Myocardial Strain in the Assessment of Patients With Heart Failure | Cardiology | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

Myocardial Strain in the Assessment of Patients With Heart FailureA Review

Educational Objective
To describe the uses of speckle-tracking echocardiography strain imaging for the diagnosis and management of heart failure syndromes.
1 Credit CME
Abstract

Importance  The cornerstones of imaging in heart failure (HF) are the measurement of systolic and diastolic function and left ventricular (LV) filling pressure.

Observations  Ejection fraction and the assessment of LV filling pressure and diastolic dysfunction using the ratio of early transmitral flow and LV relaxation (E/e′) are conventional imaging markers of LV function. Despite their extensive use in HF guidelines, both have significant detractions, especially in an era when HF with preserved ejection fraction is becoming the dominant presentation. In contrast, strain imaging has provided a new window into myocardial mechanics. Myocardial strain is now well validated, robust, and can easily be performed on most modern echocardiography machines. This Review summarizes the evidence in 9 situations across the stages of HF where LV global longitudinal strain and other strain parameters may provide information on risk prediction, diagnosis, assessment of treatment response, and follow-up.

Conclusions and Relevance  The evolution of myocardial deformation imaging from research tool to clinical practice will provide clinicians with a useful additional imaging parameter to facilitate the assessment and risk evaluation of patients with HF.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: December 27, 2018.

Corresponding Author: Thomas H. Marwick, MBBS, PhD, MPH, Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC 3004, Australia (tom.marwick@baker.edu.au).

Published Online: February 27, 2019. doi:10.1001/jamacardio.2019.0052

Author Contributions: Dr Marwick had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: All authors.

Drafting of the manuscript: Marwick.

Critical revision of the manuscript for important intellectual content: Shah, Thomas.

Administrative, technical, or material support: Marwick, Thomas.

Conflict of Interest Disclosures: Dr Marwick has received research support from the National Health and Medical Research Council (grants 1119955, 1080582, 1059738, and 1149692) and General Electric Medical Systems for an ongoing research study on the use of strain for the assessment of cardiotoxicity. Dr Shah has received funding from the National Institutes of Health (grants R01 HL127028, R01 HL107577, and R01 HL140731), Actelion Pharmaceuticals, AstraZeneca, Corvia Medical, and Novartis as well as consulting fees from Actelion Pharmaceuticals, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Cardiora, Eisai, Ironwood Pharmaceuticals, Merck & Co, Novartis, Pfizer, Sanofi, and United Therapeutics. Dr Thomas has received consulting fees and honoraria from General Electric, Edwards Lifesciences, Abbott Laboratories, and Bay Labs, and his spouse is employed by Bay Labs.

Disclaimer: Dr Shah is an associate editor of JAMA Cardiology. He was not involved in the editorial evaluation or decision to accept this article for publication.

