[Skip to Content]
[Skip to Content Landing]

Anatomic Relationship of the Complex Tricuspid Valve, Right Ventricle, and Pulmonary VasculatureA Review

Educational Objective
To describe the anatomy and physiology of the right ventricle, right atrium, and tricuspid valve as they relate to tricuspid regurgitation.
1 Credit CME
Key Points

Question  What are the anatomic, physiologic, and hemodynamic determinants of progressive tricuspid regurgitation?

Findings  In this narrative review, the complex relationship between the tricuspid valve apparatus and structure and function of the right side of the heart are described, as well as pulmonary vascular hemodynamics, starting with the anatomic construct, which determines these interactions. Abnormalities of any component can lead to a cascade of events that result in progressive tricuspid regurgitation.

Meaning  Understanding the pathophysiology of tricuspid regurgitation gives insight into clinical outcomes and the timing of interventions.

Abstract

Importance  Severe functional or secondary tricuspid regurgitation (TR) is associated with poor long-term outcomes in natural history studies as well as specific disease states. An understanding of the physiologic causes of the TR is lacking precluding a systematic approach to treatment.

Observations  The complex anatomic relationship between the tricuspid valve apparatus and structure of the right side of the heart lends insight into the functional changes seen with secondary TR. The association of these changes with changes in pulmonary vascular hemodynamics can lead to a cascade of events that result in disease progression.

Conclusions and Relevance  Appreciating the role of pulmonary vascular hemodynamics on right ventricular and tricuspid valve morphology and function improves our understanding of the pathophysiology of secondary TR. The limitations of current therapeutic approaches for secondary TR have stimulated interest in improving outcomes with this morbid disease. Changes in timing or approach to intervention require a more comprehensive understanding of the pathophysiology.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Corresponding Author: Rebecca T. Hahn, MD, Columbia University Medical Center, New York-Presbyterian Hospital, 177 Fort, Washington Ave, New York, NY 10032 (rth2@columbia.edu).

Accepted for Publication: February 6, 2019.

Published Online: April 17, 2019. doi:10.1001/jamacardio.2019.0535

Author Contributions: Drs Hahn and Delhaas had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: All authors.

Acquisition, analysis, or interpretation of data: Waxman, Denti.

Drafting of the manuscript: All authors.

Critical revision of the manuscript for important intellectual content: Waxman, Denti, Delhaas.

Statistical analysis: Denti.

Administrative, technical, or material support: Denti.

Supervision: Denti.

Conflict of Interest Disclosures: Dr Hahn reports speaker fees from Boston Scientific Corporation and Baylis Medical Company, Inc; nonfinancial support for being a speaker and consultant for Edwards Lifescience and Philips Healthcare; consulting for Abbott Structural, Medtronic, Navigate, and Siemens Healthcare; nonfinancial support from 3mensio and GE Healthcare; and is the chief scientific officer for the Echocardiography Core Laboratory at the Cardiovascular Research Foundation for multiple industry-sponsored trials, for which she receives no direct industry compensation. Dr Waxman serves on steering committees for clinical trials sponsored by United Therapeutics, Medtronic, Gossamer Bio, and Acceleron Pharma and does not receive any direct compensation. No other disclosures were reported.

Additional Contributions: We thank Dmitry Levin, BA, University of Washington, Center for CardioVascular Innovation, for creating Figure 1. He was not compensated for this work.

