[Skip to Content]
[Skip to Content Landing]

The Diagnostic and Prognostic Value of Echocardiographic Strain

Educational Objective
To describe clinical uses of speckle-tracking echocardiography strain imaging of the left ventricle for diagnosis and management of cardiac disease.
1 Credit CME
Key Points

Question  What is the clinical utility of echocardiographic strain in the diagnosis and prognosis of cardiac disease?

Findings  Echocardiographic strain is used to evaluate cardiac dysfunction in patients with coronary artery disease, valvulopathies, cardiomyopathies, and cancer treatment–associated cardiac dysfunction. This review presents an array of speckle-tracking echocardiographic images of characteristic bull’s-eye plots that can be used to inform the differential diagnosis and prognosis for these common cardiac conditions.

Meaning  The pattern of the bull’s-eye plot can be used by clinicians as a diagnostic and prognostic tool in contemporary patient care for a variety of cardiovascular conditions.

Abstract

Importance  Myocardial deformation or strain by speckle-tracking echocardiography (STE) has become an established echocardiographic modality for the diagnostic and prognostic evaluation of cardiac dysfunction. Current literature supports the incremental value of strain in diagnosis, risk stratification, and prognostication of a multitude of cardiac disease states.

Observations  Strain has been studied across the clinical spectrum from common to obscure pathologic conditions. This review presents the current literature evaluating characteristic strain patterns across this clinical spectrum, discusses prognostic implications, and provides a case series of classic strain polar maps, which are also known as bull’s-eye plots.

Conclusions and Relevance  Characteristic bull’s-eye patterns can be used to guide patient evaluation and management.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Accepted for Publication: February 28, 2019.

Corresponding Author: Nausheen Akhter, MD, Department of Medicine, Northwestern University, 675 N St Clair St, Ste 19-100, Chicago, IL 60611 (n-akhter@northwestern.edu).

Published Online: May 1, 2019. doi:10.1001/jamacardio.2019.1152

Author Contributions: Dr Akhter had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: All authors.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Singh, Voss, Lentz, Akhter.

Critical revision of the manuscript for important intellectual content: Singh, Lentz, Thomas, Akhter.

Obtained funding: Thomas.

Administrative, technical, or material support: Lentz, Thomas, Akhter.

Supervision: Thomas, Akhter.

Conflict of Interest Disclosures: Dr Thomas has received honoraria from General Electric, Edwards, Abbott, and Bay Labs and reports spouse employment with Bay Labs. No other disclosures were reported.

Funding/Support: This work was supported by a grant from the Irene D. Pritzker Foundation.

Role of the Funder/Sponsor: The funder had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

