[Skip to Content]
[Skip to Content Landing]

Cerebral Intraparenchymal HemorrhageA Review

Educational Objective
To review the clinical management of patients with spontaneous intraparenchymal hemorrhage.
1 Credit CME

Importance  Although spontaneous intraparenchymal hemorrhage (IPH) accounts for less than 20% of cases of stroke, it continues to be associated with the highest mortality of all forms of stroke and substantial morbidity rates.

Observations  Early identification and management of IPH is crucial. Blood pressure control, reversal of associated coagulopathy, care in a dedicated stroke unit, and identification of secondary etiologies are essential to optimizing outcomes. Surgical management of hydrocephalus and space occupying hemorrhage in the posterior fossa are accepted forms of treatment. Modern advances in minimally invasive surgical management of primary, supratentorial IPH are being explored in randomized trials. Hemorrhagic arteriovenous malformations and cavernous malformations are surgically excised if accessible, while hemorrhagic dural arteriovenous fistulas and distal/mycotic aneurysms are often managed with embolization if feasible.

Conclusions and Relevance  IPH remains a considerable source of neurological morbidity and mortality. Rapid identification, medical management, and neurosurgical management, when indicated, are essential to facilitate recovery. There is ongoing evaluation of minimally invasive approaches for evacuation of primary IPH and evolution of surgical and endovascular techniques in the management of lesions leading to secondary IPH.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ from JAMA Network is your new home for CME and MOC from a source you trust. Earn AMA PRA Category 1 CME Credit™ from relevant articles, audio, and Clinical Challenge image quizzes, explore interactives and videos, and – depending on your specialty or state – have your MOC points automatically transferred to the relevant board. Learn more about CME

Article Information

Corresponding Author: Robert M. Friedlander, MD, Department of Neurological Surgery, University of Pittsburgh Medical Center, 200 Lothrop St, Ste B-400, Pittsburgh, PA 15213 (friedlanderr@upmc.edu).

Accepted for Publication: February 22, 2019.

Author Contributions: Dr Friedlander had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: All authors.

Acquisition, analysis, or interpretation of data: Gross, Friedlander.

Drafting of the manuscript: Gross.

Critical revision of the manuscript for important intellectual content: All authors.

Administrative, technical, or material support: Jankowitz, Friedlander.

Supervision: Friedlander.

Conflict of Interest Disclosures: Dr Gross is a consultant for Microvention. Dr Jankowitz is a consultant for Medtronic and Stryker Neurovascular and was the co–primary investigator on the ATLAS study. No other disclosures were reported.