References
1.
Nishimura  RA, Otto  CM, Bonow  RO,  et al; American College of Cardiology/American Heart Association Task Force on Practice Guidelines.  2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines.  J Am Coll Cardiol. 2014;63(22):e57-e185. doi:10.1016/j.jacc.2014.02.536PubMedGoogle ScholarCrossref
2.
Dreyfus  GD, Martin  RP, Chan  KM, Dulguerov  F, Alexandrescu  C.  Functional tricuspid regurgitation: a need to revise our understanding.  J Am Coll Cardiol. 2015;65(21):2331-2336. doi:10.1016/j.jacc.2015.04.011PubMedGoogle ScholarCrossref
3.
Rodés-Cabau  J, Taramasso  M, O’Gara  PT.  Diagnosis and treatment of tricuspid valve disease: current and future perspectives.  Lancet. 2016;388(10058):2431-2442. doi:10.1016/S0140-6736(16)00740-6PubMedGoogle ScholarCrossref
4.
Dahou  A, Levin  D, Reisman  M, Hahn  RT.  Anatomy and physiology of the tricuspid valve.  JACC Cardiovasc Imaging. 2019;12(3):458-468. doi:10.1016/j.jcmg.2018.07.032PubMedGoogle ScholarCrossref
5.
Hahn  RT.  State-of-the-art review of echocardiographic imaging in the evaluation and treatment of functional tricuspid regurgitation.  Circ Cardiovasc Imaging. 2016;9(12):e005332. doi:10.1161/CIRCIMAGING.116.005332PubMedGoogle ScholarCrossref
6.
Xanthos  T, Dalivigkas  I, Ekmektzoglou  KA.  Anatomic variations of the cardiac valves and papillary muscles of the right heart.  Ital J Anat Embryol. 2011;116(2):111-126.PubMedGoogle Scholar
7.
Vismara  R, Gelpi  G, Prabhu  S,  et al.  Transcatheter edge-to-edge treatment of functional tricuspid regurgitation in an ex vivo pulsatile heart model.  J Am Coll Cardiol. 2016;68(10):1024-1033. doi:10.1016/j.jacc.2016.06.022PubMedGoogle ScholarCrossref
8.
Song  JM, Jang  MK, Choi  YS,  et al.  The vena contracta in functional tricuspid regurgitation: a real-time three-dimensional color Doppler echocardiography study.  J Am Soc Echocardiogr. 2011;24(6):663-670. doi:10.1016/j.echo.2011.01.005PubMedGoogle ScholarCrossref
9.
Tretter  JT, Sarwark  AE, Anderson  RH, Spicer  DE.  Assessment of the anatomical variation to be found in the normal tricuspid valve.  Clin Anat. 2016;29(3):399-407. doi:10.1002/ca.22591PubMedGoogle ScholarCrossref
10.
Spinner  EM, Shannon  P, Buice  D,  et al.  In vitro characterization of the mechanisms responsible for functional tricuspid regurgitation.  Circulation. 2011;124(8):920-929. doi:10.1161/CIRCULATIONAHA.110.003897PubMedGoogle ScholarCrossref
11.
Spinner  EM, Sundareswaran  K, Dasi  LP, Thourani  VH, Oshinski  J, Yoganathan  AP.  Altered right ventricular papillary muscle position and orientation in patients with a dilated left ventricle.  J Thorac Cardiovasc Surg. 2011;141(3):744-749. doi:10.1016/j.jtcvs.2010.05.034PubMedGoogle ScholarCrossref
12.
Mascherbauer  J, Maurer  G.  The forgotten valve: lessons to be learned in tricuspid regurgitation.  Eur Heart J. 2010;31(23):2841-2843. doi:10.1093/eurheartj/ehq303PubMedGoogle ScholarCrossref
13.
Fukuda  S, Gillinov  AM, Song  JM,  et al.  Echocardiographic insights into atrial and ventricular mechanisms of functional tricuspid regurgitation.  Am Heart J. 2006;152(6):1208-1214. doi:10.1016/j.ahj.2006.07.027PubMedGoogle ScholarCrossref
14.
Kim  H-K, Kim  Y-J, Park  J-S,  et al.  Determinants of the severity of functional tricuspid regurgitation.  Am J Cardiol. 2006;98(2):236-242. doi:10.1016/j.amjcard.2006.01.082PubMedGoogle ScholarCrossref
15.
Sagie  A, Schwammenthal  E, Padial  LR, Vazquez de Prada  JA, Weyman  AE, Levine  RA.  Determinants of functional tricuspid regurgitation in incomplete tricuspid valve closure: Doppler color flow study of 109 patients.  J Am Coll Cardiol. 1994;24(2):446-453. doi:10.1016/0735-1097(94)90302-6PubMedGoogle ScholarCrossref
16.
Messer  S, Moseley  E, Marinescu  M, Freeman  C, Goddard  M, Nair  S.  Histologic analysis of the right atrioventricular junction in the adult human heart.  J Heart Valve Dis. 2012;21(3):368-373.PubMedGoogle Scholar
17.
Kwan  J, Kim  GC, Jeon  MJ,  et al.  3D geometry of a normal tricuspid annulus during systole: a comparison study with the mitral annulus using real-time 3D echocardiography.  Eur J Echocardiogr. 2007;8(5):375-383. doi:10.1016/j.euje.2006.07.010PubMedGoogle ScholarCrossref
18.
Fukuda  S, Saracino  G, Matsumura  Y,  et al.  Three-dimensional geometry of the tricuspid annulus in healthy subjects and in patients with functional tricuspid regurgitation: a real-time, 3-dimensional echocardiographic study.  Circulation. 2006;114(1)(suppl):I492-I498.PubMedGoogle Scholar
19.
Tei  C, Pilgrim  JP, Shah  PM, Ormiston  JA, Wong  M.  The tricuspid valve annulus: study of size and motion in normal subjects and in patients with tricuspid regurgitation.  Circulation. 1982;66(3):665-671. doi:10.1161/01.CIR.66.3.665PubMedGoogle ScholarCrossref
20.