References
1.
Leitman  M, Lysyansky  P, Sidenko  S,  et al.  Two-dimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardial function.  J Am Soc Echocardiogr. 2004;17(10):1021-1029. doi:10.1016/j.echo.2004.06.019PubMedGoogle ScholarCrossref
2.
Marwick  TH, Leano  RL, Brown  J,  et al.  Myocardial strain measurement with 2-dimensional speckle-tracking echocardiography: definition of normal range.  JACC Cardiovasc Imaging. 2009;2(1):80-84. doi:10.1016/j.jcmg.2007.12.007PubMedGoogle ScholarCrossref
3.
Nucifora  G, Schuijf  JD, Delgado  V,  et al.  Incremental value of subclinical left ventricular systolic dysfunction for the identification of patients with obstructive coronary artery disease.  Am Heart J. 2010;159(1):148-157. doi:10.1016/j.ahj.2009.10.030PubMedGoogle ScholarCrossref
4.
Radwan  H, Hussein  E.  Value of global longitudinal strain by two dimensional speckle tracking echocardiography in predicting coronary artery disease severity.  Egypt Heart J. 2017;69(2):95-101. doi:10.1016/j.ehj.2016.08.001PubMedGoogle ScholarCrossref
5.
Tsai  WC, Liu  YW, Huang  YY, Lin  CC, Lee  CH, Tsai  LM.  Diagnostic value of segmental longitudinal strain by automated function imaging in coronary artery disease without left ventricular dysfunction.  J Am Soc Echocardiogr. 2010;23(11):1183-1189. doi:10.1016/j.echo.2010.08.011PubMedGoogle ScholarCrossref
6.
D’Andrea  A, Cocchia  R, Caso  P,  et al.  Global longitudinal speckle-tracking strain is predictive of left ventricular remodeling after coronary angioplasty in patients with recent non-ST elevation myocardial infarction.  Int J Cardiol. 2011;153(2):185-191. doi:10.1016/j.ijcard.2010.08.025PubMedGoogle ScholarCrossref
7.
Antoni  ML, Mollema  SA, Delgado  V,  et al.  Prognostic importance of strain and strain rate after acute myocardial infarction.  Eur Heart J. 2010;31(13):1640-1647. doi:10.1093/eurheartj/ehq105PubMedGoogle ScholarCrossref
8.
Bjork Ingul  C, Rozis  E, Slordahl  SA, Marwick  TH.  Incremental value of strain rate imaging to wall motion analysis for prediction of outcome in patients undergoing dobutamine stress echocardiography.  Circulation. 2007;115(10):1252-1259. doi:10.1161/CIRCULATIONAHA.106.640334PubMedGoogle ScholarCrossref
9.
Ozdemir  AO, Kaya  CT, Ozcan  OU,  et al.  Prediction of subclinical left ventricular dysfunction with longitudinal two-dimensional strain and strain rate imaging in patients with mitral stenosis.  Int J Cardiovasc Imaging. 2010;26(4):397-404. doi:10.1007/s10554-009-9550-2PubMedGoogle ScholarCrossref
10.
Negishi  K, Borowski  AG, Popović  ZB,  et al.  Effect of gravitational gradients on cardiac filling and performance.  J Am Soc Echocardiogr. 2017;30(12):1180-1188. doi:10.1016/j.echo.2017.08.005PubMedGoogle ScholarCrossref
11.
Gerede  DM, Ongun  A, Tulunay Kaya  C, Acıbuca  A, Özyüncü  N, Erol  Ç.  Use of strain and strain rate echocardiographic imaging to predict the progression of mitral stenosis: a 5-year follow-up study the progression of mitral stenosis: a 5-year follow-up study.  Anatol J Cardiol. 2016;16(10):772-777.PubMedGoogle Scholar
12.
Sengupta  SP, Amaki  M, Bansal  M,  et al.  Effects of percutaneous balloon mitral valvuloplasty on left ventricular deformation in patients with isolated severe mitral stenosis: a speckle-tracking strain echocardiographic study.  J Am Soc Echocardiogr. 2014;27(6):639-647. doi:10.1016/j.echo.2014.01.024PubMedGoogle ScholarCrossref
13.