References
1.
Hunt  SA, Abraham  WT, Chin  MH,  et al; American College of Cardiology; American Heart Association Task Force on Practice Guidelines; American College of Chest Physicians; International Society for Heart and Lung Transplantation; Heart Rhythm Society.  ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society.  Circulation. 2005;112(12):e154-e235.PubMedGoogle Scholar
2.
Tracy  CM, Epstein  AE, Darbar  D,  et al.  2012 ACCF/AHA/HRS focused update of the 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines.  J Am Coll Cardiol. 2012;60(14):1297-1313. doi:10.1016/j.jacc.2012.07.009PubMedGoogle ScholarCrossref
3.
Ponikowski  P, Voors  AA, Anker  SD,  et al; Authors/Task Force Members; Document Reviewers.  2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC): developed with the special contribution of the Heart Failure Association (HFA) of the ESC.  Eur J Heart Fail. 2016;18(8):891-975. doi:10.1002/ejhf.592PubMedGoogle ScholarCrossref
4.
Stokke  TM, Hasselberg  NE, Smedsrud  MK,  et al.  Geometry as a confounder when assessing ventricular systolic function: comparison between ejection fraction and strain.  J Am Coll Cardiol. 2017;70(8):942-954. doi:10.1016/j.jacc.2017.06.046PubMedGoogle ScholarCrossref
5.
Sharifov  OF, Schiros  CG, Aban  I, Denney  TS, Gupta  H.  Diagnostic accuracy of tissue Doppler index E/e′ for evaluating left ventricular filling pressure and diastolic dysfunction/heart failure with preserved ejection fraction: a systematic review and meta-analysis.  J Am Heart Assoc. 2016;5(1):5. doi:10.1161/JAHA.115.002530PubMedGoogle ScholarCrossref
6.
Paulus  WJ, Tschöpe  C, Sanderson  JE,  et al.  How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology.  Eur Heart J. 2007;28(20):2539-2550. doi:10.1093/eurheartj/ehm037PubMedGoogle ScholarCrossref
7.
Collier  P, Phelan  D, Klein  A.  A test in context: myocardial strain measured by speckle-tracking echocardiography.  J Am Coll Cardiol. 2017;69(8):1043-1056. doi:10.1016/j.jacc.2016.12.012PubMedGoogle ScholarCrossref
8.
Negishi  K, Negishi  T, Kurosawa  K,  et al.  Practical guidance in echocardiographic assessment of global longitudinal strain.  JACC Cardiovasc Imaging. 2015;8(4):489-492. doi:10.1016/j.jcmg.2014.06.013PubMedGoogle ScholarCrossref
9.
Buchalter  MB, Weiss  JL, Rogers  WJ,  et al.  Noninvasive quantification of left ventricular rotational deformation in normal humans using magnetic resonance imaging myocardial tagging.  Circulation. 1990;81(4):1236-1244. doi:10.1161/01.CIR.81.4.1236PubMedGoogle ScholarCrossref
10.
Maier  SE, Fischer  SE, McKinnon  GC, Hess  OM, Krayenbuehl  HP, Boesiger  P.  Evaluation of left ventricular segmental wall motion in hypertrophic cardiomyopathy with myocardial tagging.  Circulation. 1992;86(6):1919-1928. doi:10.1161/01.CIR.86.6.1919PubMedGoogle ScholarCrossref
11.
Yeon  SB, Reichek  N, Tallant  BA,  et al.  Validation of in vivo myocardial strain measurement by magnetic resonance tagging with sonomicrometry.  J Am Coll Cardiol. 2001;38(2):555-561. doi:10.1016/S0735-1097(01)01397-3PubMedGoogle ScholarCrossref
12.
MacGowan  GA, Shapiro  EP, Azhari  H,  et al.  Noninvasive measurement of shortening in the fiber and cross-fiber directions in the normal human left ventricle and in idiopathic dilated cardiomyopathy.  Circulation. 1997;96(2):535-541. doi:10.1161/01.CIR.96.2.535PubMedGoogle ScholarCrossref
13.
Yingchoncharoen  T, Agarwal  S, Popović  ZB, Marwick  TH.  Normal ranges of left ventricular strain: a meta-analysis.  J Am Soc Echocardiogr. 2013;26(2):185-191. doi:10.1016/j.echo.2012.10.008PubMedGoogle ScholarCrossref
14.