Mahmood  F, Kim  H, Chaudary  B,  et al.  Tricuspid annular geometry: a three-dimensional transesophageal echocardiographic study.  J Cardiothorac Vasc Anesth. 2013;27(4):639-646. doi:10.1053/j.jvca.2012.12.014PubMedGoogle ScholarCrossref
21.
Nemoto  N, Lesser  JR, Pedersen  WR,  et al.  Pathogenic structural heart changes in early tricuspid regurgitation.  J Thorac Cardiovasc Surg. 2015;150(2):323-330. doi:10.1016/j.jtcvs.2015.05.009PubMedGoogle ScholarCrossref
22.
Ton-Nu  TT, Levine  RA, Handschumacher  MD,  et al.  Geometric determinants of functional tricuspid regurgitation: insights from 3-dimensional echocardiography.  Circulation. 2006;114(2):143-149. doi:10.1161/CIRCULATIONAHA.106.611889PubMedGoogle ScholarCrossref
23.
Addetia  K, Muraru  D, Veronesi  F,  et al.  3-Dimensional echocardiographic analysis of the tricuspid annulus provides new insights into tricuspid valve geometry and dynamics  [published online November 15, 2017].  JACC Cardiovasc Imaging. doi:10.1016/j.jcmg.2017.08.022PubMedGoogle Scholar
24.
Silver  MD, Lam  JH, Ranganathan  N, Wigle  ED.  Morphology of the human tricuspid valve.  Circulation. 1971;43(3):333-348. doi:10.1161/01.CIR.43.3.333PubMedGoogle ScholarCrossref
25.
Steding-Ehrenborg  K, Arvidsson  PM, Töger  J,  et al.  Determinants of kinetic energy of blood flow in the four-chambered heart in athletes and sedentary controls.  Am J Physiol Heart Circ Physiol. 2016;310(1):H113-H122. doi:10.1152/ajpheart.00544.2015PubMedGoogle ScholarCrossref
26.
Carlsson  M, Heiberg  E, Toger  J, Arheden  H.  Quantification of left and right ventricular kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements.  Am J Physiol Heart Circ Physiol. 2012;302(4):H893-H900. doi:10.1152/ajpheart.00942.2011PubMedGoogle ScholarCrossref
27.
Arvidsson  PM, Töger  J, Heiberg  E, Carlsson  M, Arheden  H.  Quantification of left and right atrial kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements.  J Appl Physiol (1985). 2013;114(10):1472-1481. doi:10.1152/japplphysiol.00932.2012PubMedGoogle ScholarCrossref
28.
Ring  L, Rana  BS, Kydd  A, Boyd  J, Parker  K, Rusk  RA.  Dynamics of the tricuspid valve annulus in normal and dilated right hearts: a three-dimensional transoesophageal echocardiography study.  Eur Heart J Cardiovasc Imaging. 2012;13(9):756-762. doi:10.1093/ehjci/jes040PubMedGoogle ScholarCrossref
29.
Maffessanti  F, Gripari  P, Pontone  G,  et al.  Three-dimensional dynamic assessment of tricuspid and mitral annuli using cardiovascular magnetic resonance.  Eur Heart J Cardiovasc Imaging. 2013;14(10):986-995. doi:10.1093/ehjci/jet004PubMedGoogle ScholarCrossref
30.
Haddad  F, Hunt  SA, Rosenthal  DN, Murphy  DJ.  Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle.  Circulation. 2008;117(11):1436-1448. doi:10.1161/CIRCULATIONAHA.107.653576PubMedGoogle ScholarCrossref
31.
Arvidsson  PM, Töger  J, Carlsson  M,  et al.  Left and right ventricular hemodynamic forces in healthy volunteers and elite athletes assessed with 4D flow magnetic resonance imaging.  Am J Physiol Heart Circ Physiol. 2017;312(2):h314-h328. doi:10.1152/ajpheart.00583.2016PubMedGoogle ScholarCrossref
32.
Santamore  WP, Dell’Italia  LJ.  Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function.  Prog Cardiovasc Dis. 1998;40(4):289-308. doi:10.1016/S0033-0620(98)80049-2PubMedGoogle ScholarCrossref
33.
Palau-Caballero  G, Walmsley  J, Van Empel  V, Lumens  J, Delhaas  T.  Why septal motion is a marker of right ventricular failure in pulmonary arterial hypertension: mechanistic analysis using a computer model.  Am J Physiol Heart Circ Physiol. 2017;312(4):h691-h700. doi:10.1152/ajpheart.00596.2016PubMedGoogle ScholarCrossref
34.
Fredriksson  AG, Svalbring  E, Eriksson  J,  et al.  4D flow MRI can detect subtle right ventricular dysfunction in primary left ventricular disease.  J Magn Reson Imaging. 2016;43(3):558-565. doi:10.1002/jmri.25015PubMedGoogle ScholarCrossref
35.
Voelkel  NF, Quaife  RA, Leinwand  LA,  et al; National Heart, Lung, and Blood Institute Working Group on Cellular and Molecular Mechanisms of Right Heart Failure.  Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure.  Circulation. 2006;114(17):1883-1891. doi:10.1161/CIRCULATIONAHA.106.632208PubMedGoogle ScholarCrossref
36.
Belenkie  I, Smith  ER, Tyberg  JV.  Ventricular interaction: from bench to bedside.  Ann Med. 2001;33(4):236-241. doi:10.3109/07853890108998751PubMedGoogle ScholarCrossref
37.
Ryo  K, Goda  A, Onishi  T,  et al.  Characterization of right ventricular remodeling in pulmonary hypertension associated with patient outcomes by 3-dimensional wall motion tracking echocardiography.  Circ Cardiovasc Imaging. 2015;8(6):e003176. doi:10.1161/CIRCIMAGING.114.003176PubMedGoogle ScholarCrossref
38.
MacNee  W.  Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease: part one.  Am J Respir Crit Care Med. 1994;150(3):833-852. doi:10.1164/ajrccm.150.3.8087359PubMedGoogle ScholarCrossref
