1-sided P = .25). Of 10 key secondary end points, 8 were null and 2 showed statistically significant benefit for the MRI treat-to-target group. Seventeen patients (17%) in the MRI-guided treat-to-target group and 6 patients (6%) in the conventional treat-to-target group experienced serious adverse events.

Conclusions and Relevance  Among patients with RA in clinical remission, an MRI-guided treat-to-target strategy compared with a conventional treat-to-target strategy did not result in improved disease activity remission rates or reduce radiographic progression. These findings do not support the use of an MRI-guided strategy for treating patients with RA.

Trial Registration  ClinicalTrials.gov Identifier: NCT01656278

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Corresponding Author: Signe Møller-Bisgaard, MD, PhD, Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Centre for Head and Orthopaedics, Rigshospitalet, Valdemar Hansens Vej 17, 2600 Glostrup, Denmark (s.moeller.bisgaard@gmail.com).

Accepted for Publication: December 28, 2018.

Author Contributions: Dr Møller-Bisgaard had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Møller-Bisgaard, Hørslev-Petersen, Hetland, Boesen, Christensen, Stengaard-Pedersen, Lindegaard, Bliddal, Krogh, Thomsen, Østergaard.

Acquisition, analysis, or interpretation of data: Møller-Bisgaard, Hørslev-Petersen, Ejbjerg, Hetland, Ørnbjerg, Glinatsi, Møller, Boesen, Christensen, Stengaard-Pedersen, Madsen, Jensen, Villadsen, Hauge, Bennett, Hendricks, Asmussen, Kowalski, Lindegaard, S. Nielsen, Krogh, Ellingsen, A. Nielsen, Balding, Jurik, Østergaard.

Drafting of the manuscript: Møller-Bisgaard, Christensen, Østergaard.

Critical revision of the manuscript for important intellectual content: Møller-Bisgaard, Hørslev-Petersen, Ejbjerg, Hetland, Ørnbjerg, Glinatsi, Møller, Boesen, Christensen, Stengaard-Pedersen, Madsen, Jensen, Villadsen, Hauge, Bennett, Hendricks, Asmussen, Kowalski, Lindegaard, S. Nielsen, Bliddal, Krogh, Ellingsen, A. Nielsen, Balding, Jurik, Thomsen, Østergaard.

Statistical analysis: Christensen, S. Nielsen, Krogh.

Obtained funding: Møller-Bisgaard, Hørslev-Petersen, Østergaard.

Administrative, technical, or material support: Møller-Bisgaard, Hørslev-Petersen, Hetland, Glinatsi, Møller, Stengaard-Pedersen, Hauge, Hendricks, Kowalski, Lindegaard, Krogh, Ellingsen, Balding, Jurik, Thomsen, Østergaard.

Supervision: Møller-Bisgaard, Hørslev-Petersen, Ejbjerg, Hetland, Møller, Boesen, Christensen, Stengaard-Pedersen, Madsen, Jensen, Kowalski, Bliddal, A. Nielsen, Thomsen, Østergaard.

Conflict of Interest Disclosures: Dr Møller-Bisgaard reported receiving grants and nonfinancial support from AbbVie during the conduct of the study and personal fees from Bristol-Myers Squibb outside the submitted work. Dr Hørslev-Petersen reported receiving grants from AbbVie during the conduct of the study and other funding from Roche and Pfizer for EULAR congress participation outside the submitted work. Dr Hetland reported receiving grants from AbbVie, Bristol-Myers Squibb, Merck Sharp & Dohme, Novartis, and Crescendo; personal fees from Pfizer, CellTrion, Roche, Eli Lilly, Orion, Merck, and Samsung; and grants and personal fees from Biogen outside the submitted work. Dr Hetland is the chair of the DANBIO registry, which is located at her institution, which therefore receives funding annually from all providers of biological drugs in Denmark that have an agreement (postmarketing data). Dr Boesen reported receiving grants, personal fees, and other funding from Image Analysis Group; personal fees from Eli Lilly, UCB, and Abbvie; and grants from Esaote outside the submitted work. Dr Madsen reported receiving personal fees and nonfinancial support from Sobi, Abbvie, Merck Sharp & Dohme, Pfizer, Eli Lilly, Celgene, and Novartis; personal fees from UCB, Sanofi Aventis, Roche, Amgen, and Bristol-Myers Squibb outside the submitted work. Dr Bennett reported receiving personal fees from Eli Lilly, Merck Sharp & Dohme, and Novartis and nonfinancial support from Pfizer and Bristol-Myers Squibb outside the submitted work. Dr Hendricks reported receiving personal fees from AbbVie and Novartis and nonfinancial support from Pfizer and Roche outside the submitted work. Dr Bliddal reported receiving grants from Abbvie during the conduct of the study and, along with the Parker Institute, receiving support from the Oak Foundation. Dr Østergaard reported receiving grants from AbbVie during the conduct of the study and grants, personal fees, and nonfinancial support from AbbVie, Bristol-Myers Squibb, Merck, UCB, and Novartis; personal fees from Boehringer Ingelheim, Eli Lilly, Sanofi, and Regeneron; personal fees and nonfinancial support from Janssen, Pfizer, and Roche; grants and personal fees from Celgene; and personal fees from Orion and Hospira outside the submitted work. No other disclosures were reported.