Barros-Gomes  S, Eleid  MF, Dahl  JS,  et al.  Predicting outcomes after percutaneous mitral balloon valvotomy: the impact of left ventricular strain imaging.  Eur Heart J Cardiovasc Imaging. 2017;18(7):763-771. doi:10.1093/ehjci/jew160PubMedGoogle ScholarCrossref
14.
Marciniak  A, Claus  P, Sutherland  GR,  et al.  Changes in systolic left ventricular function in isolated mitral regurgitation: a strain rate imaging study.  Eur Heart J. 2007;28(21):2627-2636. doi:10.1093/eurheartj/ehm072PubMedGoogle ScholarCrossref
15.
Lancellotti  P, Cosyns  B, Zacharakis  D,  et al.  Importance of left ventricular longitudinal function and functional reserve in patients with degenerative mitral regurgitation: assessment by two-dimensional speckle tracking.  J Am Soc Echocardiogr. 2008;21(12):1331-1336. doi:10.1016/j.echo.2008.09.023PubMedGoogle ScholarCrossref
16.
Candan  O, Hatipoglu Akpinar  S, Dogan  C,  et al.  Twist deformation for predicting postoperative left ventricular function in patients with mitral regurgitation: A speckle tracking echocardiography study.  Echocardiography. 2017;34(3):422-428. doi:10.1111/echo.13462PubMedGoogle ScholarCrossref
17.
Mentias  A, Naji  P, Gillinov  AM,  et al.  Strain echocardiography and functional capacity in asymptomatic primary mitral regurgitation with preserved ejection fraction.  J Am Coll Cardiol. 2016;68(18):1974-1986. doi:10.1016/j.jacc.2016.08.030PubMedGoogle ScholarCrossref
18.
Delgado  V, Tops  LF, van Bommel  RJ,  et al.  Strain analysis in patients with severe aortic stenosis and preserved left ventricular ejection fraction undergoing surgical valve replacement.  Eur Heart J. 2009;30(24):3037-3047. doi:10.1093/eurheartj/ehp351PubMedGoogle ScholarCrossref
19.
Carstensen  HG, Larsen  LH, Hassager  C, Kofoed  KF, Jensen  JS, Mogelvang  R.  Basal longitudinal strain predicts future aortic valve replacement in asymptomatic patients with aortic stenosis.  Eur Heart J Cardiovasc Imaging. 2016;17(3):283-292. doi:10.1093/ehjci/jev143PubMedGoogle ScholarCrossref
20.
D’Andrea  A, Padalino  R, Cocchia  R,  et al.  Effects of transcatheter aortic valve implantation on left ventricular and left atrial morphology and function.  Echocardiography. 2015;32(6):928-936. doi:10.1111/echo.12808PubMedGoogle ScholarCrossref
21.
Kamperidis  V, Joyce  E, Debonnaire  P,  et al.  Left ventricular functional recovery and remodeling in low-flow low-gradient severe aortic stenosis after transcatheter aortic valve implantation.  J Am Soc Echocardiogr. 2014;27(8):817-825. doi:10.1016/j.echo.2014.04.021PubMedGoogle ScholarCrossref
22.
Fries  B, Liu  D, Gaudron  P,  et al.  Role of global longitudinal strain in the prediction of outcome in patients with severe aortic valve stenosis.  Am J Cardiol. 2017;120(4):640-647. doi:10.1016/j.amjcard.2017.05.032PubMedGoogle ScholarCrossref
23.
Magne  J, Cosyns  B, Popescu  BA,  et al.  Distribution and Prognostic significance of left ventricular global longitudinal strain in asymptomatic significant aortic stenosis: an individual participant data meta-analysis.  JACC Cardiovasc Imaging. 2019;12(1):84-92. doi:10.1016/j.jcmg.2018.11.005PubMedGoogle ScholarCrossref
24.
Verseckaite  R, Mizariene  V, Montvilaite  A,  et al.  The predictive value of left ventricular myocardium mechanics evaluation in asymptomatic patients with aortic regurgitation and preserved left ventricular ejection fraction. A long-term speckle-tracking echocardiographic study.  Echocardiography. 2018;35(9):1277-1288. doi:10.1111/echo.14030PubMedGoogle ScholarCrossref
25.