39.
Tan  JL, Prati  D, Gatzoulis  MA, Gibson  D, Henein  MY, Li  W.  The right ventricular response to high afterload: comparison between atrial switch procedure, congenitally corrected transposition of the great arteries, and idiopathic pulmonary arterial hypertension.  Am Heart J. 2007;153(4):681-688. doi:10.1016/j.ahj.2006.12.027PubMedGoogle ScholarCrossref
40.
Hahn  RT, Zamorano  JL.  The need for a new tricuspid regurgitation grading scheme.  Eur Heart J Cardiovasc Imaging. 2017;18(12):1342-1343. doi:10.1093/ehjci/jex139PubMedGoogle ScholarCrossref
41.
Vonk-Noordegraaf  A, Haddad  F, Chin  KM,  et al.  Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology.  J Am Coll Cardiol. 2013;62(25)(suppl):D22-D33. doi:10.1016/j.jacc.2013.10.027PubMedGoogle ScholarCrossref
42.
Spinner  EM, Lerakis  S, Higginson  J,  et al.  Correlates of tricuspid regurgitation as determined by 3D echocardiography: pulmonary arterial pressure, ventricle geometry, annular dilatation, and papillary muscle displacement.  Circ Cardiovasc Imaging. 2012;5(1):43-50. doi:10.1161/CIRCIMAGING.111.965707PubMedGoogle ScholarCrossref
43.
Kim  YJ, Kwon  DA, Kim  HK,  et al.  Determinants of surgical outcome in patients with isolated tricuspid regurgitation.  Circulation. 2009;120(17):1672-1678. doi:10.1161/CIRCULATIONAHA.109.849448PubMedGoogle ScholarCrossref
44.
Topilsky  Y, Nkomo  VT, Vatury  O,  et al.  Clinical outcome of isolated tricuspid regurgitation.  JACC Cardiovasc Imaging. 2014;7(12):1185-1194. doi:10.1016/j.jcmg.2014.07.018PubMedGoogle ScholarCrossref
45.
Kim  JB, Jung  SH, Choo  SJ, Chung  CH, Lee  JW.  Clinical and echocardiographic outcomes after surgery for severe isolated tricuspid regurgitation.  J Thorac Cardiovasc Surg. 2013;146(2):278-284. doi:10.1016/j.jtcvs.2012.04.019PubMedGoogle ScholarCrossref
46.
Nemoto  N, Schwartz  JG, Lesser  JR,  et al.  The right atrium and tricuspid annulus are cardinal structures in tricuspid regurgitation with or without pulmonary hypertension.  Int J Cardiol. 2017;230:171-174. doi:10.1016/j.ijcard.2016.11.075PubMedGoogle ScholarCrossref
47.
Berlin  DA, Bakker  J.  Understanding venous return.  Intensive Care Med. 2014;40(10):1564-1566. doi:10.1007/s00134-014-3379-4PubMedGoogle ScholarCrossref
48.
Harjola  VP, Mebazaa  A, Čelutkienė  J,  et al.  Contemporary management of acute right ventricular failure: a statement from the Heart Failure Association and the Working Group on Pulmonary Circulation and Right Ventricular Function of the European Society of Cardiology.  Eur J Heart Fail. 2016;18(3):226-241. doi:10.1002/ejhf.478PubMedGoogle ScholarCrossref
49.
Hakim  TS, Kelly  S.  Occlusion pressures vs. micropipette pressures in the pulmonary circulation.  J Appl Physiol (1985). 1989;67(3):1277-1285. doi:10.1152/jappl.1989.67.3.1277PubMedGoogle ScholarCrossref
50.
Gorter  TM, van Veldhuisen  DJ, Bauersachs  J,  et al.  Right heart dysfunction and failure in heart failure with preserved ejection fraction: mechanisms and management. Position statement on behalf of the Heart Failure Association of the European Society of Cardiology.  Eur J Heart Fail. 2018;20(1):16-37. doi:10.1002/ejhf.1029PubMedGoogle ScholarCrossref
51.
De Meester  P, Van De Bruaene  A, Herijgers  P, Voigt  JU, Delcroix  M, Budts  W.  Geometry of the right heart and tricuspid regurgitation to exclude elevated pulmonary artery pressure: new insights.  Int J Cardiol. 2013;168(4):3866-3871. doi:10.1016/j.ijcard.2013.06.031PubMedGoogle ScholarCrossref
52.
Medvedofsky  D, Aronson  D, Gomberg-Maitland  M,  et al.  Tricuspid regurgitation progression and regression in pulmonary arterial hypertension: implications for right ventricular and tricuspid valve apparatus geometry and patients outcome.  Eur Heart J Cardiovasc Imaging. 2017;18(1):86-94. doi:10.1093/ehjci/jew010PubMedGoogle ScholarCrossref
53.
Shiran  A, Najjar  R, Adawi  S, Aronson  D.  Risk factors for progression of functional tricuspid regurgitation.  Am J Cardiol. 2014;113(6):995-1000. doi:10.1016/j.amjcard.2013.11.055PubMedGoogle ScholarCrossref
54.
Chen  L, Larsen  CM, Le  RJ,  et al.  The prognostic significance of tricuspid valve regurgitation in pulmonary arterial hypertension.  Clin Respir J. 2018;12(4):1572-1580. doi:10.1111/crj.12713PubMedGoogle ScholarCrossref
55.
Vanderpool  RR, Pinsky  MR, Naeije  R,  et al.  RV-pulmonary arterial coupling predicts outcome in patients referred for pulmonary hypertension.  Heart. 2015;101(1):37-43. doi:10.1136/heartjnl-2014-306142PubMedGoogle ScholarCrossref
56.
Andersen  MJ, Hwang  SJ, Kane  GC,  et al.  Enhanced pulmonary vasodilator reserve and abnormal right ventricular: pulmonary artery coupling in heart failure with preserved ejection fraction.  Circ Heart Fail. 2015;8(3):542-550. doi:10.1161/CIRCHEARTFAILURE.114.002114PubMedGoogle ScholarCrossref
