[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.206.194.83. Please contact the publisher to request reinstatement.
[Skip to Content Landing]

Effectiveness of Self-guided App-Based Virtual Reality Cognitive Behavior Therapy for Acrophobia: A Randomized Clinical Trial

Educational Objective
To examine the effectiveness of ZeroPhobia, a fully self-guided app-based virtual reality cognitive behavior therapy using low-cost virtual reality goggles compared with a wait-list control group and to determine its user friendliness.
1 Credit CME
Key Points

Question  Is fully self-guided app-based virtual reality cognitive behavior therapy using low-cost (cardboard) virtual reality goggles user friendly and effective in reducing acrophobia symptoms compared with a wait-list control group?

Findings  In a single-blind randomized clinical trial that included 193 participants with acrophobia symptoms, app-based therapy demonstrated a large and significant reduction in acrophobia symptoms compared with wait-list controls and was rated as user friendly.

Meaning  Acrophobia cognitive behavioral therapy can be effectively delivered without therapist intervention through standard smartphones and low-cost virtual reality goggles at a fraction of the cost of current face-to-face treatment or high-end virtual reality exposure therapy.

Abstract

Importance  Globally, access to evidence-based psychological treatment is limited. Innovative self-help methods using smartphone applications and low-cost virtual reality have the potential to significantly improve the accessibility and scalability of psychological treatments.

Objective  To examine the effectiveness of ZeroPhobia, a fully self-guided app-based virtual reality cognitive behavior therapy (VR CBT) using low-cost (cardboard) virtual reality goggles compared with a wait-list control group and to determine its user friendliness.

Design, Setting, and Participants  In a single-blind randomized clinical trial, participants were enrolled between March 24 and September 28, 2017, and randomly assigned (1:1) by an independent researcher to either VR CBT app or a wait-list control group. A total of 193 individuals aged 18 to 65 years from the Dutch general population with acrophobia symptoms and access to an Android smartphone participated. The 6 animated modules of the VR-CBT app and gamified virtual reality environments were delivered over a 3-week period in participants’ natural environment. Assessments were completed at baseline, immediately after treatment, and at 3-month follow-up. Analysis began April 6, 2018, and was intention to treat.

Intervention  Self-guided app-based VR CBT.

Main Outcomes and Measures  The primary outcome measure was the Acrophobia Questionnaire. The hypothesis was formulated prior to data collection.

Results  In total, 193 participants (129 women [66.84%]; mean [SD] age, 41.33 [13.64] years) were randomly assigned to intervention (n = 96) or a wait-list control group (n = 97). An intent-to-treat analysis showed a significant reduction of acrophobia symptoms at posttest at 3 months for the VR-CBT app compared with the controls (b = –26.73 [95% CI, −32.12 to −21.34]; P < .001; d = 1.14 [95% CI, 0.84 to 1.44]). The number needed to treat was 1.7. Sensitivity and robustness analysis confirmed these findings. Pretreatment attrition was 22 of 96 (23%) because of smartphone incompatibility. Of the 74 participants who started using the VR-CBT app, 57 (77%) completed the intervention fully.

Conclusions and Relevance  A low-cost fully self-guided app-based virtual reality cognitive behavioral therapy with rudimentary virtual reality goggles can produce large acrophobia symptom reductions. To our knowledge, this study is the first to show that virtual reality acrophobia treatment can be done at home without the intervention of a therapist.

Trial Registration  Trialregister.nl identifier: NTR6442

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Corresponding Author: Tara Donker, PhD, Department of Clinical, Neuro- and Developmental Psychology, Vrije Universiteit Amsterdam, Van der Boechorststraat 1, 1081 BT Amsterdam, the Netherlands, (t.donker@vu.nl).

Accepted for Publication: January 7, 2019.

Published Online: March 20, 2019. doi:10.1001/jamapsychiatry.2019.0219

Author Contributions: Drs Cornelisz and van Klaveren had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Donker and van Gelder.

Acquisition, analysis, or interpretation of data: Donker, Cornelisz, van Klaveren, van Straten, Carlbring.

Drafting of the manuscript: Donker, Cornelisz, van Klaveren.

Critical revision of the manuscript for important intellectual content: van Klaveren, van Straten, Carlbring, Cuijpers, van Gelder.

