Does This Patient Have a Severe Snake Envenomation? | Emergency Medicine | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

Does This Patient Have a Severe Snake Envenomation?The Rational Clinical Examination Systematic Review

Educational Objective To identify the key clinical features of snake bites that predict severe envenomation and state the risks and potential benefits of antivenom treatment.
1 Credit CME
Key Points

Question  What clinical features risk-stratify patients with snakebite as having severe envenomations?

Findings  In this systematic review, the pooled prevalence of severe systemic envenomation, severe tissue injury, and severe hematologic venom effects was 14%, 14%, and 18%, respectively. Time from bite to care longer than 6 hours, patient age younger than 12 years, large snake size, and ptosis increased the likelihood of severe systemic envenomation, while envenomation by cottonmouth and copperhead (Agkistrodon) snakes (compared with rattlesnakes) decreases the likelihood of severe systemic envenomation and initial hypofibrinogenemia and thrombocytopenia increases the likelihood of severe hematologic venom effects.

Meaning  Physicians should evaluate patients with snakebites for these features to determine which are at increased likelihood of severe envenomation and should also be wary of progression from nonsevere to a severe envenomation.

Abstract

Importance  Venomous snakebite severity ranges from an asymptomatic dry bite to severe envenomation and death. The clinical evaluation aids in prognosis and is essential to determine the risks and potential benefits of antivenom treatment.

Objectives  To identify historical features, clinical examination findings, basic laboratory testing, and clinical grading scales that will risk-stratify patients with pit viper snake envenomation for severe systemic envenomation, severe tissue injury, and/or severe hematologic venom effects.

Data Sources  We conducted a structured search of PubMed (1966-October 3, 2017) and Embase database (1980-October 3, 2017) to identify English-language studies that evaluated clinical features predictive of severe envenomation.

Study Selection  We included studies that evaluated the test performance of at least 1 clinical finding with an acceptable reference standard of severe envenomation for venomous snakes of the Western Hemisphere. Only studies involving the most common subfamily, Crotalinae (pit vipers), were evaluated. Seventeen studies with data were available for abstraction.

Data Extraction and Synthesis  The clinical features assessed and severity outcome measures were extracted from each original study. We assessed severity in 3 categories: systemic toxicity, tissue injury, and hematologic effects. Differences were resolved by author consensus.

Results  The pooled prevalence of severe systemic envenomation was 14% (95% CI, 9%-21%). The pooled prevalence of severe tissue injury and severe hematologic venom effects were 14% (95% CI, 12%-16%) and 18% (95% CI, 8%-27%), respectively. Factors increasing the likelihood of severe systemic envenomation included the time from bite to care of 6 or more hours (likelihood ratio [LR], 3.4 [95% CI, 1.1-6.4]), a patient younger than 12 years (LRs, 3.2 [95% CI, 1.5-7.1] and 2.9 [95% CI, 1.3-6.2]), large snake size (LR, 3.1 [95% CI, 1.5-5.7]), and ptosis (LRs, 1.4 [95% CI, 1.0-2.1] and 3.8 [95% CI, 1.8-8.3]). Envenomation by the genus Agkistrodon (copperhead and cottonmouth), as opposed to rattlesnakes, decreased the likelihood of severe systemic envenomation (LR, 0.28 [95% CI, 0.10-0.78]). Initial hypofibrinogenemia (LR, 5.1 [95% CI, 1.7-15.0]) and thrombocytopenia (LR, 3.7 [95% CI, 1.9-7.3]) increased the likelihood of severe hematologic venom effects. Other clinical features from history, physical examination, or normal laboratory values were not discriminative.

Conclusions  Clinical features can identify patients at increased risk of severe systemic envenomation and severe hematologic venom effects, but there are few features that are associated with severe tissue injury or can confidently exclude severe envenomation. Physicians should monitor patients closely and be wary of progression from nonsevere to a severe envenomation and have a low threshold to escalate therapy as needed.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Corresponding Author: Charles J. Gerardo, MD, MHS, Division of Emergency Medicine, Duke University School of Medicine, Box 3096 DUMC, Durham, NC 27710 (charles.gerardo@duke.edu).