Funding/Support: The study was supported by AbbVie. The Parker Institute, Bispebjerg and Frederiksberg Hospital (Drs Christensen, Nielsen, and Bliddal), is supported by a core grant from the Oak Foundation (OCAY-13-309).

Role of the Funder/Sponsor: The funding agencies had no role in the design and conduct of the trial; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript for publication; or decision to submit for publication.

Data Sharing Statement: See Supplement 3.

Additional Contributions: We thank all patients for participating in the study and the staff (physicians, nurses, radiographers, and secretaries) at all participating sites for their collaboration.

References
1.
Meune  C, Touzé  E, Trinquart  L, Allanore  Y.  Trends in cardiovascular mortality in patients with rheumatoid arthritis over 50 years: a systematic review and meta-analysis of cohort studies.  Rheumatology (Oxford). 2009;48(10):1309-1313. doi:10.1093/rheumatology/kep252PubMedGoogle ScholarCrossref
2.
Smolen  JS, Landewé  R, Bijlsma  J,  et al.  EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update.  Ann Rheum Dis. 2017;76(6):960-977. doi:10.1136/annrheumdis-2016-210715PubMedGoogle ScholarCrossref
3.
Smolen  JS, Breedveld  FC, Burmester  GR,  et al.  Treating rheumatoid arthritis to target: 2014 update of the recommendations of an international task force.  Ann Rheum Dis. 2016;75(1):3-15.PubMedGoogle ScholarCrossref
4.
Aletaha  D, Smolen  JS.  Diagnosis and management of rheumatoid arthritis: a review.  JAMA. 2018;320(13):1360-1372. doi:10.1001/jama.2018.13103PubMedGoogle ScholarCrossref
5.
Haavardsholm  EA, Lie  E, Lillegraven  S.  Should modern imaging be part of remission criteria in rheumatoid arthritis?  Best Pract Res Clin Rheumatol. 2012;26(6):767-785. doi:10.1016/j.berh.2012.10.004PubMedGoogle ScholarCrossref
6.
Wells  G, Becker  JC, Teng  J,  et al.  Validation of the 28-joint Disease Activity Score (DAS28) and European League Against Rheumatism response criteria based on C-reactive protein against disease progression in patients with rheumatoid arthritis, and comparison with the DAS28 based on erythrocyte sedimentation rate.  Ann Rheum Dis. 2009;68(6):954-960. doi:10.1136/ard.2007.084459PubMedGoogle ScholarCrossref
7.
Ejbjerg  BJ, Vestergaard  A, Jacobsen  S, Thomsen  HS, Østergaard  M.  The smallest detectable difference and sensitivity to change of magnetic resonance imaging and radiographic scoring of structural joint damage in rheumatoid arthritis finger, wrist, and toe joints: a comparison of the OMERACT rheumatoid arthritis magnetic resonance imaging score applied to different joint combinations and the Sharp/van der Heijde radiographic score.  Arthritis Rheum. 2005;52(8):2300-2306. doi:10.1002/art.21207PubMedGoogle ScholarCrossref
8.
Østergaard  M, Hansen  M, Stoltenberg  M,  et al.  New radiographic bone erosions in the wrists of patients with rheumatoid arthritis are detectable with magnetic resonance imaging a median of two years earlier.  Arthritis Rheum. 2003;48(8):2128-2131. doi:10.1002/art.11076PubMedGoogle ScholarCrossref
9.
Jimenez-Boj  E, Nöbauer-Huhmann  I, Hanslik-Schnabel  B,  et al.  Bone erosions and bone marrow edema as defined by magnetic resonance imaging reflect true bone marrow inflammation in rheumatoid arthritis.  Arthritis Rheum. 2007;56(4):1118-1124. doi:10.1002/art.22496PubMedGoogle ScholarCrossref
10.
McQueen  FM, Gao  A, Ostergaard  M,  et al.  High-grade MRI bone oedema is common within the surgical field in rheumatoid arthritis patients undergoing joint replacement and is associated with osteitis in subchondral bone.  Ann Rheum Dis. 2007;66(12):1581-1587. doi:10.1136/ard.2007.070326PubMedGoogle ScholarCrossref
11.
Haavardsholm  EA, Bøyesen  P, Østergaard  M, Schildvold  A, Kvien  TK.  Magnetic resonance imaging findings in 84 patients with early rheumatoid arthritis: bone marrow oedema predicts erosive progression.  Ann Rheum Dis. 2008;67(6):794-800. doi:10.1136/ard.2007.071977PubMedGoogle ScholarCrossref