Feigin  VL, Lawes  CMM, Bennett  DA, Anderson  CS.  Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century.  Lancet Neurol. 2003;2(1):43-53. doi:10.1016/S1474-4422(03)00266-7PubMedGoogle ScholarCrossref
O’Donnell  MJ, Xavier  D, Liu  L,  et al; INTERSTROKE investigators.  Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study.  Lancet. 2010;376(9735):112-123. doi:10.1016/S0140-6736(10)60834-3PubMedGoogle ScholarCrossref
Dennis  MS, Burn  JP, Sandercock  PA,  et al.  Long-term survival after first-ever stroke: the Oxfordshire community stroke project.  Stroke. 1999;30:905-915.PubMedGoogle ScholarCrossref
Sacco  S, Marini  C, Toni  D, Olivieri  L, Carolei  A.  Incidence and 10-year survival of intracerebral hemorrhage in a population-based registry.  Stroke. 2009;40(2):394-399. doi:10.1161/STROKEAHA.108.523209PubMedGoogle ScholarCrossref
van Asch  CJJ, Luitse  MJA, Rinkel  GJE, van der Tweel  I, Algra  A, Klijn  CJ.  Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis.  Lancet Neurol. 2010;9(2):167-176. doi:10.1016/S1474-4422(09)70340-0PubMedGoogle ScholarCrossref
Costa  P, Grassi  M, Iacoviello  L,  et al; Multicenter Study on Cerebral Haemorrhage in Italy (MUCH-Italy) Investigators.  Alcohol intake and the risk of intracerebral hemorrhage in the elderly: the MUCH-Italy.  Neurology. 2018;91(3):e227-e235. doi:10.1212/WNL.0000000000005814PubMedGoogle ScholarCrossref
Suh  I, Jee  SH, Kim  HC, Nam  CM, Kim  IS, Appel  LJ.  Low serum cholesterol and haemorrhagic stroke in men: Korea Medical Insurance Corporation Study.  Lancet. 2001;357(9260):922-925. doi:10.1016/S0140-6736(00)04213-6PubMedGoogle ScholarCrossref
Biffi  A, Anderson  CD, Battey  TWK,  et al.  Association between blood pressure control and risk of recurrent intracerebral hemorrhage.  JAMA. 2015;314(9):904-912. doi:10.1001/jama.2015.10082PubMedGoogle ScholarCrossref
Greenberg  SM, Charidimou  A.  Diagnosis of cerebral amyloid angiopathy: evolution of the Boston criteria.  Stroke. 2018;49(2):491-497. doi:10.1161/STROKEAHA.117.016990PubMedGoogle ScholarCrossref
O’Donnell  HC, Rosand  J, Knudsen  KA,  et al.  Apolipoprotein E genotype and the risk of recurrent lobar intracerebral hemorrhage.  N Engl J Med. 2000;342(4):240-245. doi:10.1056/NEJM200001273420403PubMedGoogle ScholarCrossref
Charidimou  A, Imaizumi  T, Moulin  S,  et al.  Brain hemorrhage recurrence, small vessel disease type, and cerebral microbleeds: a meta-analysis.  Neurology. 2017;89(8):820-829. doi:10.1212/WNL.0000000000004259PubMedGoogle ScholarCrossref
Moulin  S, Labreuche  J, Bombois  S,  et al.  Dementia risk after spontaneous intracerebral haemorrhage: a prospective cohort study.  Lancet Neurol. 2016;15(8):820-829. doi:10.1016/S1474-4422(16)00130-7PubMedGoogle ScholarCrossref
Rodrigues  MA, Samarasekera  N, Lerpiniere  C,  et al.  The Edinburgh CT and genetic diagnostic criteria for lobar intracerebral haemorrhage associated with cerebral amyloid angiopathy: model development and diagnostic test accuracy study.  Lancet Neurol. 2018;17(3):232-240. doi:10.1016/S1474-4422(18)30006-1PubMedGoogle ScholarCrossref
Hajj-Ali  RA, Calabrese  LH.  Diagnosis and classification of central nervous system vasculitis.  J Autoimmun. 2014;48-49:149-152. doi:10.1016/j.jaut.2014.01.007PubMedGoogle ScholarCrossref