Accepted for Publication: September 10, 2018.

Published Online: February 13, 2019. doi:10.1001/jamasurg.2018.5069

Author Contributions: Drs Gerardo and Evans had full access to all the data in the study and take full responsibility for the integrity of the data abstracted from the literature.

Concept and design: Gerardo, Lavonas.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Gerardo, Vissoci.

Critical revision of the manuscript for important intellectual content: Gerardo, Evans, Simel, Lavonas.

Statistical analysis: Vissoci, Evans, Simel.

Administrative, technical, or material support: Evans.

Supervision: Gerardo, Simel, Lavonas.

Conflict of Interest Disclosures: Drs Gerardo and Lavonas receive funding through their institutions from BTG International Inc, and Dr Lavonas’ institution has received research funding from Instituto Bioclon; both companies manufacture snake antivenom. Dr Simel receives honoraria for contributions to JAMAEvidence.com. No further disclosures were reported.

Additional Contributions: The authors would like to acknowledge Bryn Mumma, MD, MAS, Department of Emergency Medicine, University of California Davis, and William Rushton, MD, Department of Emergency Medicine, University of Alabama at Birmingham, for contributions to early versions of the manuscript. They were not compensated for their contributions.

References
1.
Chippaux  JP.  Estimating the global burden of snakebite can help to improve management.  PLoS Med. 2008;5(11):e221. doi:10.1371/journal.pmed.0050221PubMedGoogle ScholarCrossref
2.
Warrell  DA.  Venomous bites, stings, and poisoning.  Infect Dis Clin North Am. 2012;26(2):207-223. doi:10.1016/j.idc.2012.03.006PubMedGoogle ScholarCrossref
3.
O’Neil  ME, Mack  KA, Gilchrist  J, Wozniak  EJ.  Snakebite injuries treated in United States emergency departments, 2001-2004.  Wilderness Environ Med. 2007;18(4):281-287. doi:10.1580/06-WEME-OR-080R1.1PubMedGoogle ScholarCrossref
4.
Wade  L.  Drug industry: for Mexican antivenom maker, U.S. market is a snake pit.  Science. 2014;343(6166):16-17. doi:10.1126/science.343.6166.16PubMedGoogle ScholarCrossref
5.
Toschlog  EA, Bauer  CR, Hall  EL, Dart  RC, Khatri  V, Lavonas  EJ.  Surgical considerations in the management of pit viper snake envenomation.  J Am Coll Surg. 2013;217(4):726-735. doi:10.1016/j.jamcollsurg.2013.05.004PubMedGoogle ScholarCrossref
6.
Dart  RC, Hurlbut  KM, Garcia  R, Boren  J.  Validation of a severity score for the assessment of crotalid snakebite.  Ann Emerg Med. 1996;27(3):321-326. doi:10.1016/S0196-0644(96)70267-6PubMedGoogle ScholarCrossref
7.
Kemparaju  K, Girish  KS.  Snake venom hyaluronidase: a therapeutic target.  Cell Biochem Funct. 2006;24(1):7-12. doi:10.1002/cbf.1261PubMedGoogle ScholarCrossref
8.
Price  JA  III.  Microplate fluorescence protease assays test the inhibition of select North American snake venoms’ activities with an anti-proteinase library.  Toxicon. 2015;103:145-154. doi:10.1016/j.toxicon.2015.06.020PubMedGoogle ScholarCrossref
9.
Gutiérrez  JM, Rucavado  A.  Snake venom metalloproteinases: their role in the pathogenesis of local tissue damage.  Biochimie. 2000;82(9-10):841-850. doi:10.1016/S0300-9084(00)01163-9PubMedGoogle ScholarCrossref
10.