57.
Champion  HC, Michelakis  ED, Hassoun  PM.  Comprehensive invasive and noninvasive approach to the right ventricle-pulmonary circulation unit: state of the art and clinical and research implications.  Circulation. 2009;120(11):992-1007. doi:10.1161/CIRCULATIONAHA.106.674028PubMedGoogle ScholarCrossref
58.
Naeije  R, Brimioulle  S, Dewachter  L.  Biomechanics of the right ventricle in health and disease (2013 Grover Conference series).  Pulm Circ. 2014;4(3):395-406. doi:10.1086/677354PubMedGoogle ScholarCrossref
59.
Guazzi  M, Dixon  D, Labate  V,  et al.  RV contractile function and its coupling to pulmonary circulation in heart failure with preserved ejection fraction: stratification of clinical phenotypes and outcomes.  JACC Cardiovasc Imaging. 2017;10(10 pt B):1211-1221. doi:10.1016/j.jcmg.2016.12.024PubMedGoogle ScholarCrossref
60.
Guazzi  M, Bandera  F, Pelissero  G,  et al.  Tricuspid annular plane systolic excursion and pulmonary arterial systolic pressure relationship in heart failure: an index of right ventricular contractile function and prognosis.  Am J Physiol Heart Circ Physiol. 2013;305(9):h1373-h1381. doi:10.1152/ajpheart.00157.2013PubMedGoogle ScholarCrossref
61.
Sultan  I, Cardounel  A, Abdelkarim  I,  et al.  Right ventricle to pulmonary artery coupling in patients undergoing transcatheter aortic valve implantation.  Heart. 2019;105(2):117-121. doi:10.1136/heartjnl-2018-313385PubMedGoogle ScholarCrossref
62.
Topilsky  Y, Khanna  A, Le Tourneau  T,  et al.  Clinical context and mechanism of functional tricuspid regurgitation in patients with and without pulmonary hypertension.  Circ Cardiovasc Imaging. 2012;5(3):314-323. doi:10.1161/CIRCIMAGING.111.967919PubMedGoogle ScholarCrossref
63.
Utsunomiya  H, Itabashi  Y, Mihara  H,  et al.  Functional tricuspid regurgitation caused by chronic atrial fibrillation: a real-time 3-dimensional transesophageal echocardiography study.  Circ Cardiovasc Imaging. 2017;10(1):e004897. doi:10.1161/CIRCIMAGING.116.004897PubMedGoogle ScholarCrossref
64.
Mascherbauer  J, Kammerlander  AA, Zotter-Tufaro  C,  et al.  Presence of ‘isolated’ tricuspid regurgitation should prompt the suspicion of heart failure with preserved ejection fraction.  PLoS One. 2017;12(2):e0171542. doi:10.1371/journal.pone.0171542PubMedGoogle ScholarCrossref
65.
Lang  RM, Badano  LP, Mor-Avi  V,  et al.  Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging.  Eur Heart J Cardiovasc Imaging. 2015;16(3):233-270. doi:10.1093/ehjci/jev014PubMedGoogle ScholarCrossref
66.
Zoghbi  WA, Adams  D, Bonow  RO,  et al.  Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance.  J Am Soc Echocardiogr. 2017;30(4):303-371. doi:10.1016/j.echo.2017.01.007PubMedGoogle ScholarCrossref
67.
Lancellotti  P, Moura  L, Pierard  LA,  et al; European Association of Echocardiography.  European Association of Echocardiography recommendations for the assessment of valvular regurgitation: part 2: mitral and tricuspid regurgitation (native valve disease).  Eur J Echocardiogr. 2010;11(4):307-332. doi:10.1093/ejechocard/jeq031PubMedGoogle ScholarCrossref
68.
Praz  F, Khalique  OK, Dos Reis Macedo  LG,  et al.  Comparison between three-dimensional echocardiography and computed tomography for comprehensive tricuspid annulus and valve assessment in severe tricuspid regurgitation: implications for tricuspid regurgitation grading and transcatheter therapies.  J Am Soc Echocardiogr. 2018;31(11):1190-1202. doi:10.1016/j.echo.2018.07.007PubMedGoogle ScholarCrossref
69.
Dahou  A, Ong  G, Hamid  N, Avenatti  E, Yao  J, Hahn  RT.  Quantifying tricuspid regurgitation severity: a comparison of proximal isovelocity surface area and novel quantitative Doppler methods.  JACC Cardiovasc Imaging. 2019;12(3):560-562. doi:10.1016/j.jcmg.2018.11.015PubMedGoogle ScholarCrossref
70.
Medvedofsky  D, León Jiménez  J, Addetia  K,  et al.  Multi-parametric quantification of tricuspid regurgitation using cardiovascular magnetic resonance: a comparison to echocardiography.  Eur J Radiol. 2017;86:213-220. doi:10.1016/j.ejrad.2016.11.025PubMedGoogle ScholarCrossref
71.
Naoum  C, Blanke  P, Cavalcante  JL, Leipsic  J.  Cardiac computed tomography and magnetic resonance imaging in the evaluation of mitral and tricuspid valve disease: implications for transcatheter interventions.  Circ Cardiovasc Imaging. 2017;10(3):e005331. doi:10.1161/CIRCIMAGING.116.005331PubMedGoogle Scholar
72.
Hahn  RT, Thomas  JD, Khalique  OK, Cavalcante  JL, Praz  F, Zoghbi  WA.  Imaging assessment of tricuspid regurgitation severity.  JACC Cardiovasc Imaging. 2019;12(3):469-490. doi:10.1016/j.jcmg.2018.07.033PubMedGoogle ScholarCrossref
73.