12.
Hetland  ML, Stengaard-Pedersen  K, Junker  P,  et al; CIMESTRA study group.  Radiographic progression and remission rates in early rheumatoid arthritis - MRI bone oedema and anti-CCP predicted radiographic progression in the 5-year extension of the double-blind randomised CIMESTRA trial.  Ann Rheum Dis. 2010;69(10):1789-1795. doi:10.1136/ard.2009.125534PubMedGoogle ScholarCrossref
13.
Gandjbakhch  F, Haavardsholm  EA, Conaghan  PG,  et al.  Determining a magnetic resonance imaging inflammatory activity acceptable state without subsequent radiographic progression in rheumatoid arthritis: results from a followup MRI study of 254 patients in clinical remission or low disease activity.  J Rheumatol. 2014;41(2):398-406. doi:10.3899/jrheum.131088PubMedGoogle ScholarCrossref
14.
Brown  AK, Conaghan  PG, Karim  Z,  et al.  An explanation for the apparent dissociation between clinical remission and continued structural deterioration in rheumatoid arthritis.  Arthritis Rheum. 2008;58(10):2958-2967. doi:10.1002/art.23945PubMedGoogle ScholarCrossref
15.
Colebatch  AN, Edwards  CJ, Østergaard  M,  et al.  EULAR recommendations for the use of imaging of the joints in the clinical management of rheumatoid arthritis.  Ann Rheum Dis. 2013;72(6):804-814. doi:10.1136/annrheumdis-2012-203158PubMedGoogle ScholarCrossref
16.
Aletaha  D, Neogi  T, Silman  AJ,  et al.  2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative.  Ann Rheum Dis. 2010;69(9):1580-1588. doi:10.1136/ard.2010.138461PubMedGoogle ScholarCrossref
17.
Ibfelt  EH, Jensen  DV, Hetland  ML.  The Danish nationwide clinical register for patients with rheumatoid arthritis: DANBIO.  Clin Epidemiol. 2016;8:737-742. doi:10.2147/CLEP.S99490PubMedGoogle ScholarCrossref
18.
Østergaard  M, Peterfy  C, Conaghan  P,  et al.  OMERACT rheumatoid arthritis magnetic resonance imaging studies: core set of MRI acquisitions, joint pathology definitions, and the OMERACT RA-MRI scoring system.  J Rheumatol. 2003;30(6):1385-1386.PubMedGoogle Scholar
19.
van der Heijde  D.  How to read radiographs according to the Sharp/van der Heijde method.  J Rheumatol. 1999;26(3):743-745.PubMedGoogle Scholar
20.
van Tuyl  LH, van der Heijde  D, Knol  DL, Boers  M.  Chronological reading of radiographs in rheumatoid arthritis increases efficiency and does not lead to bias.  Ann Rheum Dis. 2014;73(2):391-395. doi:10.1136/annrheumdis-2012-202876PubMedGoogle ScholarCrossref
21.
Ørnbjerg  LM.  Structural joint damage and hand bone loss in patients with rheumatoid arthritis.  Dan Med J. 2018;65(3):B5452.PubMedGoogle Scholar
22.
Hørslev-Petersen  K, Hetland  ML, Ørnbjerg  LM,  et al; OPERA Study-Group.  Clinical and radiographic outcome of a treat-to-target strategy using methotrexate and intra-articular glucocorticoids with or without adalimumab induction: a 2-year investigator-initiated, double-blinded, randomised, controlled trial (OPERA).  Ann Rheum Dis. 2016;75(9):1645-1653. doi:10.1136/annrheumdis-2015-208166PubMedGoogle ScholarCrossref
23.
Glinatsi  D, Bird  P, Gandjbakhch  F,  et al.  Development and validation of the OMERACT rheumatoid arthritis magnetic resonance tenosynovitis scoring system in a multireader exercise.  J Rheumatol. 2017;44(11):1688-1693. doi:10.3899/jrheum.161097PubMedGoogle ScholarCrossref
24.
Glinatsi  D, Lillegraven  S, Haavardsholm  EA,  et al.  Validation of the OMERACT magnetic resonance imaging joint space narrowing score for the wrist in a multireader longitudinal trial.  J Rheumatol. 2015;42(12):2480-2485. doi:10.3899/jrheum.141009PubMedGoogle ScholarCrossref
25.