Crocker  P, Zad  O, Milling  T, Maxson  T, King  B, Whorton  E.  Human cytokine response to Texas Crotaline envenomation before and after antivenom administration.  Am J Emerg Med. 2010;28(8):871-879. doi:10.1016/j.ajem.2009.04.038PubMedGoogle ScholarCrossref
11.
Gold  BS, Dart  RC, Barish  RA.  Bites of venomous snakes.  N Engl J Med. 2002;347(5):347-356. doi:10.1056/NEJMra013477PubMedGoogle ScholarCrossref
12.
McCleary  RJ, Kini  RM.  Snake bites and hemostasis/thrombosis.  Thromb Res. 2013;132(6):642-646. doi:10.1016/j.thromres.2013.09.031PubMedGoogle ScholarCrossref
13.
Simel  D, Keitz  S.  Update: Primer on Precision and Accuracy; The Rational Clinical Examination: Evidence-Based Clinical Diagnosis. New York, NY: McGraw-Hill; 2009.
14.
Whiting  PF, Rutjes  AW, Westwood  ME,  et al; QUADAS-2 Group.  QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies.  Ann Intern Med. 2011;155(8):529-536. doi:10.7326/0003-4819-155-8-201110180-00009PubMedGoogle ScholarCrossref
15.
Bucaretchi  F, Herrera  SR, Hyslop  S, Baracat  EC, Vieira  RJ.  Snakebites by Bothrops spp in children in Campinas, São Paulo, Brazil.  Rev Inst Med Trop São Paulo. 2001;43(6):329-333. doi:10.1590/S0036-46652001000600006PubMedGoogle ScholarCrossref
16.
Seifert  SA, Kirschner  RI, Martin  N.  Recurrent, persistent, or late, new-onset hematologic abnormalities in Crotaline snakebite.  Clin Toxicol (Phila). 2011;49(4):324-329. doi:10.3109/15563650.2011.566883PubMedGoogle ScholarCrossref
17.
Sweeting  MJ, Sutton  AJ, Lambert  PC.  What to add to nothing? use and avoidance of continuity corrections in meta-analysis of sparse data.  Stat Med. 2004;23(9):1351-1375. doi:10.1002/sim.1761PubMedGoogle ScholarCrossref
18.
Barraviera  B, Bonjorno Júnior  JC, Arkaki  D,  et al.  A retrospective study of 40 victims of Crotalus snake bites: analysis of the hepatic necrosis observed in one patient.  Rev Soc Bras Med Trop. 1989;22(1):5-12. doi:10.1590/S0037-86821989000100002PubMedGoogle ScholarCrossref
19.
Bucaretchi  F, Herrera  SR, Hyslop  S, Baracat  EC, Vieira  RJ.  Snakebites by Crotalus durissus ssp in children in Campinas, São Paulo, Brazil.  Rev Inst Med Trop São Paulo. 2002;44(3):133-138. doi:10.1590/S0036-46652002000300004PubMedGoogle ScholarCrossref
20.
Gaus  DP, Herrera  DF, Troya  CJ, Guevara  AH.  Management of snakebite and systemic envenomation in rural Ecuador using the 20-minute whole blood clotting test.  Wilderness Environ Med. 2013;24(4):345-350. doi:10.1016/j.wem.2013.08.001PubMedGoogle ScholarCrossref
21.
Janes  DN  Jr, Bush  SP, Kolluru  GR.  Large snake size suggests increased snakebite severity in patients bitten by rattlesnakes in Southern California.  Wilderness Environ Med. 2010;21(2):120-126. doi:10.1016/j.wem.2010.01.010PubMedGoogle ScholarCrossref
22.
Jorge  MT, Ribeiro  LA, O’Connell  JL.  Prognostic factors for amputation in the case of envenoming by snakes of the Bothrops genus (Viperidae).  Ann Trop Med Parasitol. 1999;93(4):401-408. doi:10.1080/00034983.1999.11813436PubMedGoogle ScholarCrossref
23.
Moss  ST, Bogdan  G, Nordt  SP, Williams  SR, Dart  RC, Clark  RF.  An examination of serial urinalyses in patients with North American crotalid envenomation.  J Toxicol Clin Toxicol. 1998;36(4):329-335. doi:10.3109/15563659809028029PubMedGoogle ScholarCrossref
24.