Dreyfus  J, Durand-Viel  G, Raffoul  R,  et al.  Comparison of 2-dimensional, 3-dimensional, and surgical measurements of the tricuspid annulus size: clinical implications.  Circ Cardiovasc Imaging. 2015;8(7):e003241. doi:10.1161/CIRCIMAGING.114.003241PubMedGoogle ScholarCrossref
74.
Volpato  V, Lang  RM, Yamat  M,  et al.  Echocardiographic assessment of the tricuspid annulus: the effects of the third dimension and measurement methodology.  J Am Soc Echocardiogr. 2019;32(2):238-247. doi:10.1016/j.echo.2018.09.008PubMedGoogle ScholarCrossref
75.
Khalique  OK, Cavalcante  JL, Shah  D,  et al.  Multimodality imaging of the tricuspid valve and right heart anatomy.  JACC Cardiovasc Imaging. 2019;12(3):516-531. doi:10.1016/j.jcmg.2019.01.006PubMedGoogle ScholarCrossref
76.
Pai  RG, Bansal  RC, Shah  PM.  Determinants of the rate of right ventricular pressure rise by Doppler echocardiography: potential value in the assessment of right ventricular function.  J Heart Valve Dis. 1994;3(2):179-184.PubMedGoogle Scholar
77.
Singbal  Y, Vollbon  W, Huynh  LT, Wang  WY, Ng  AC, Wahi  S.  Exploring noninvasive tricuspid dP/dt as a marker of right ventricular function.  Echocardiography. 2015;32(9):1347-1351. doi:10.1111/echo.12877PubMedGoogle ScholarCrossref
78.
Ameloot  K, Palmers  PJ, Vande Bruaene  A,  et al.  Clinical value of echocardiographic Doppler-derived right ventricular dP/dT in patients with pulmonary arterial hypertension.  Eur Heart J Cardiovasc Imaging. 2014;15(12):1411-1419. doi:10.1093/ehjci/jeu134PubMedGoogle ScholarCrossref
79.
Park  JB, Lee  SP, Lee  JH,  et al.  Quantification of right ventricular volume and function using single-beat three-dimensional echocardiography: a validation study with cardiac magnetic resonance.  J Am Soc Echocardiogr. 2016;29(5):392-401. doi:10.1016/j.echo.2016.01.010PubMedGoogle ScholarCrossref
80.
Vitarelli  A, Mangieri  E, Terzano  C,  et al.  Three-dimensional echocardiography and 2D-3D speckle-tracking imaging in chronic pulmonary hypertension: diagnostic accuracy in detecting hemodynamic signs of right ventricular (RV) failure.  J Am Heart Assoc. 2015;4(3):e001584. doi:10.1161/JAHA.114.001584PubMedGoogle ScholarCrossref
81.
Dabestani  A, Mahan  G, Gardin  JM,  et al.  Evaluation of pulmonary artery pressure and resistance by pulsed Doppler echocardiography.  Am J Cardiol. 1987;59(6):662-668. doi:10.1016/0002-9149(87)91189-1PubMedGoogle ScholarCrossref
82.
McNeil  K, Dunning  J, Morrell  NW.  The pulmonary physician in critical care: 13: the pulmonary circulation and right ventricular failure in the ITU.  Thorax. 2003;58(2):157-162. doi:10.1136/thorax.58.2.157PubMedGoogle ScholarCrossref
83.
Chemla  D, Castelain  V, Humbert  M,  et al.  New formula for predicting mean pulmonary artery pressure using systolic pulmonary artery pressure.  Chest. 2004;126(4):1313-1317. doi:10.1378/chest.126.4.1313PubMedGoogle ScholarCrossref
84.
Syyed  R, Reeves  JT, Welsh  D, Raeside  D, Johnson  MK, Peacock  AJ.  The relationship between the components of pulmonary artery pressure remains constant under all conditions in both health and disease.  Chest. 2008;133(3):633-639. doi:10.1378/chest.07-1367PubMedGoogle ScholarCrossref
85.
Masuyama  T, Kodama  K, Kitabatake  A, Sato  H, Nanto  S, Inoue  M.  Continuous-wave Doppler echocardiographic detection of pulmonary regurgitation and its application to noninvasive estimation of pulmonary artery pressure.  Circulation. 1986;74(3):484-492. doi:10.1161/01.CIR.74.3.484PubMedGoogle ScholarCrossref
86.
Aduen  JF, Castello  R, Lozano  MM,  et al.  An alternative echocardiographic method to estimate mean pulmonary artery pressure: diagnostic and clinical implications.  J Am Soc Echocardiogr. 2009;22(7):814-819. doi:10.1016/j.echo.2009.04.007PubMedGoogle ScholarCrossref
87.
Scapellato  F, Temporelli  PL, Eleuteri  E, Corrà  U, Imparato  A, Giannuzzi  P.  Accurate noninvasive estimation of pulmonary vascular resistance by Doppler echocardiography in patients with chronic failure heart failure.  J Am Coll Cardiol. 2001;37(7):1813-1819. doi:10.1016/S0735-1097(01)01271-2PubMedGoogle ScholarCrossref
88.
Dahiya  A, Vollbon  W, Jellis  C, Prior  D, Wahi  S, Marwick  T.  Echocardiographic assessment of raised pulmonary vascular resistance: application to diagnosis and follow-up of pulmonary hypertension.  Heart. 2010;96(24):2005-2009. doi:10.1136/hrt.2010.204834PubMedGoogle ScholarCrossref
89.
Haddad  F, Zamanian  R, Beraud  AS,  et al.  A novel non-invasive method of estimating pulmonary vascular resistance in patients with pulmonary arterial hypertension.  J Am Soc Echocardiogr. 2009;22(5):523-529. doi:10.1016/j.echo.2009.01.021PubMedGoogle ScholarCrossref
90.
Selimovic  N, Rundqvist  B, Bergh  CH,  et al.  Assessment of pulmonary vascular resistance by Doppler echocardiography in patients with pulmonary arterial hypertension.  J Heart Lung Transplant. 2007;26(9):927-934. doi:10.1016/j.healun.2007.06.008PubMedGoogle ScholarCrossref