Olsen  NT, Sogaard  P, Larsson  HB,  et al.  Speckle-tracking echocardiography for predicting outcome in chronic aortic regurgitation during conservative management and after surgery.  JACC Cardiovasc Imaging. 2011;4(3):223-230. doi:10.1016/j.jcmg.2010.11.016PubMedGoogle ScholarCrossref
26.
Alashi  A, Mentias  A, Abdallah  A,  et al.  Incremental prognostic utility of left ventricular global longitudinal strain in asymptomatic patients with significant chronic aortic regurgitation and preserved left ventricular ejection fraction.  JACC Cardiovasc Imaging. 2018;11(5):673-682. doi:10.1016/j.jcmg.2017.02.016PubMedGoogle ScholarCrossref
27.
Imbalzano  E, Zito  C, Carerj  S,  et al.  Left ventricular function in hypertension: new insight by speckle tracking echocardiography.  Echocardiography. 2011;28(6):649-657. doi:10.1111/j.1540-8175.2011.01410.xPubMedGoogle ScholarCrossref
28.
Afonso  L, Kondur  A, Simegn  M,  et al.  Two-dimensional strain profiles in patients with physiological and pathological hypertrophy and preserved left ventricular systolic function: a comparative analyses.  BMJ Open. 2012;2(4):e001390. doi:10.1136/bmjopen-2012-001390PubMedGoogle ScholarCrossref
29.
Donal  E, Thebault  C, Lund  LH,  et al.  Heart failure with a preserved ejection fraction additive value of an exercise stress echocardiography.  Eur Heart J Cardiovasc Imaging. 2012;13(8):656-665. doi:10.1093/ehjci/jes010PubMedGoogle ScholarCrossref
30.
Shah  AM, Claggett  B, Sweitzer  NK,  et al.  Prognostic importance of changes in cardiac structure and function in heart failure with preserved ejection fraction and the impact of spironolactone.  Circ Heart Fail. 2015;8(6):1052-1058. doi:10.1161/CIRCHEARTFAILURE.115.002249PubMedGoogle ScholarCrossref
31.
Park  JJ, Park  JB, Park  JH, Cho  GY.  Global longitudinal strain to predict mortality in patients with acute heart failure.  J Am Coll Cardiol. 2018;71(18):1947-1957. doi:10.1016/j.jacc.2018.02.064PubMedGoogle ScholarCrossref
32.
Phelan  D, Collier  P, Thavendiranathan  P,  et al.  Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis.  Heart. 2012;98(19):1442-1448. doi:10.1136/heartjnl-2012-302353PubMedGoogle ScholarCrossref
33.
Williams  LK, Forero  JF, Popovic  ZB,  et al.  Patterns of CMR measured longitudinal strain and its association with late gadolinium enhancement in patients with cardiac amyloidosis and its mimics.  J Cardiovasc Magn Reson. 2017;19(1):61. doi:10.1186/s12968-017-0376-0PubMedGoogle ScholarCrossref
34.
Buss  SJ, Emami  M, Mereles  D,  et al.  Longitudinal left ventricular function for prediction of survival in systemic light-chain amyloidosis: incremental value compared with clinical and biochemical markers.  J Am Coll Cardiol. 2012;60(12):1067-1076. doi:10.1016/j.jacc.2012.04.043PubMedGoogle ScholarCrossref
35.
Pun  SC, Landau  HJ, Riedel  ER,  et al.  Prognostic and added value of two-dimensional global longitudinal strain for prediction of survival in patients with light chain amyloidosis undergoing autologous hematopoietic cell transplantation.  J Am Soc Echocardiogr. 2018;31(1):64-70. doi:10.1016/j.echo.2017.08.017PubMedGoogle ScholarCrossref
36.
Salinaro  F, Meier-Ewert  HK, Miller  EJ,  et al.  Longitudinal systolic strain, cardiac function improvement, and survival following treatment of light-chain (AL) cardiac amyloidosis.  Eur Heart J Cardiovasc Imaging. 2017;18(9):1057-1064. doi:10.1093/ehjci/jew298PubMedGoogle ScholarCrossref
37.