Nicoleti  AF, Medeiros  CR, Duarte  MR, França  FO.  Comparison of Bothropoides jararaca bites with and without envenoming treated at the Vital Brazil Hospital of the Butantan Institute, State of São Paulo, Brazil.  Rev Soc Bras Med Trop. 2010;43(6):657-661. doi:10.1590/S0037-86822010000600011PubMedGoogle ScholarCrossref
25.
Otero  R, Gutiérrez  J, Beatriz Mesa  M,  et al.  Complications of Bothrops, Porthidium, and Bothriechis snakebites in Colombia: a clinical and epidemiological study of 39 cases attended in a university hospital.  Toxicon. 2002;40(8):1107-1114. doi:10.1016/S0041-0101(02)00104-6PubMedGoogle ScholarCrossref
26.
Pinho  FM, Zanetta  DM, Burdmann  EA.  Acute renal failure after Crotalus durissus snakebite: a prospective survey on 100 patients.  Kidney Int. 2005;67(2):659-667. doi:10.1111/j.1523-1755.2005.67122.xPubMedGoogle ScholarCrossref
27.
Ribeiro  LA, Jorge  MT, Lebrão  ML.  Prognostic factors for local necrosis in Bothrops jararaca (Brazilian pit viper) bites.  Trans R Soc Trop Med Hyg. 2001;95(6):630-634. doi:10.1016/S0035-9203(01)90101-4PubMedGoogle ScholarCrossref
28.
Santoro  ML, Sano-Martins  IS, Fan  HW, Cardoso  JL, Theakston  RD, Warrell  DA; Butantan Institute Antivenom Study Group.  Haematological evaluation of patients bitten by the jararaca, Bothrops jararaca, in Brazil.  Toxicon. 2008;51(8):1440-1448. doi:10.1016/j.toxicon.2008.03.018PubMedGoogle ScholarCrossref
29.
Thomas  L, Tyburn  B, Ketterlé  J,  et al; Members of the Research Group on Snake Bite in Martinique.  Prognostic significance of clinical grading of patients envenomed by Bothrops lanceolatus in Martinique.  Trans R Soc Trop Med Hyg. 1998;92(5):542-545. doi:10.1016/S0035-9203(98)90907-5PubMedGoogle ScholarCrossref
30.
White  RR  IV, Weber  RA.  Poisonous snakebite in central Texas: possible indicators for antivenin treatment.  Ann Surg. 1991;213(5):466-471. doi:10.1097/00000658-199105000-00012PubMedGoogle ScholarCrossref
31.
Yin  S, Kokko  J, Lavonas  E, Mlynarchek  S, Bogdan  G, Schaeffer  T.  Factors associated with difficulty achieving initial control with crotalidae polyvalent immune fab antivenom in snakebite patients.  Acad Emerg Med. 2011;18(1):46-52. doi:10.1111/j.1553-2712.2010.00958.xPubMedGoogle ScholarCrossref
32.
Milani  R  Jr, Jorge  MT, Ferraz De Campos  FP,  et al.  Snake bites by jararacucu (Bothrops jararacussu): clinicopathologic studies of 29 proven cases in São Paulo State, Brazil.  Q J Med. 1997;90(5):323-334. doi:10.1093/qjmed/90.5.323Google ScholarCrossref
33.
Scharman  EJ, Noffsinger  VD.  Copperhead snakebites: clinical severity of local effects.  Ann Emerg Med. 2001;38(1):55-61. doi:10.1067/mem.2001.116148PubMedGoogle ScholarCrossref
34.
Lavonas  EJ, Kokko  J, Schaeffer  TH, Mlynarchek  SL, Bogdan  GM, Dart  RC.  Short-term outcomes after Fab antivenom therapy for severe crotaline snakebite.  Ann Emerg Med. 2011;57(2):128-137.e3. doi:10.1016/j.annemergmed.2010.06.550PubMedGoogle ScholarCrossref
35.
Dart  RC, Seifert  SA, Carroll  L,  et al.  Affinity-purified, mixed monospecific crotalid antivenom ovine Fab for the treatment of crotalid venom poisoning.  Ann Emerg Med. 1997;30(1):33-39. doi:10.1016/S0196-0644(97)70107-0PubMedGoogle ScholarCrossref
36.