Statistical analysis: Cornelisz, van Klaveren.

Obtained funding: Donker.

Administrative, technical, or material support: van Gelder.

Supervision: Donker, van Straten, Cuijpers.

Conflict of Interest Disclosures: Dr Donker reports grants from NWO Toegepaste en Technische Wetenschappen and NWO Creative Industrie-KIEM during the conduct of the study. Drs Donker and van Gelder have developed the virtual reality application ZeroPhobia, which is used in the present study in collaboration with Vrije Universiteit. ZeroPhobia is intended for commercial release. Hence, Drs Donker and van Gelder have not been involved in data analysis or any decisions related to the publication of findings. No other disclosures were reported.

Funding/Support: This study has been funded by NWO Toegepaste en Technische Wetenschappen (2016/STW/00099738) and NWO Creative Industrie-KIEM (314-98-076).

Role of the Funder/Sponsor: The funders of the study had no role in study design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, writing of the report, review or approval of the manuscript; and the decision to submit the manuscript for publication.

Data Sharing Statement: See Supplement 3.

Additional Contributions: We extend our gratitude to all the participants of the study; Bruno de Vos, BA (Studio Barbaar), for designing ZeroPhobia; Wouter Houwen (Fontys Hogescholen Eindhoven), Ruud op den Kelder, MSc (Robo Ruud), Bas van Loon (Fontys Hogescholen Eindhoven), and Doruk Eker, MSc (Orb Amsterdam), for programming ZeroPhobia; Rufus van Baardwijk, MSc, for ZeroPhobia sound; and Stefanie van Esveld, MSc (Vrije Universiteit Amsterdam), and Niclas Fischer, MSc (Vrije Universiteit Amsterdam), for assistance in data recruitment and data collection. Bruno de Vos, BA; Wouter Houwen; Ruud op den Kelder, MSc; Bas van Loon; Doruk Eker, MSc; and Rufus van Baardwijk, MSc, recieved financial compensation.