Glinatsi  D, Baker  JF, Hetland  ML,  et al.  Magnetic resonance imaging assessed inflammation in the wrist is associated with patient-reported physical impairment, global assessment of disease activity and pain in early rheumatoid arthritis: longitudinal results from two randomised controlled trials.  Ann Rheum Dis. 2017;76(10):1707-1715. doi:10.1136/annrheumdis-2017-211315PubMedGoogle ScholarCrossref
26.
Østergaard  M, Bøyesen  P, Eshed  I,  et al.  Development and preliminary validation of a magnetic resonance imaging joint space narrowing score for use in rheumatoid arthritis: potential adjunct to the OMERACT RA MRI scoring system.  J Rheumatol. 2011;38(9):2045-2050. doi:10.3899/jrheum.110422PubMedGoogle ScholarCrossref
27.
Østergaard  M, Peterfy  CG, Bird  P,  et al.  The OMERACT rheumatoid arthritis magnetic resonance imaging (MRI) scoring system: updated recommendations by the OMERACT MRI in Arthritis Working Group.  J Rheumatol. 2017;44(11):1706-1712. doi:10.3899/jrheum.161433PubMedGoogle ScholarCrossref
28.
Kuettel  D, Primdahl  J, Christensen  R, Ørnbjerg  LM, Hørslev-Petersen  K.  Impact of patient-reported flares on radiographic progression and functional impairment in patients with rheumatoid arthritis: a cohort study based on the AMBRA trial.  Scand J Rheumatol. 2018;47(2):87-94. doi:10.1080/03009742.2017.1329457PubMedGoogle ScholarCrossref
29.
Keystone  EC, Kavanaugh  AF, Sharp  JT,  et al.  Radiographic, clinical, and functional outcomes of treatment with adalimumab (a human anti-tumor necrosis factor monoclonal antibody) in patients with active rheumatoid arthritis receiving concomitant methotrexate therapy: a randomized, placebo-controlled, 52-week trial.  Arthritis Rheum. 2004;50(5):1400-1411. doi:10.1002/art.20217PubMedGoogle ScholarCrossref
30.
Bruynesteyn  K, Boers  M, Kostense  P, van der Linden  S, van der Heijde  D.  Deciding on progression of joint damage in paired films of individual patients: smallest detectable difference or change.  Ann Rheum Dis. 2005;64(2):179-182. doi:10.1136/ard.2003.018457PubMedGoogle ScholarCrossref
31.
Hetland  ML, Østergaard  M, Ejbjerg  B,  et al; CIMESTRA study group.  Short- and long-term efficacy of intra-articular injections with betamethasone as part of a treat-to-target strategy in early rheumatoid arthritis: impact of joint area, repeated injections, MRI findings, anti-CCP, IgM-RF and CRP.  Ann Rheum Dis. 2012;71(6):851-856. doi:10.1136/annrheumdis-2011-200632PubMedGoogle ScholarCrossref
32.
Lillegraven  S, Prince  FH, Shadick  NA,  et al.  Remission and radiographic outcome in rheumatoid arthritis: application of the 2011 ACR/EULAR remission criteria in an observational cohort.  Ann Rheum Dis. 2012;71(5):681-686. doi:10.1136/ard.2011.154625PubMedGoogle ScholarCrossref
33.
Visser  K, Goekoop-Ruiterman  YP, de Vries-Bouwstra  JK,  et al.  A matrix risk model for the prediction of rapid radiographic progression in patients with rheumatoid arthritis receiving different dynamic treatment strategies: post hoc analyses from the BeSt study.  Ann Rheum Dis. 2010;69(7):1333-1337. doi:10.1136/ard.2009.121160PubMedGoogle ScholarCrossref
34.
Haavardsholm  EA, Aga  AB, Olsen  IC,  et al.  Ultrasound in management of rheumatoid arthritis: ARCTIC randomised controlled strategy trial.  BMJ. 2016;354:i4205. doi:10.1136/bmj.i4205PubMedGoogle ScholarCrossref
35.
Dale  J, Stirling  A, Zhang  R,  et al.  Targeting ultrasound remission in early rheumatoid arthritis: the results of the TaSER study, a randomised clinical trial.  Ann Rheum Dis. 2016;75(6):1043-1050. doi:10.1136/annrheumdis-2015-208941PubMedGoogle ScholarCrossref
36.
Linde  L, Sørensen  J, Østergaard  M, Hørslev-Petersen  K, Hetland  ML.  Does clinical remission lead to normalization of EQ-5D in patients with rheumatoid arthritis and is selection of remission criteria important?  J Rheumatol. 2010;37(2):285-290. doi:10.3899/jrheum.090898PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
Close
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close