Dart  RC, Seifert  SA, Boyer  LV,  et al.  A randomized multicenter trial of crotalinae polyvalent immune Fab (ovine) antivenom for the treatment for crotaline snakebite in the United States.  Arch Intern Med. 2001;161(16):2030-2036. doi:10.1001/archinte.161.16.2030PubMedGoogle ScholarCrossref
37.
Hayes  WK.  Ontogeny of striking, prey-handling and envenomation behavior of prairie rattlesnakes (Crotalus v. viridis).  Toxicon. 1991;29(7):867-875. doi:10.1016/0041-0101(91)90223-EPubMedGoogle ScholarCrossref
38.
Hayes  WK.  Factors associated with the mass of venom expended by prairie rattlesnakes (Crotalus v. viridis) feeding on mice.  Toxicon. 1992;30(4):449-460. doi:10.1016/0041-0101(92)90541-CPubMedGoogle ScholarCrossref
39.
Gale  SC, Peters  JA, Allen  L, Creath  R, Dombrovskiy  VY.  FabAV antivenin use after copperhead snakebite: clinically indicated or knee-jerk reaction?  J Venom Anim Toxins Incl Trop Dis. 2016;22:2. doi:10.1186/s40409-016-0056-9PubMedGoogle ScholarCrossref
40.
Walker  JP, Morrison  RL.  Current management of copperhead snakebite.  J Am Coll Surg. 2011;212(4):470-474. doi:10.1016/j.jamcollsurg.2010.12.049PubMedGoogle ScholarCrossref
41.
Gerardo  CJ, Vissoci  JR, Brown  MW, Bush  SP.  Coagulation parameters in copperhead compared to other Crotalinae envenomation: secondary analysis of the F(ab’)2 versus Fab antivenom trial.  Clin Toxicol (Phila). 2017;55(2):109-114. doi:10.1080/15563650.2016.1250275PubMedGoogle ScholarCrossref
42.
Gerardo  CJ, Quackenbush  E, Lewis  B,  et al.  The efficacy of crotalidae polyvalent immune fab (Ovine) antivenom versus placebo plus optional rescue therapy on recovery from copperhead snake envenomation: a randomized, double-blind, placebo-controlled, clinical trial.  Ann Emerg Med. 2017;70(2):233-244.e3. doi:10.1016/j.annemergmed.2017.04.034PubMedGoogle ScholarCrossref
43.
Lavonas  EJ, Gerardo  CJ, O’Malley  G,  et al.  Initial experience with Crotalidae polyvalent immune Fab (ovine) antivenom in the treatment of copperhead snakebite.  Ann Emerg Med. 2004;43(2):200-206. doi:10.1016/j.annemergmed.2003.08.009PubMedGoogle ScholarCrossref
44.
Kanaan  NC, Ray  J, Stewart  M,  et al.  Wilderness medical society practice guidelines for the treatment of pitviper envenomations in the United States and Canada.  Wilderness Environ Med. 2015;26(4):472-487. doi:10.1016/j.wem.2015.05.007PubMedGoogle ScholarCrossref
45.
Bush  SP, Siedenburg  E.  Neurotoxicity associated with suspected southern Pacific rattlesnake (Crotalus viridis helleri) envenomation.  Wilderness Environ Med. 1999;10(4):247-249. doi:10.1580/1080-6032(1999)010[0247:NAWSSP]2.3.CO;2PubMedGoogle ScholarCrossref
46.
French  WJ, Hayes  WK, Bush  SP, Cardwell  MD, Bader  JO, Rael  ED.  Mojave toxin in venom of Crotalus helleri (Southern Pacific rattlesnake): molecular and geographic characterization.  Toxicon. 2004;44(7):781-791. doi:10.1016/j.toxicon.2004.08.008PubMedGoogle ScholarCrossref
47.
Lavonas  EJ, Ruha  AM, Banner  W,  et al; Rocky Mountain Poison and Drug Center, Denver Health and Hospital Authority.  Unified treatment algorithm for the management of crotaline snakebite in the United States: results of an evidence-informed consensus workshop.  BMC Emerg Med. 2011;11(2):2. doi:10.1186/1471-227X-11-2PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
Close
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close