Negishi  T, Negishi  K, Thavendiranathan  P,  et al; SUCCOUR Investigators.  Effect of experience and training on the concordance and precision of strain measurements.  JACC Cardiovasc Imaging. 2017;10(5):518-522. doi:10.1016/j.jcmg.2016.06.012PubMedGoogle ScholarCrossref
15.
Kalam  K, Otahal  P, Marwick  TH.  Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction.  Heart. 2014;100(21):1673-1680. doi:10.1136/heartjnl-2014-305538PubMedGoogle ScholarCrossref
16.
Yang  H, Negishi  K, Wang  Y, Nolan  M, Saito  M, Marwick  TH.  Echocardiographic screening for non-ischaemic stage B heart failure in the community.  Eur J Heart Fail. 2016;18(11):1331-1339. doi:10.1002/ejhf.643PubMedGoogle ScholarCrossref
17.
Kraigher-Krainer  E, Shah  AM, Gupta  DK,  et al; PARAMOUNT Investigators.  Impaired systolic function by strain imaging in heart failure with preserved ejection fraction.  J Am Coll Cardiol. 2014;63(5):447-456. doi:10.1016/j.jacc.2013.09.052PubMedGoogle ScholarCrossref
18.
Phelan  D, Collier  P, Thavendiranathan  P,  et al.  Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis.  Heart. 2012;98(19):1442-1448. doi:10.1136/heartjnl-2012-302353PubMedGoogle ScholarCrossref
19.
Haugaa  KH, Hasselberg  NE, Edvardsen  T.  Mechanical dispersion by strain echocardiography: a predictor of ventricular arrhythmias in subjects with lamin A/C mutations.  JACC Cardiovasc Imaging. 2015;8(1):104-106. doi:10.1016/j.jcmg.2014.04.029PubMedGoogle ScholarCrossref
20.
Khan  FZ, Virdee  MS, Palmer  CR,  et al.  Targeted left ventricular lead placement to guide cardiac resynchronization therapy: the TARGET study: a randomized, controlled trial.  J Am Coll Cardiol. 2012;59(17):1509-1518. doi:10.1016/j.jacc.2011.12.030PubMedGoogle ScholarCrossref
21.
Grant  AD, Smedira  NG, Starling  RC, Marwick  TH.  Independent and incremental role of quantitative right ventricular evaluation for the prediction of right ventricular failure after left ventricular assist device implantation.  J Am Coll Cardiol. 2012;60(6):521-528. doi:10.1016/j.jacc.2012.02.073PubMedGoogle ScholarCrossref
22.
Plana  JC, Galderisi  M, Barac  A,  et al.  Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging.  J Am Soc Echocardiogr. 2014;27(9):911-939. doi:10.1016/j.echo.2014.07.012PubMedGoogle ScholarCrossref
23.
Morris  DA, Belyavskiy  E, Aravind-Kumar  R,  et al.  Potential usefulness and clinical relevance of adding left atrial strain to left atrial volume index in the detection of left ventricular diastolic dysfunction.  JACC Cardiovasc Imaging. 2018;11(10):1405-1415. doi:10.1016/j.jcmg.2017.07.029PubMedGoogle ScholarCrossref
24.
Solomon  SD, Anavekar  N, Skali  H,  et al; Candesartan in Heart Failure Reduction in Mortality (CHARM) Investigators.  Influence of ejection fraction on cardiovascular outcomes in a broad spectrum of heart failure patients.  Circulation. 2005;112(24):3738-3744. doi:10.1161/CIRCULATIONAHA.105.561423PubMedGoogle ScholarCrossref
25.
Stanton  T, Leano  R, Marwick  TH.  Prediction of all-cause mortality from global longitudinal speckle strain: comparison with ejection fraction and wall motion scoring.  Circ Cardiovasc Imaging. 2009;2(5):356-364. doi:10.1161/CIRCIMAGING.109.862334PubMedGoogle ScholarCrossref
26.
Park  JJ, Park  JB, Park  JH, Cho  GY.  Global longitudinal strain to predict mortality in patients with acute heart failure.  J Am Coll Cardiol. 2018;71(18):1947-1957. doi:10.1016/j.jacc.2018.02.064PubMedGoogle ScholarCrossref
27.
Huang  W, Chai  SC, Lee  SGS, MacDonald  MR, Leong  KTG.  Prognostic factors after index hospitalization for heart failure with preserved ejection fraction.  Am J Cardiol. 2017;119(12):2017-2020. doi:10.1016/j.amjcard.2017.03.032PubMedGoogle ScholarCrossref