Friedlander  RM.  Clinical practice. arteriovenous malformations of the brain.  N Engl J Med. 2007;356(26):2704-2712. doi:10.1056/NEJMcp067192PubMedGoogle ScholarCrossref
Gross  BA, Du  R.  Natural history of cerebral arteriovenous malformations: a meta-analysis.  J Neurosurg. 2013;118(2):437-443. doi:10.3171/2012.10.JNS121280PubMedGoogle ScholarCrossref
Gross  BA, Albuquerque  FC, McDougall  CG,  et al.  A multi-institutional analysis of the untreated course of cerebral dural arteriovenous fistulas.  J Neurosurg. 2018;129(5):1114-1119. doi:10.3171/2017.6.JNS171090PubMedGoogle ScholarCrossref
Bertalanffy  H, Benes  L, Miyazawa  T,  et al.  Cerebral cavernous malformations in the adult: review of the literature and analysis of 72 surgically treated cases.  Neurosurg Rev. 2002;25(1-2):1-53. doi:10.1007/s101430100179PubMedGoogle ScholarCrossref
Gross  BA, Du  R.  Hemorrhage from cerebral cavernous malformations: a systematic pooled analysis.  J Neurosurg. 2017;126(4):1079-1087. doi:10.3171/2016.3.JNS152419PubMedGoogle ScholarCrossref
Taslimi  S, Modabbernia  A, Amin-Hanjani  S, Barker  FG  II, Macdonald  RL.  Natural history of cavernous malformation: systematic review and meta-analysis of 25 studies.  Neurology. 2016;86(21):1984-1991. doi:10.1212/WNL.0000000000002701PubMedGoogle ScholarCrossref
Murthy  SB, Merkler  AE, Omran  SS,  et al.  Outcomes after intracerebral hemorrhage from arteriovenous malformations.  Neurology. 2017;88(20):1882-1888. doi:10.1212/WNL.0000000000003935PubMedGoogle ScholarCrossref
Saposnik  G, Barinagarrementeria  F, Brown  RD  Jr,  et al; American Heart Association Stroke Council and the Council on Epidemiology and Prevention.  Diagnosis and management of cerebral venous thrombosis: a statement for healthcare professionals from the American Heart Association/American Stroke Association.  Stroke. 2011;42(4):1158-1192. doi:10.1161/STR.0b013e31820a8364PubMedGoogle ScholarCrossref
Lee  SK, Mokin  M, Hetts  SW, Fifi  JT, Bousser  MG, Fraser  JF; Society of NeuroInterventional Surgery.  Current endovascular strategies for cerebral venous thrombosis: report of the SNIS Standards and Guidelines Committee.  J Neurointerv Surg. 2018;10(8):803-810. doi:10.1136/neurintsurg-2018-013973PubMedGoogle ScholarCrossref
Grandhi  R, Zwagerman  NT, Linares  G,  et al.  Onyx embolization of infectious intracranial aneurysms.  J Neurointerv Surg. 2014;6(5):353-356. doi:10.1136/neurintsurg-2013-010755PubMedGoogle ScholarCrossref
Scott  RM, Smith  ER.  Moyamoya disease and moyamoya syndrome.  N Engl J Med. 2009;360(12):1226-1237. doi:10.1056/NEJMra0804622PubMedGoogle ScholarCrossref
Miyamoto  S, Yoshimoto  T, Hashimoto  N,  et al; JAM Trial Investigators.  Effects of extracranial-intracranial bypass for patients with hemorrhagic moyamoya disease: results of the Japan Adult Moyamoya Trial.  Stroke. 2014;45(5):1415-1421. doi:10.1161/STROKEAHA.113.004386PubMedGoogle ScholarCrossref
Tan  S, Wang  D, Liu  M, Zhang  S, Wu  B, Liu  B.  Frequency and predictors of spontaneous hemorrhagic transformation in ischemic stroke and its association with prognosis.  J Neurol. 2014;261(5):905-912. doi:10.1007/s00415-014-7297-8PubMedGoogle ScholarCrossref
Terruso  V, D’Amelio  M, Di Benedetto  N,  et al.  Frequency and determinants for hemorrhagic transformation of cerebral infarction.  Neuroepidemiology. 2009;33(3):261-265. doi:10.1159/000229781PubMedGoogle ScholarCrossref