References
1.
Kessler  RC, Berglund  PA, Bruce  ML,  et al.  The prevalence and correlates of untreated serious mental illness.  Health Serv Res. 2001;36(6 pt 1):987-1007.PubMedGoogle Scholar
2.
Fairburn  CG, Patel  V.  The impact of digital technology on psychological treatments and their dissemination.  Behav Res Ther. 2017;88:19-25. doi:10.1016/j.brat.2016.08.012PubMedGoogle ScholarCrossref
3.
de Graaf  R, ten Have  M, van Gool  C, van Dorsselaer  S.  Prevalence of mental disorders and trends from 1996 to 2009: results from the Netherlands Mental Health Survey and Incidence Study-2.  Soc Psychiatry Psychiatr Epidemiol. 2012;47(2):203-213. doi:10.1007/s00127-010-0334-8PubMedGoogle ScholarCrossref
4.
Kessler  RC, Petukhova  M, Sampson  NA, Zaslavsky  AM, Wittchen  HU.  Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States.  Int J Methods Psychiatr Res. 2012;21(3):169-184. doi:10.1002/mpr.1359PubMedGoogle ScholarCrossref
5.
Depla  MF, ten Have  ML, van Balkom  AJ, de Graaf  R.  Specific fears and phobias in the general population: results from the Netherlands Mental Health Survey and Incidence Study (NEMESIS).  Soc Psychiatry Psychiatr Epidemiol. 2008;43(3):200-208. doi:10.1007/s00127-007-0291-zPubMedGoogle ScholarCrossref
6.
Stinson  FS, Dawson  DA, Patricia Chou  S,  et al.  The epidemiology of DSM-IV specific phobia in the USA: results from the National Epidemiologic Survey on Alcohol and Related Conditions.  Psychol Med. 2007;37(7):1047-1059. doi:10.1017/S0033291707000086PubMedGoogle ScholarCrossref
7.
Trumpf  J, Margraf  J, Vriends  N, Meyer  AH, Becker  ES.  Specific phobia predicts psychopathology in young women.  Soc Psychiatry Psychiatr Epidemiol. 2010;45(12):1161-1166. doi:10.1007/s00127-009-0159-5PubMedGoogle ScholarCrossref
8.
Choy  Y, Fyer  AJ, Goodwin  RD.  Specific phobia and comorbid depression: a closer look at the National Comorbidity Survey data.  Compr Psychiatry. 2007;48(2):132-136. doi:10.1016/j.comppsych.2006.10.010Google ScholarCrossref
9.
Abramowitz  JS.  The practice of exposure therapy: relevance of cognitive-behavioral theory and extinction theory.  Behav Ther. 2013;44(4):548-558. doi:10.1016/j.beth.2013.03.003PubMedGoogle ScholarCrossref
10.
Slater  M, Sanchez-Vives  MV.  Enhancing our lives with immersive virtual reality.  Frontiers Robotics AI.2016;3:76. doi:10.3389/frobt.2016.00074Google ScholarCrossref
11.
Fodor  LA, Coteț  CD, Cuijpers  P, Szamoskozi  Ș, David  D, Cristea  IA.  The effectiveness of virtual reality based interventions for symptoms of anxiety and depression: a meta-analysis.  Sci Rep. 2018;8(1):10323. doi:10.1038/s41598-018-28113-6PubMedGoogle ScholarCrossref
12.
Opriş  D, Pintea  S, García-Palacios  A, Botella  C, Szamosközi  Ş, David  D.  Virtual reality exposure therapy in anxiety disorders: a quantitative meta-analysis.  Depress Anxiety. 2012;29(2):85-93. doi:10.1002/da.20910PubMedGoogle ScholarCrossref
13.
Morina  N, Ijntema  H, Meyerbröker  K, Emmelkamp  PM.  Can virtual reality exposure therapy gains be generalized to real-life? a meta-analysis of studies applying behavioral assessments.  Behav Res Ther. 2015;74:18-24. doi:10.1016/j.brat.2015.08.010PubMedGoogle ScholarCrossref
14.
Carl  E, Stein  AT, Levihn-Coon  A,  et al.  Virtual reality exposure therapy for anxiety and related disorders: a meta-analysis of randomized controlled trials.  J Anxiety Disord. 2019;61:27-36. doi:10.1016/j.janxdis.2018.08.003Google ScholarCrossref
15.
Parsons  TD, Rizzo  AA.  Affective outcomes of virtual reality exposure therapy for anxiety and specific phobias: a meta-analysis.  J Behav Ther Exp Psychiatry. 2008;39(3):250-261. doi:10.1016/j.jbtep.2007.07.007PubMedGoogle ScholarCrossref
16.
Benbow  AA, Anderson  PL.  A meta-analytic examination of attrition in virtual reality exposure therapy for anxiety disorders.  J Anxiety Disord. 2019;61:18-26. doi:10.1016/j.janxdis.2018.06.006Google ScholarCrossref
17.