28.
Sengeløv  M, Jørgensen  PG, Jensen  JS,  et al.  Global longitudinal strain is a superior predictor of all-cause mortality in heart failure with reduced ejection fraction.  JACC Cardiovasc Imaging. 2015;8(12):1351-1359. doi:10.1016/j.jcmg.2015.07.013PubMedGoogle ScholarCrossref
29.
Biering-Sørensen  T, Biering-Sørensen  SR, Olsen  FJ,  et al.  Global longitudinal strain by echocardiography predicts long-term risk of cardiovascular morbidity and mortality in a low-risk general population: the Copenhagen City Heart Study.  Circ Cardiovasc Imaging. 2017;10(3):e005521. doi:10.1161/CIRCIMAGING.116.005521PubMedGoogle ScholarCrossref
30.
Kuznetsova  T, Cauwenberghs  N, Knez  J,  et al.  Additive prognostic value of left ventricular systolic dysfunction in a population-based cohort.  Circ Cardiovasc Imaging. 2016;9(7):9. doi:10.1161/CIRCIMAGING.116.004661PubMedGoogle ScholarCrossref
31.
Russo  C, Jin  Z, Elkind  MSV,  et al.  Prevalence and prognostic value of subclinical left ventricular systolic dysfunction by global longitudinal strain in a community-based cohort.  Eur J Heart Fail. 2014;16(12):1301-1309. doi:10.1002/ejhf.154PubMedGoogle ScholarCrossref
32.
Hung  C-L, Verma  A, Uno  H,  et al; VALIANT investigators.  Longitudinal and circumferential strain rate, left ventricular remodeling, and prognosis after myocardial infarction.  J Am Coll Cardiol. 2010;56(22):1812-1822. doi:10.1016/j.jacc.2010.06.044PubMedGoogle ScholarCrossref
33.
Yang  H, Wang  Y, Nolan  M, Negishi  K, Okin  PM, Marwick  TH.  Community screening for nonischemic cardiomyopathy in asymptomatic subjects ≥65 years with stage B heart failure.  Am J Cardiol. 2016;117(12):1959-1965. doi:10.1016/j.amjcard.2016.03.045PubMedGoogle ScholarCrossref
34.
Ernande  L, Audureau  E, Jellis  CL,  et al.  Clinical implications of echocardiographic phenotypes of patients with diabetes mellitus.  J Am Coll Cardiol. 2017;70(14):1704-1716. doi:10.1016/j.jacc.2017.07.792PubMedGoogle ScholarCrossref
35.
Lee  WH, Liu  YW, Yang  LT, Tsai  WC.  Prognostic value of longitudinal strain of subepicardial myocardium in patients with hypertension.  J Hypertens. 2016;34(6):1195-1200. doi:10.1097/HJH.0000000000000903PubMedGoogle ScholarCrossref
36.
Szelényi  Z, Fazakas  Á, Szénási  G,  et al.  The mechanism of reduced longitudinal left ventricular systolic function in hypertensive patients with normal ejection fraction.  J Hypertens. 2015;33(9):1962-1969. doi:10.1097/HJH.0000000000000624PubMedGoogle ScholarCrossref
37.
Holland  DJ, Marwick  TH, Haluska  BA,  et al.  Subclinical LV dysfunction and 10-year outcomes in type 2 diabetes mellitus.  Heart. 2015;101(13):1061-1066. doi:10.1136/heartjnl-2014-307391PubMedGoogle ScholarCrossref
38.
Kosmala  W, Sanders  P, Marwick  TH.  Subclinical myocardial impairment in metabolic diseases.  JACC Cardiovasc Imaging. 2017;10(6):692-703. doi:10.1016/j.jcmg.2017.04.001PubMedGoogle ScholarCrossref
39.
Castaño  A, Narotsky  DL, Hamid  N,  et al.  Unveiling transthyretin cardiac amyloidosis and its predictors among elderly patients with severe aortic stenosis undergoing transcatheter aortic valve replacement.  Eur Heart J. 2017;38(38):2879-2887. doi:10.1093/eurheartj/ehx350PubMedGoogle ScholarCrossref
40.
Liu  D, Hu  K, Niemann  M,  et al.  Effect of combined systolic and diastolic functional parameter assessment for differentiation of cardiac amyloidosis from other causes of concentric left ventricular hypertrophy.  Circ Cardiovasc Imaging. 2013;6(6):1066-1072. doi:10.1161/CIRCIMAGING.113.000683PubMedGoogle ScholarCrossref
41.