91.
Abbas  AE, Fortuin  FD, Schiller  NB, Appleton  CP, Moreno  CA, Lester  SJ.  A simple method for noninvasive estimation of pulmonary vascular resistance.  J Am Coll Cardiol. 2003;41(6):1021-1027. doi:10.1016/S0735-1097(02)02973-XPubMedGoogle ScholarCrossref
92.
Abbas  AE, Franey  LM, Marwick  T,  et al.  Noninvasive assessment of pulmonary vascular resistance by Doppler echocardiography.  J Am Soc Echocardiogr. 2013;26(10):1170-1177. doi:10.1016/j.echo.2013.06.003PubMedGoogle ScholarCrossref
93.
Greiner  S, Jud  A, Aurich  M,  et al.  Reliability of noninvasive assessment of systolic pulmonary artery pressure by Doppler echocardiography compared to right heart catheterization: analysis in a large patient population.  J Am Heart Assoc. 2014;3(4):e001103. doi:10.1161/JAHA.114.001103PubMedGoogle ScholarCrossref
94.
Özpelit  E, Akdeniz  B, Özpelit  EM,  et al.  Impact of severe tricuspid regurgitation on accuracy of echocardiographic pulmonary artery systolic pressure estimation.  Echocardiography. 2015;32(10):1483-1490. doi:10.1111/echo.12912PubMedGoogle ScholarCrossref
95.
Fei  B, Fan  T, Zhao  L,  et al.  Impact of severe tricuspid regurgitation on accuracy of systolic pulmonary arterial pressure measured by Doppler echocardiography: analysis in an unselected patient population.  Echocardiography. 2017;34(7):1082-1088. doi:10.1111/echo.13555PubMedGoogle ScholarCrossref
96.
López-Candales  A, Lopez  FR, Trivedi  S, Elwing  J.  Right ventricular ejection efficiency: a new echocardiographic measure of mechanical performance in chronic pulmonary hypertension.  Echocardiography. 2014;31(4):516-523. doi:10.1111/echo.12419PubMedGoogle ScholarCrossref
97.
Iacoviello  M, Monitillo  F, Citarelli  G,  et al.  Right ventriculo-arterial coupling assessed by two-dimensional strain: a new parameter of right ventricular function independently associated with prognosis in chronic heart failure patients.  Int J Cardiol. 2017;241:318-321. doi:10.1016/j.ijcard.2017.04.051PubMedGoogle ScholarCrossref
98.
Aubert  R, Venner  C, Huttin  O,  et al.  Three-dimensional echocardiography for the assessment of right ventriculo-arterial coupling.  J Am Soc Echocardiogr. 2018;31(8):905-915. doi:10.1016/j.echo.2018.04.013PubMedGoogle ScholarCrossref
99.
Nath  J, Foster  E, Heidenreich  PA.  Impact of tricuspid regurgitation on long-term survival.  J Am Coll Cardiol. 2004;43(3):405-409. doi:10.1016/j.jacc.2003.09.036PubMedGoogle ScholarCrossref
100.
Prihadi  EA, van der Bijl  P, Gursoy  E,  et al.  Development of significant tricuspid regurgitation over time and prognostic implications: new insights into natural history.  Eur Heart J. 2018;39(39):3574-3581. doi:10.1093/eurheartj/ehy352PubMedGoogle ScholarCrossref
101.
Nishimura  RA, Otto  C.  2014 ACC/AHA valve guidelines: earlier intervention for chronic mitral regurgitation.  Heart. 2014;100(12):905-907. doi:10.1136/heartjnl-2014-305834PubMedGoogle ScholarCrossref
102.
Baumgartner  H, Falk  V, Bax  JJ,  et al; ESC Scientific Document Group.  2017 ESC/EACTS Guidelines for the management of valvular heart disease.  Eur Heart J. 2017;38(36):2739-2791. doi:10.1093/eurheartj/ehx391PubMedGoogle ScholarCrossref
103.
Stuge  O, Liddicoat  J.  Emerging opportunities for cardiac surgeons within structural heart disease.  J Thorac Cardiovasc Surg. 2006;132(6):1258-1261. doi:10.1016/j.jtcvs.2006.08.049PubMedGoogle ScholarCrossref
104.
Agarwal  S, Tuzcu  EM, Rodriguez  ER, Tan  CD, Rodriguez  LL, Kapadia  SR.  Interventional cardiology perspective of functional tricuspid regurgitation.  Circ Cardiovasc Interv. 2009;2(6):565-573. doi:10.1161/CIRCINTERVENTIONS.109.878983PubMedGoogle ScholarCrossref
105.
Dreyfus  GD, Corbi  PJ, Chan  KM, Bahrami  T.  Secondary tricuspid regurgitation or dilatation: which should be the criteria for surgical repair?  Ann Thorac Surg. 2005;79(1):127-132. doi:10.1016/j.athoracsur.2004.06.057PubMedGoogle ScholarCrossref
106.
Vahanian  A, Alfieri  O, Andreotti  F,  et al; ESC Committee for Practice Guidelines (CPG); Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC); European Association for Cardio-Thoracic Surgery (EACTS).  Guidelines on the management of valvular heart disease (version 2012): the Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS).  Eur J Cardiothorac Surg. 2012;42(4):S1-S44. doi:10.1093/ejcts/ezs455PubMedGoogle ScholarCrossref
107.
Van de Veire  NR, Braun  J, Delgado  V,  et al.  Tricuspid annuloplasty prevents right ventricular dilatation and progression of tricuspid regurgitation in patients with tricuspid annular dilatation undergoing mitral valve repair.  J Thorac Cardiovasc Surg. 2011;141(6):1431-1439. doi:10.1016/j.jtcvs.2010.05.050PubMedGoogle ScholarCrossref
108.