Fernández-Álvarez  J, Rozental  A, Carlbring  P,  et al.  Deterioration rates in virtual reality therapy: an individual patient data level meta-analysis.  J Anxiety Disord. 2019;61:3-17. doi:10.1016/j.janxdis.2018.06.005Google ScholarCrossref
18.
Lindner  P, Miloff  A, Hamilton  W,  et al.  Creating state of the art, next-generation virtual reality exposure therapies for anxiety disorders using consumer hardware platforms: design considerations and future directions.  Cogn Behav Ther. 2017;46(5):404-420. doi:10.1080/16506073.2017.1280843PubMedGoogle ScholarCrossref
19.
Freeman  D, , Haselton  P, , Freeman  J, ,  et al.  Automated psychological therapy using immersive virtual reality for treatment of fear of heights: a single-blind, parallel-group, randomised controlled trial.  Lancet Psychiatry. 2018;5(8):625-632. doi:10.1016/S2215-0366(18)30226-8-8Google ScholarCrossref
20.
Donker  T, Van Esveld  S, Fischer  N, Van Straten  A.  0Phobia: towards a virtual cure for acrophobia: study protocol for a randomized controlled trial.  Trials. 2018;19(1):433. doi:10.1186/s13063-018-2704-6PubMedGoogle ScholarCrossref
21.
Cohen  DC.  Comparison of self-report and overt-behavioral procedures for assessing acrophobia.  Behav Ther. 1977;8(1):17-23. doi:10.1016/S0005-7894(77)80116-0Google ScholarCrossref
22.
Steinman  SA, Teachman  BA.  Cognitive processing and acrophobia: validating the Heights Interpretation Questionnaire.  J Anxiety Disord. 2011;25(7):896-902 .doi:10.1016/j.janxdis.2011.05.001Google ScholarCrossref
23.
Kroenke  K, Spitzer  RL, Williams  JB.  The PHQ-9: validity of a brief depression severity measure.  J Gen Intern Med. 2001;16(9):606-613. doi:10.1046/j.1525-1497.2001.016009606.xPubMedGoogle ScholarCrossref
24.
Donker  T, van Straten  A, Marks  I, Cuijpers  P.  A brief Web-based screening questionnaire for common mental disorders: development and validation.  J Med Internet Res. 2009;11(3):e19. doi:10.2196/jmir.1134PubMedGoogle ScholarCrossref
25.
Saghaei  M.  Random allocation software for parallel group randomized trials.  BMC Med Res Methodol. 2004;4:26. doi:10.1186/1471-2288-4-26PubMedGoogle ScholarCrossref
26.
Cuijpers  P, Huibers  M, Ebert  DD, Koole  SL, Andersson  G.  How much psychotherapy is needed to treat depression? a metaregression analysis.  J Affect Disord. 2013;149(1-3):1-13. doi:10.1016/j.jad.2013.02.030PubMedGoogle ScholarCrossref
27.
Emmelkamp  PM, Krijn  M, Hulsbosch  AM, de Vries  S, Schuemie  MJ, van der Mast  CA.  Virtual reality treatment versus exposure in vivo: a comparative evaluation in acrophobia.  Behav Res Ther. 2002;40(5):509-516. doi:10.1016/S0005-7967(01)00023-7PubMedGoogle ScholarCrossref
28.
Abelson  JL, Curtis  GC.  Cardiac and neuroendocrine responses to exposure therapy in height phobics: desynchrony within the ‘physiological response system’.  Behav Res Ther. 1989;27(5):561-567. doi:10.1016/0005-7967(89)90091-0PubMedGoogle ScholarCrossref
29.
Beck  AT, Epstein  N, Brown  G, Steer  RA.  An inventory for measuring clinical anxiety: psychometric properties.  J Consult Clin Psychol. 1988;56(6):893-897. doi:10.1037/0022-006X.56.6.893PubMedGoogle ScholarCrossref
30.
Bangor  A.  An empirical evaluation of the system usability scale.  Int J Hum Comput Interact. 2008;24(6):574-594. doi:10.1080/10447310802205776Google ScholarCrossref
31.
Schubert  T, Friedmann  F, Regenbrecht  H.  The experience of presence: factor analytic insights.  Presence Teleop Virt.2001;10(3):266-281. doi:10.1162/105474601300343603Google ScholarCrossref
32.
Pearlin  LI, Schooler  C.  The structure of coping.  J Health Soc Behav. 1978;19(1):2-21. doi:10.2307/2136319PubMedGoogle ScholarCrossref
33.
LaViola  JJ  Jr.  A discussion of cybersickness in virtual environments.  ACM SIGCHI Bullet. 2000;32(1):47-56. doi:10.1145/333329.333344Google ScholarCrossref
34.
Kennedy  RS, Lane  NE, Berbaum  KS, Lilienthal  MG.  Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness.  Int J Aviat Psychol. 1993;3(3):203-220. doi:10.1207/s15327108ijap0303_3Google ScholarCrossref
35.