Nagueh  SF, Smiseth  OA, Appleton  CP,  et al.  Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging.  J Am Soc Echocardiogr. 2016;29(4):277-314. doi:10.1016/j.echo.2016.01.011PubMedGoogle ScholarCrossref
42.
Kosmala  W, Rojek  A, Przewlocka-Kosmala  M, Mysiak  A, Karolko  B, Marwick  TH.  Contributions of nondiastolic factors to exercise intolerance in heart failure with preserved ejection fraction.  J Am Coll Cardiol. 2016;67(6):659-670. doi:10.1016/j.jacc.2015.10.096PubMedGoogle ScholarCrossref
43.
Dorfs  S, Zeh  W, Hochholzer  W,  et al.  Pulmonary capillary wedge pressure during exercise and long-term mortality in patients with suspected heart failure with preserved ejection fraction.  Eur Heart J. 2014;35(44):3103-3112. doi:10.1093/eurheartj/ehu315PubMedGoogle ScholarCrossref
44.
Aung  SM, Güler  A, Güler  Y, Huraibat  A, Karabay  CY, Akdemir  I.  Left atrial strain in heart failure with preserved ejection fraction.  Herz. 2017;42(2):194-199. doi:10.1007/s00059-016-4456-yPubMedGoogle ScholarCrossref
45.
Santos  AB, Kraigher-Krainer  E, Gupta  DK,  et al; PARAMOUNT Investigators.  Impaired left atrial function in heart failure with preserved ejection fraction.  Eur J Heart Fail. 2014;16(10):1096-1103. doi:10.1002/ejhf.147PubMedGoogle ScholarCrossref
46.
Obokata  M, Negishi  K, Kurosawa  K,  et al.  Incremental diagnostic value of LA strain with leg lifts in heart failure with preserved ejection fraction.  JACC Cardiovasc Imaging. 2013;6(7):749-758. doi:10.1016/j.jcmg.2013.04.006PubMedGoogle ScholarCrossref
47.
Abid  L, Charfeddine  S, Kammoun  S.  Relationship of left atrial global peak systolic strain with left ventricular diastolic dysfunction and brain natriuretic peptide level in end-stage renal disease patients with preserved left ventricular ejection fraction.  J Echocardiogr. 2016;14(2):71-78. doi:10.1007/s12574-016-0276-6PubMedGoogle ScholarCrossref
48.
Kusunose  K, Motoki  H, Popovic  ZB, Thomas  JD, Klein  AL, Marwick  TH.  Independent association of left atrial function with exercise capacity in patients with preserved ejection fraction.  Heart. 2012;98(17):1311-1317. doi:10.1136/heartjnl-2012-302007PubMedGoogle ScholarCrossref
49.
Telles  F, Nanayakkara  S, Evans  S,  et al.  Impaired left atrial strain predicts abnormal haemodynamics in heart failure with preserved ejection fraction.  Heart Lung Circ. 2018;27(suppl 2):S55. doi:10.1016/j.hlc.2018.06.028Google ScholarCrossref
50.
Santos  AB, Roca  GQ, Claggett  B,  et al.  Prognostic relevance of left atrial dysfunction in heart failure with preserved ejection fraction.  Circ Heart Fail. 2016;9(4):e002763. doi:10.1161/CIRCHEARTFAILURE.115.002763PubMedGoogle ScholarCrossref
51.
Freed  BH, Daruwalla  V, Cheng  JY,  et al.  Prognostic utility and clinical significance of cardiac mechanics in heart failure with preserved ejection fraction: importance of left atrial strain.  Circ Cardiovasc Imaging. 2016;9(3):9. doi:10.1161/CIRCIMAGING.115.003754PubMedGoogle ScholarCrossref
52.
Elming  MB, Nielsen  JC, Haarbo  J,  et al.  Age and outcomes of primary prevention implantable cardioverter-defibrillators in patients with nonischemic systolic heart failure.  Circulation. 2017;136(19):1772-1780. doi:10.1161/CIRCULATIONAHA.117.028829PubMedGoogle ScholarCrossref
53.
Leyva  F, Zegard  A, Acquaye  E,  et al.  Outcomes of cardiac resynchronization therapy with or without defibrillation in patients with nonischemic cardiomyopathy.  J Am Coll Cardiol. 2017;70(10):1216-1227. doi:10.1016/j.jacc.2017.07.712PubMedGoogle ScholarCrossref
54.
Haugaa  KH, Grenne  BL, Eek  CH,  et al.  Strain echocardiography improves risk prediction of ventricular arrhythmias after myocardial infarction.  JACC Cardiovasc Imaging. 2013;6(8):841-850. doi:10.1016/j.jcmg.2013.03.005PubMedGoogle ScholarCrossref