Mendelow  AD, Gregson  BA, Fernandes  HM,  et al; STICH investigators.  Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): a randomised trial.  Lancet. 2005;365(9457):387-397. doi:10.1016/S0140-6736(05)17826-XPubMedGoogle ScholarCrossref
Bekelis  K, Desai  A, Zhao  W,  et al.  Computed tomography angiography: improving diagnostic yield and cost effectiveness in the initial evaluation of spontaneous nonsubarachnoid intracerebral hemorrhage.  J Neurosurg. 2012;117(4):761-766. doi:10.3171/2012.7.JNS12281PubMedGoogle ScholarCrossref
Moon  JS, Janjua  N, Ahmed  S,  et al.  Prehospital neurologic deterioration in patients with intracerebral hemorrhage.  Crit Care Med. 2008;36(1):172-175. doi:10.1097/01.CCM.0000297876.62464.6BPubMedGoogle ScholarCrossref
Shkirkova  K, Saver  JL, Starkman  S,  et al; FAST-MAG Trial Coordinators and Investigators.  Frequency, predictors, and outcomes of prehospital and early postarrival neurological deterioration in acute stroke: exploratory analysis of the FAST-MAG randomized clinical trial.  JAMA Neurol. 2018;75(11):1364-1374. doi:10.1001/jamaneurol.2018.1893PubMedGoogle ScholarCrossref
Fan  JS, Huang  HH, Chen  YC,  et al.  Emergency department neurologic deterioration in patients with spontaneous intracerebral hemorrhage: incidence, predictors, and prognostic significance.  Acad Emerg Med. 2012;19(2):133-138. doi:10.1111/j.1553-2712.2011.01285.xPubMedGoogle ScholarCrossref
Hemphill  JC  III, Greenberg  SM, Anderson  CS,  et al; American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology.  Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association.  Stroke. 2015;46(7):2032-2060. doi:10.1161/STR.0000000000000069PubMedGoogle ScholarCrossref
Hemphill  JC  III, Bonovich  DC, Besmertis  L, Manley  GT, Johnston  SC.  The ICH score: a simple, reliable grading scale for intracerebral hemorrhage.  Stroke. 2001;32(4):891-897. doi:10.1161/01.STR.32.4.891PubMedGoogle ScholarCrossref
Demchuk  AM, Dowlatshahi  D, Rodriguez-Luna  D,  et al; PREDICT/Sunnybrook ICH CTA study group.  Prediction of haematoma growth and outcome in patients with intracerebral haemorrhage using the CT-angiography spot sign (PREDICT): a prospective observational study.  Lancet Neurol. 2012;11(4):307-314. doi:10.1016/S1474-4422(12)70038-8PubMedGoogle ScholarCrossref
Sarode  R, Milling  TJ  Jr, Refaai  MA,  et al.  Efficacy and safety of a 4-factor prothrombin complex concentrate in patients on vitamin K antagonists presenting with major bleeding: a randomized, plasma-controlled, phase IIIb study.  Circulation. 2013;128(11):1234-1243. doi:10.1161/CIRCULATIONAHA.113.002283PubMedGoogle ScholarCrossref
Huttner  HB, Schellinger  PD, Hartmann  M,  et al.  Hematoma growth and outcome in treated neurocritical care patients with intracerebral hemorrhage related to oral anticoagulant therapy: comparison of acute treatment strategies using vitamin K, fresh frozen plasma, and prothrombin complex concentrates.  Stroke. 2006;37(6):1465-1470. doi:10.1161/01.STR.0000221786.81354.d6PubMedGoogle ScholarCrossref
Pollack  CV  Jr, Reilly  PA, van Ryn  J,  et al.  Idarucizumab for dabigatran reversal - full cohort analysis.  N Engl J Med. 2017;377(5):431-441. doi:10.1056/NEJMoa1707278PubMedGoogle ScholarCrossref
Connolly  SJ, Milling  TJ  Jr, Eikelboom  JW,  et al; ANNEXA-4 Investigators.  Andexanet alfa for acute major bleeding associated with factor Xa inhibitors.  N Engl J Med. 2016;375(12):1131-1141. doi:10.1056/NEJMoa1607887PubMedGoogle ScholarCrossref