Survalyzer Nederland  BV. Utrecht, the Netherlands. http://www.survalyzer.com. Accessed Augst 27, 2018.
36.
Donker  T, Bennett  K, Bennett  A,  et al.  Internet-delivered interpersonal psychotherapy versus internet-delivered cognitive behavioral therapy for adults with depressive symptoms: randomized controlled noninferiority trial.  J Med Internet Res. 2013;15(5):e82. doi:10.2196/jmir.2307.Google ScholarCrossref
37.
Issakidis  C, Andrews  G.  Pretreatment attrition and dropout in an outpatient clinic for anxiety disorders.  Acta Psychiatr Scand. 2004;109(6):426-433. doi:10.1111/j.1600-0047.2004.00264.xPubMedGoogle ScholarCrossref
38.
Lee  DS.  Training, wages, and sample selection: estimating sharp bounds on treatment effects.  Rev Econ Stud. 2009;76(3):1071-1102. doi:10.1111/j.1467-937X.2009.00536.xGoogle ScholarCrossref
39.
Karyotaki  E, Riper  H, Twisk  J,  et al.  Efficacy of self-guided internet-based cognitive behavioral therapy in the treatment of depressive symptoms: a meta-analysis of individual participant data.  JAMA Psychiatry. 2017;74(4):351-359. doi:10.1001/jamapsychiatry.2017.0044PubMedGoogle ScholarCrossref
40.
Reliable and clinically significant change. Mounted by Chris Evans, 1998. http://www.psyctc.org/stats/rcsc.htm. Accessed August 18, 2018.
41.
Cohen  DC. Personality predictors and the outcome of varieties of desensitization. Unpublished doctoral dissertation, Harvard University, Cambridge, MA; 1972.
42.
Jacobson  NS, Truax  P.  Clinical significance: a statistical approach to defining meaningful change in psychotherapy research.  J Consult Clin Psychol. 1991;59(1):12-19. doi:10.1037/0022-006X.59.1.12PubMedGoogle ScholarCrossref
43.
Christensen  L, Mendoza  JL.  A method of assessing change in a single subject: an alteration of the RC index.  Behav Ther. 1986;17(3):305-308. doi:10.1016/S0005-7894(86)80060-0Google ScholarCrossref
44.
Furukawa  TA, Leucht  S.  How to obtain NNT from Cohen’s d: comparison of two methods.  PLoS One. 2011;6(4):e19070. doi:10.1371/journal.pone.0019070PubMedGoogle ScholarCrossref
45.
Pedersen  AB, Mikkelsen  EM, Cronin-Fenton  D,  et al.  Missing data and multiple imputation in clinical epidemiological research.  Clin Epidemiol. 2017;9:157-166. doi:10.2147/CLEP.S129785PubMedGoogle ScholarCrossref
46.
Rozental  A, Castonguay  L, Dimidjian  S,  et al.  Negative effects in psychotherapy: commentary and recommendations for future research and clinical practice.  BJPsych Open. 2018;4(4):307-312. doi:10.1192/bjo.2018.42PubMedGoogle ScholarCrossref
47.
Arroll  B, Wallace  HB, Mount  V, Humm  SP, Kingsford  DW.  A systematic review and meta-analysis of treatments for acrophobia.  Med J Aust. 2017;206(6):263-267. doi:10.5694/mja16.00540PubMedGoogle ScholarCrossref
48.
Wolitzky-Taylor  KB, Horowitz  JD, Powers  MB, Telch  MJ.  Psychological approaches in the treatment of specific phobias: a meta-analysis.  Clin Psychol Rev. 2008;28(6):1021-1037. doi:10.1016/j.cpr.2008.02.007PubMedGoogle ScholarCrossref
49.
Krijn  M, Emmelkamp  PMG, Biemond  R, de Wilde de Ligny  C, Schuemie  MJ, van der Mast  CA.  Treatment of acrophobia in virtual reality: the role of immersion and presence.  Behav Res Ther. 2004;42(2):229-239. doi:10.1016/S0005-7967(03)00139-6Google ScholarCrossref
50.
Andersson  G, Titov  N.  Advantages and limitations of Internet-based interventions for common mental disorders.  World Psychiatry. 2014;13(1):4-11. doi:10.1002/wps.20083PubMedGoogle ScholarCrossref
51.
Buntrock  C, Ebert  DD, Lehr  D,  et al.  Effect of a Web-based guided self-help intervention for prevention of major depression in adults with subthreshold depression: a randomized clinical trial.  JAMA. 2016;315(17):1854-1863. doi:10.1001/jama.2016.4326PubMedGoogle ScholarCrossref
52.
Statcounter GlobalStats. Mobile operating system market share Netherlands. Oct 2017- Oct 2018. http://gs.statcounter.com/os-market-share/mobile/netherlands. Accessed November 29, 2018.
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Topics
State Requirements