55.
Gorcsan  J  III, Yu  CM, Sanderson  JE.  Ventricular resynchronization is the principle mechanism of benefit with cardiac resynchronization therapy.  Heart Fail Rev. 2012;17(6):737-746. doi:10.1007/s10741-011-9274-yPubMedGoogle ScholarCrossref
56.
Nijjer  SS, Pabari  PA, Stegemann  B,  et al.  The limit of plausibility for predictors of response: application to biventricular pacing.  JACC Cardiovasc Imaging. 2012;5(10):1046-1065. doi:10.1016/j.jcmg.2012.07.010PubMedGoogle ScholarCrossref
57.
Douglas  PS, Garcia  MJ, Haines  DE,  et al; American College of Cardiology Foundation Appropriate Use Criteria Task Force; American Society of Echocardiography; American Heart Association; American Society of Nuclear Cardiology; Heart Failure Society of America; Heart Rhythm Society; Society for Cardiovascular Angiography and Interventions; Society of Critical Care Medicine; Society of Cardiovascular Computed Tomography; Society for Cardiovascular Magnetic Resonance.  ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 appropriate use criteria for echocardiography: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Society of Echocardiography, American Heart Association, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Critical Care Medicine, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance Endorsed by the American College of Chest Physicians.  J Am Coll Cardiol. 2011;57(9):1126-1166. doi:10.1016/j.jacc.2010.11.002PubMedGoogle ScholarCrossref
58.
Thavendiranathan  P, Grant  AD, Negishi  T, Plana  JC, Popović  ZB, Marwick  TH.  Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy.  J Am Coll Cardiol. 2013;61(1):77-84. doi:10.1016/j.jacc.2012.09.035PubMedGoogle ScholarCrossref
59.
Negishi  K, Borowski  AG, Popović  ZB,  et al.  Effect of gravitational gradients on cardiac filling and performance.  J Am Soc Echocardiogr. 2017;30(12):1180-1188. doi:10.1016/j.echo.2017.08.005PubMedGoogle ScholarCrossref
60.
Cameli  M, Lisi  M, Mondillo  S,  et al.  Left atrial longitudinal strain by speckle tracking echocardiography correlates well with left ventricular filling pressures in patients with heart failure.  Cardiovasc Ultrasound. 2010;8:14. doi:10.1186/1476-7120-8-14PubMedGoogle ScholarCrossref
61.
Singh  A, Addetia  K, Maffessanti  F, Mor-Avi  V, Lang  RM.  LA strain for categorization of LV diastolic dysfunction.  JACC Cardiovasc Imaging. 2017;10(7):735-743. doi:10.1016/j.jcmg.2016.08.014PubMedGoogle ScholarCrossref
62.
Voigt  J-U, Pedrizzetti  G, Lysyansky  P,  et al.  Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging.  Eur Heart J Cardiovasc Imaging. 2015;16(1):1-11. doi:10.1093/ehjci/jeu184PubMedGoogle ScholarCrossref
63.
Farsalinos  KE, Daraban  AM, Ünlü  S, Thomas  JD, Badano  LP, Voigt  J-U.  Head-to-head comparison of global longitudinal strain measurements among nine different vendors: the EACVI/ASE Inter-Vendor Comparison Study.  J Am Soc Echocardiogr. 2015;28(10):1171-1181, e2. doi:10.1016/j.echo.2015.06.011PubMedGoogle ScholarCrossref
64.
Zghal  F, Bougteb  H, Réant  P, Lafitte  S, Roudaut  R.  Assessing global and regional left ventricular myocardial function in elderly patients using the bidimensional strain method.  Echocardiography. 2011;28(9):978-982. doi:10.1111/j.1540-8175.2011.01476.xPubMedGoogle ScholarCrossref
65.
Takigiku  K, Takeuchi  M, Izumi  C,  et al; JUSTICE investigators.  Normal range of left ventricular 2-dimensional strain: Japanese Ultrasound Speckle Tracking of the Left Ventricle (JUSTICE) study.  Circ J. 2012;76(11):2623-2632. doi:10.1253/circj.CJ-12-0264PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close