Navia  JL, Nowicki  ER, Blackstone  EH,  et al.  Surgical management of secondary tricuspid valve regurgitation: annulus, commissure, or leaflet procedure?  J Thorac Cardiovasc Surg. 2010;139(6):1473-1482.e5. doi:10.1016/j.jtcvs.2010.02.046PubMedGoogle ScholarCrossref
109.
Fukuda  S, Song  JM, Gillinov  AM,  et al.  Tricuspid valve tethering predicts residual tricuspid regurgitation after tricuspid annuloplasty.  Circulation. 2005;111(8):975-979. doi:10.1161/01.CIR.0000156449.49998.51PubMedGoogle ScholarCrossref
110.
McCarthy  PM, Bhudia  SK, Rajeswaran  J,  et al.  Tricuspid valve repair: durability and risk factors for failure.  J Thorac Cardiovasc Surg. 2004;127(3):674-685. doi:10.1016/j.jtcvs.2003.11.019PubMedGoogle ScholarCrossref
111.
Min  SY, Song  JM, Kim  JH,  et al.  Geometric changes after tricuspid annuloplasty and predictors of residual tricuspid regurgitation: a real-time three-dimensional echocardiography study.  Eur Heart J. 2010;31(23):2871-2880. doi:10.1093/eurheartj/ehq227PubMedGoogle ScholarCrossref
112.
Fukuda  S, Gillinov  AM, McCarthy  PM,  et al.  Determinants of recurrent or residual functional tricuspid regurgitation after tricuspid annuloplasty.  Circulation. 2006;114(1)(suppl):I582-I587.PubMedGoogle Scholar
113.
Kabasawa  M, Kohno  H, Ishizaka  T,  et al.  Assessment of functional tricuspid regurgitation using 320-detector-row multislice computed tomography: risk factor analysis for recurrent regurgitation after tricuspid annuloplasty.  J Thorac Cardiovasc Surg. 2014;147(1):312-320. doi:10.1016/j.jtcvs.2012.11.017PubMedGoogle ScholarCrossref
114.
Sukmawan  R, Watanabe  N, Ogasawara  Y,  et al.  Geometric changes of tricuspid valve tenting in tricuspid regurgitation secondary to pulmonary hypertension quantified by novel system with transthoracic real-time 3-dimensional echocardiography.  J Am Soc Echocardiogr. 2007;20(5):470-476. doi:10.1016/j.echo.2006.10.001PubMedGoogle ScholarCrossref
115.
Park  YH, Song  JM, Lee  EY, Kim  YJ, Kang  DH, Song  JK.  Geometric and hemodynamic determinants of functional tricuspid regurgitation: a real-time three-dimensional echocardiography study.  Int J Cardiol. 2008;124(2):160-165. doi:10.1016/j.ijcard.2006.12.036PubMedGoogle ScholarCrossref
116.
Antunes  MJ, Rodríguez-Palomares  J, Prendergast  B,  et al; ESC Working Groups of Cardiovascular Surgery and Valvular Heart Disease.  Management of tricuspid valve regurgitation: Position statement of the European Society of Cardiology Working Groups of Cardiovascular Surgery and Valvular Heart Disease.  Eur J Cardiothorac Surg. 2017;52(6):1022-1030. doi:10.1093/ejcts/ezx279PubMedGoogle ScholarCrossref
117.
Ejiofor  JI, Neely  RC, Yammine  M,  et al.  Surgical outcomes of isolated tricuspid valve procedures: repair versus replacement.  Ann Cardiothorac Surg. 2017;6(3):214-222. doi:10.21037/acs.2017.05.02PubMedGoogle ScholarCrossref
118.
Sung  K, Park  PW, Park  K-H,  et al.  Is tricuspid valve replacement a catastrophic operation?  Eur J Cardiothorac Surg. 2009;36(5):825-829. doi:10.1016/j.ejcts.2009.04.063PubMedGoogle ScholarCrossref
119.
Taramasso  M, Hahn  RT, Alessandrini  H,  et al.  The International Multicenter TriValve Registry: which patients are undergoing transcatheter tricuspid repair?  JACC Cardiovasc Interv. 2017;10(19):1982-1990. doi:10.1016/j.jcin.2017.08.011PubMedGoogle ScholarCrossref
120.
Taramasso  M, Alessandrini  H, Latib  A,  et al.  Outcomes after current transcatheter tricuspid valve intervention: mid-term results from the International TriValve Registry.  JACC Cardiovasc Interv. 2019;12(2):155-165. doi:10.1016/j.jcin.2018.10.022PubMedGoogle ScholarCrossref
121.
Hahn  RT, Meduri  CU, Davidson  CJ,  et al.  Early feasibility study of a transcatheter tricuspid valve annuloplasty: SCOUT trial 30-day results.  J Am Coll Cardiol. 2017;69(14):1795-1806. doi:10.1016/j.jacc.2017.01.054PubMedGoogle ScholarCrossref
122.
Perlman  G, Praz  F, Puri  R,  et al.  Transcatheter tricuspid valve repair with a new transcatheter coaptation system for the treatment of severe tricuspid regurgitation: 1-year clinical and echocardiographic results.  JACC Cardiovasc Interv. 2017;10(19):1994-2003. doi:10.1016/j.jcin.2017.06.036PubMedGoogle ScholarCrossref
123.
Besler  C, Orban  M, Rommel  KP,  et al.  Predictors of procedural and clinical outcomes in patients with symptomatic tricuspid regurgitation undergoing transcatheter edge-to-edge repair.  JACC Cardiovasc Interv. 2018;11(12):1119-1128. doi:10.1016/j.jcin.2018.05.002PubMedGoogle ScholarCrossref
124.
Hahn  RT, George  I, Kodali  SK,  et al.  Early single-site experience with transcatheter tricuspid valve replacement  [published online December 12, 2018].  JACC Cardiovasc Imaging. doi:10.1016/j.jcmg.2018.08.034PubMedGoogle Scholar
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Topics
State Requirements