Mayer  SA, Brun  NC, Begtrup  K,  et al; FAST Trial Investigators.  Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage.  N Engl J Med. 2008;358(20):2127-2137. doi:10.1056/NEJMoa0707534PubMedGoogle ScholarCrossref
Sprigg  N, Flaherty  K, Appleton  JP,  et al; TICH-2 Investigators.  Tranexamic acid for hyperacute primary IntraCerebral Haemorrhage (TICH-2): an international randomised, placebo-controlled, phase 3 superiority trial.  Lancet. 2018;391(10135):2107-2115. doi:10.1016/S0140-6736(18)31033-XPubMedGoogle ScholarCrossref
Baharoglu  MI, Cordonnier  C, Al-Shahi Salman  R,  et al; PATCH Investigators.  Platelet transfusion versus standard care after acute stroke due to spontaneous cerebral haemorrhage associated with antiplatelet therapy (PATCH): a randomised, open-label, phase 3 trial.  Lancet. 2016;387(10038):2605-2613. doi:10.1016/S0140-6736(16)30392-0PubMedGoogle ScholarCrossref
Brott  T, Broderick  J, Kothari  R,  et al.  Early hemorrhage growth in patients with intracerebral hemorrhage.  Stroke. 1997;28(1):1-5. doi:10.1161/01.STR.28.1.1PubMedGoogle ScholarCrossref
Davis  SM, Broderick  J, Hennerici  M,  et al; Recombinant Activated Factor VII Intracerebral Hemorrhage Trial Investigators.  Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage.  Neurology. 2006;66(8):1175-1181. doi:10.1212/01.wnl.0000208408.98482.99PubMedGoogle ScholarCrossref
Fujii  Y, Takeuchi  S, Sasaki  O, Minakawa  T, Tanaka  R.  Multivariate analysis of predictors of hematoma enlargement in spontaneous intracerebral hemorrhage.  Stroke. 1998;29(6):1160-1166. doi:10.1161/01.STR.29.6.1160PubMedGoogle ScholarCrossref
Qureshi  AI, Palesch  YY, Barsan  WG,  et al; ATACH-2 Trial Investigators and the Neurological Emergency Treatment Trials Network.  Intensive blood-pressure lowering in patients with acute cerebral hemorrhage.  N Engl J Med. 2016;375(11):1033-1043. doi:10.1056/NEJMoa1603460PubMedGoogle ScholarCrossref
Anderson  CS, Heeley  E, Huang  Y,  et al; INTERACT2 Investigators.  Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage.  N Engl J Med. 2013;368(25):2355-2365. doi:10.1056/NEJMoa1214609PubMedGoogle ScholarCrossref
Terént  A, Asplund  K, Farahmand  B,  et al; Riks-Stroke Collaboration.  Stroke unit care revisited: who benefits the most? a cohort study of 105,043 patients in Riks-Stroke, the Swedish Stroke Register.  J Neurol Neurosurg Psychiatry. 2009;80(8):881-887. doi:10.1136/jnnp.2008.169102PubMedGoogle ScholarCrossref
Messé  SR, Sansing  LH, Cucchiara  BL, Herman  ST, Lyden  PD, Kasner  SE; CHANT investigators.  Prophylactic antiepileptic drug use is associated with poor outcome following ICH.  Neurocrit Care. 2009;11(1):38-44. doi:10.1007/s12028-009-9207-yPubMedGoogle ScholarCrossref
Naidech  AM, Beaumont  J, Jahromi  B, Prabhakaran  S, Kho  A, Holl  JL.  Evolving use of seizure medications after intracerebral hemorrhage: a multicenter study.  Neurology. 2017;88(1):52-56. doi:10.1212/WNL.0000000000003461PubMedGoogle ScholarCrossref
Dennis  M, Sandercock  P, Reid  J, Graham  C, Forbes  J, Murray  G; CLOTS (Clots in Legs Or sTockings after Stroke) Trials Collaboration.  Effectiveness of intermittent pneumatic compression in reduction of risk of deep vein thrombosis in patients who have had a stroke (CLOTS 3): a multicentre randomised controlled trial.  Lancet. 2013;382(9891):516-524. doi:10.1016/S0140-6736(13)61050-8PubMedGoogle ScholarCrossref