Joyce  E, Ninaber  MK, Katsanos  S,  et al.  Subclinical left ventricular dysfunction by echocardiographic speckle-tracking strain analysis relates to outcome in sarcoidosis.  Eur J Heart Fail. 2015;17(1):51-62. doi:10.1002/ejhf.205PubMedGoogle ScholarCrossref
38.
Chen  J, Lei  J, Scalzetti  E,  et al.  Myocardial contractile patterns predict future cardiac events in sarcoidosis.  Int J Cardiovasc Imaging. 2018;34(2):251-262. doi:10.1007/s10554-017-1233-9PubMedGoogle ScholarCrossref
39.
Murtagh  G, Laffin  LJ, Patel  KV,  et al.  Improved detection of myocardial damage in sarcoidosis using longitudinal strain in patients with preserved left ventricular ejection fraction.  Echocardiography. 2016;33(9):1344-1352. doi:10.1111/echo.13281PubMedGoogle ScholarCrossref
40.
Sperry  BW, Ibrahim  A, Negishi  K,  et al.  Incremental prognostic value of global longitudinal strain and 18F-fludeoxyglucose positron emission tomography in patients with systemic sarcoidosis.  Am J Cardiol. 2017;119(10):1663-1669. doi:10.1016/j.amjcard.2017.02.010PubMedGoogle ScholarCrossref
41.
Schouver  ED, Moceri  P, Doyen  D,  et al.  Early detection of cardiac involvement in sarcoidosis with 2-dimensional speckle-tracking echocardiography.  Int J Cardiol. 2017;227:711-716. doi:10.1016/j.ijcard.2016.10.073PubMedGoogle ScholarCrossref
42.
Haland  TF, Almaas  VM, Hasselberg  NE,  et al.  Strain echocardiography is related to fibrosis and ventricular arrhythmias in hypertrophic cardiomyopathy.  Eur Heart J Cardiovasc Imaging. 2016;17(6):613-621. doi:10.1093/ehjci/jew005PubMedGoogle ScholarCrossref
43.
Popović  ZB, Kwon  DH, Mishra  M,  et al.  Association between regional ventricular function and myocardial fibrosis in hypertrophic cardiomyopathy assessed by speckle tracking echocardiography and delayed hyperenhancement magnetic resonance imaging.  J Am Soc Echocardiogr. 2008;21(12):1299-1305. doi:10.1016/j.echo.2008.09.011PubMedGoogle ScholarCrossref
44.
Almaas  VM, Haugaa  KH, Strøm  EH,  et al.  Noninvasive assessment of myocardial fibrosis in patients with obstructive hypertrophic cardiomyopathy.  Heart. 2014;100(8):631-638. doi:10.1136/heartjnl-2013-304923PubMedGoogle ScholarCrossref
45.
Tower-Rader  A, Betancor  J, Popovic  ZB,  et al.  Incremental prognostic utility of left ventricular global longitudinal strain in hypertrophic obstructive cardiomyopathy patients and preserved left ventricular ejection fraction.  J Am Heart Assoc. 2017;6(10):e006514. doi:10.1161/JAHA.117.006514PubMedGoogle ScholarCrossref
46.
Hartlage  GR, Kim  JH, Strickland  PT,  et al.  The prognostic value of standardized reference values for speckle-tracking global longitudinal strain in hypertrophic cardiomyopathy.  Int J Cardiovasc Imaging. 2015;31(3):557-565. doi:10.1007/s10554-015-0590-5PubMedGoogle ScholarCrossref
47.
Wu  XP, Li  YD, Zhang  M,  et al.  Impaired left ventricular mechanics and functional reserve are associated with reduced exercise capacity in patients with hypertrophic cardiomyopathy.  Echocardiography. 2019;36(2):266-275. doi:10.1111/echo.14241PubMedGoogle ScholarCrossref
48.
Abduch  MC, Salgo  I, Tsang  W,  et al.  Myocardial deformation by speckle tracking in severe dilated cardiomyopathy.  Arq Bras Cardiol. 2012;99(3):834-843. doi:10.1590/S0066-782X2012005000086PubMedGoogle ScholarCrossref
49.
Meluzin  J, Spinarova  L, Hude  P,  et al.  Left ventricular mechanics in idiopathic dilated cardiomyopathy: systolic-diastolic coupling and torsion.  J Am Soc Echocardiogr. 2009;22(5):486-493. doi:10.1016/j.echo.2009.02.022PubMedGoogle ScholarCrossref