Paciaroni  M, Agnelli  G, Venti  M, Alberti  A, Acciarresi  M, Caso  V.  Efficacy and safety of anticoagulants in the prevention of venous thromboembolism in patients with acute cerebral hemorrhage: a meta-analysis of controlled studies.  J Thromb Haemost. 2011;9(5):893-898. doi:10.1111/j.1538-7836.2011.04241.xPubMedGoogle ScholarCrossref
Bhattathiri  PS, Gregson  B, Prasad  KS, Mendelow  AD; STICH Investigators.  Intraventricular hemorrhage and hydrocephalus after spontaneous intracerebral hemorrhage: results from the STICH trial.  Acta Neurochir Suppl. 2006;96:65-68. doi:10.1007/3-211-30714-1_16PubMedGoogle ScholarCrossref
Da Pian  R, Bazzan  A, Pasqualin  A.  Surgical versus medical treatment of spontaneous posterior fossa haematomas: a cooperative study on 205 cases.  Neurol Res. 1984;6(3):145-151. doi:10.1080/01616412.1984.11739680PubMedGoogle ScholarCrossref
van Loon  J, Van Calenbergh  F, Goffin  J, Plets  C.  Controversies in the management of spontaneous cerebellar haemorrhage: a consecutive series of 49 cases and review of the literature.  Acta Neurochir (Wien). 1993;122(3-4):187-193. doi:10.1007/BF01405527PubMedGoogle ScholarCrossref
Fung  C, Murek  M, Z’Graggen  WJ,  et al.  Decompressive hemicraniectomy in patients with supratentorial intracerebral hemorrhage.  Stroke. 2012;43(12):3207-3211. doi:10.1161/STROKEAHA.112.666537PubMedGoogle ScholarCrossref
Takeuchi  S, Wada  K, Nagatani  K, Otani  N, Mori  K.  Decompressive hemicraniectomy for spontaneous intracerebral hemorrhage.  Neurosurg Focus. 2013;34(5):E5. doi:10.3171/2013.2.FOCUS12424PubMedGoogle ScholarCrossref
Mendelow  AD, Gregson  BA, Rowan  EN, Murray  GD, Gholkar  A, Mitchell  PM; STICH II Investigators.  Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial.  Lancet. 2013;382(9890):397-408. doi:10.1016/S0140-6736(13)60986-1PubMedGoogle ScholarCrossref
Zhou  X, Chen  J, Li  Q,  et al.  Minimally invasive surgery for spontaneous supratentorial intracerebral hemorrhage: a meta-analysis of randomized controlled trials.  Stroke. 2012;43(11):2923-2930. doi:10.1161/STROKEAHA.112.667535PubMedGoogle ScholarCrossref
Xia  Z, Wu  X, Li  J,  et al.  Minimally invasive surgery is superior to conventional craniotomy in patients with spontaneous supratentorial intracerebral hemorrhage: a systematic review and meta-analysis.  World Neurosurg. 2018;115:266-273. doi:10.1016/j.wneu.2018.04.181PubMedGoogle ScholarCrossref
Hanley  DF, Thompson  RE, Muschelli  J,  et al; MISTIE Investigators.  Safety and efficacy of minimally invasive surgery plus alteplase in intracerebral haemorrhage evacuation (MISTIE): a randomised, controlled, open-label, phase 2 trial.  Lancet Neurol. 2016;15(12):1228-1237. doi:10.1016/S1474-4422(16)30234-4PubMedGoogle ScholarCrossref
Alan  N, Lee  P, Ozpinar  A, Gross  BA, Jankowitz  BT.  Robotic stereotactic assistance (ROSA) utilization of minimally invasive placement of intraparenchymal hematoma and intraventricular catheters.  World Neurosurg. 2017;108:996.e7-996.e10. doi:10.1016/j.wneu.2017.09.027PubMedGoogle ScholarCrossref
Labib  MA, Shah  M, Kassam  AB,  et al.  The safety and feasibility of image-guided BrainPath-medicated transsulcal hematoma evacuation: a multicenter study.  Neurosurgery. 2017;80(4):515-524.PubMedGoogle Scholar
Spetzler  RF, Martin  NA.  A proposed grading system for arteriovenous malformations.  J Neurosurg. 1986;65(4):476-483. doi:10.3171/jns.1986.65.4.0476PubMedGoogle ScholarCrossref
Niranjan  A, Lunsford  LD.  Stereotactic radiosurgery guideline for the management of patients with intracranial arteriovenous malformations.  Prog Neurol Surg. 2013;27:130-140. doi:10.1159/000341773PubMedGoogle ScholarCrossref
Stemer  AB, Bank  WO, Armonda  RA, Liu  AH, Herzig  DW, Bell  RS.  Acute embolization of ruptured brain arteriovenous malformations.  J Neurointerv Surg. 2013;5(3):196-200. doi:10.1136/neurintsurg-2011-010214PubMedGoogle ScholarCrossref
Iosif  C, Mendes  GA, Saleme  S,  et al.  Endovascular transvenous cure for ruptured brain arteriovenous malformations in complex cases with high Spetzler-Martin grades.  J Neurosurg. 2015;122(5):1229-1238. doi:10.3171/2014.9.JNS141714PubMedGoogle ScholarCrossref
Gross  BA, Albuquerque  FC, Moon  K, McDougall  CG.  Evolution of treatment and a detailed analysis of occlusion, recurrence, and clinical outcomes in an endovascular library of 260 dural arteriovenous fistulas.  J Neurosurg. 2017;126(6):1884-1893.PubMedGoogle ScholarCrossref
Cavalcanti  DD, Preul  MC, Kalani  MY, Spetzler  RF.  Microsurgical anatomy of safe entry zones to the brainstem.  J Neurosurg. 2016;124(5):1359-1376. doi:10.3171/2015.4.JNS141945PubMedGoogle ScholarCrossref
Faraji  AH, Abhinav  K, Jarbo  K,  et al.  Longitudinal evaluation of corticospinal tract in patients with resected brainstem cavernous malformations using high-definition fiber tractography and diffusion connectometry analysis: preliminary experience.  J Neurosurg. 2015;123(5):1133-1144. doi:10.3171/2014.12.JNS142169PubMedGoogle ScholarCrossref
Zenonos  GA, Fernandes-Cabral  D, Nunez  M, Lieber  S, Fernandez-Miranda  JC, Friedlander  RM.  The epitrigeminal approach to the brainstem.  J Neurosurg. 2018;128(5):1512-1521. doi:10.3171/2016.12.JNS162561PubMedGoogle ScholarCrossref
Ilyas  A, Chen  CJ, Raper  DM,  et al.  Endovascular mechanical thrombectomy for cerebral venous sinus thrombosis: a systematic review.  J Neurointerv Surg. 2017;9(11):1086-1092. doi:10.1136/neurintsurg-2016-012938PubMedGoogle ScholarCrossref
Pandey  P, Steinberg  GK.  Neurosurgical advances in the treatment of moyamoya disease.  Stroke. 2011;42(11):3304-3310. doi:10.1161/STROKEAHA.110.598565PubMedGoogle ScholarCrossref
Murthy  SB, Gupta  A, Merkler  AE,  et al.  Restarting anticoagulant therapy after intracranial hemorrhage: a systematic review and meta-analysis.  Stroke. 2017;48(6):1594-1600. doi:10.1161/STROKEAHA.116.016327PubMedGoogle ScholarCrossref
Majeed  A, Kim  YK, Roberts  RS, Holmström  M, Schulman  S.  Optimal timing of resumption of warfarin after intracranial hemorrhage.  Stroke. 2010;41(12):2860-2866. doi:10.1161/STROKEAHA.110.593087PubMedGoogle ScholarCrossref
Eckman  MH, Rosand  J, Knudsen  KA, Singer  DE, Greenberg  SM.  Can patients be anticoagulated after intracerebral hemorrhage? a decision analysis.  Stroke. 2003;34(7):1710-1716. doi:10.1161/01.STR.0000078311.18928.16PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience

Lookup An Activity


My Saved Searches

You currently have no searches saved.

With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
State Requirements