50.
Chimura  M, Onishi  T, Tsukishiro  Y,  et al.  Longitudinal strain combined with delayed-enhancement magnetic resonance improves risk stratification in patients with dilated cardiomyopathy.  Heart. 2017;103(9):679-686. doi:10.1136/heartjnl-2016-309746PubMedGoogle ScholarCrossref
51.
Carasso  S, Rakowski  H, Witte  KK,  et al.  Left ventricular strain patterns in dilated cardiomyopathy predict response to cardiac resynchronization therapy: timing is not everything.  J Am Soc Echocardiogr. 2009;22(3):242-250. doi:10.1016/j.echo.2008.12.003PubMedGoogle ScholarCrossref
52.
Jasaityte  R, Dandel  M, Lehmkuhl  H, Hetzer  R.  Prediction of short-term outcomes in patients with idiopathic dilated cardiomyopathy referred for transplantation using standard echocardiography and strain imaging.  Transplant Proc. 2009;41(1):277-280. doi:10.1016/j.transproceed.2008.10.083PubMedGoogle ScholarCrossref
53.
Bellavia  D, Michelena  HI, Martinez  M,  et al.  Speckle myocardial imaging modalities for early detection of myocardial impairment in isolated left ventricular non-compaction.  Heart. 2010;96(6):440-447. doi:10.1136/hrt.2009.182170PubMedGoogle ScholarCrossref
54.
Tarando  F, Coisne  D, Galli  E,  et al.  Left ventricular non-compaction and idiopathic dilated cardiomyopathy: the significant diagnostic value of longitudinal strain.  Int J Cardiovasc Imaging. 2017;33(1):83-95. doi:10.1007/s10554-016-0980-3PubMedGoogle ScholarCrossref
55.
Arenas  IA, Mihos  CG, DeFaria Yeh  D, Yucel  E, Elmahdy  HM, Santana  O.  Echocardiographic and clinical markers of left ventricular ejection fraction and moderate or greater systolic dysfunction in left ventricular noncompaction cardiomyopathy.  Echocardiography. 2018;35(7):941-948. doi:10.1111/echo.13873PubMedGoogle ScholarCrossref
56.
Sosa  S, Banchs  J.  Early recognition of apical ballooning syndrome by global longitudinal strain using speckle tracking imaging--the evil eye pattern, a case series.  Echocardiography. 2015;32(7):1184-1192. doi:10.1111/echo.12875PubMedGoogle ScholarCrossref
57.
Rosu  D, Askandar  S, Khouzam  RN.  Why Is reverse takotsubo “reverse”?  South Med J. 2017;110(5):381-385.PubMedGoogle Scholar
58.
Schwarz  K, Ahearn  T, Srinivasan  J,  et al.  Alterations in cardiac deformation, timing of contraction and relaxation, and early myocardial fibrosis accompany the apparent recovery of acute stress-induced (takotsubo) cardiomyopathy, an end to the concept of transience.  J Am Soc Echocardiogr. 2017;30(8):745-755. doi:10.1016/j.echo.2017.03.016PubMedGoogle ScholarCrossref
59.
Fallah-Rad  N, Walker  JR, Wassef  A,  et al.  The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II-positive breast cancer treated with adjuvant trastuzumab therapy.  J Am Coll Cardiol. 2011;57(22):2263-2270. doi:10.1016/j.jacc.2010.11.063PubMedGoogle ScholarCrossref
60.
Sawaya  H, Sebag  IA, Plana  JC,  et al.  Early detection and prediction of cardiotoxicity in chemotherapy-treated patients.  Am J Cardiol. 2011;107(9):1375-1380. doi:10.1016/j.amjcard.2011.01.006PubMedGoogle ScholarCrossref
61.
Sawaya  H, Sebag  IA, Plana  JC,  et al.  Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab.  Circ Cardiovasc Imaging. 2012;5(5):596-603. doi:10.1161/CIRCIMAGING.112.973321PubMedGoogle ScholarCrossref
62.
Negishi  K, Negishi  T, Hare  JL, Haluska  BA, Plana  JC, Marwick  TH.  Independent and incremental value of deformation indices for prediction of trastuzumab-induced cardiotoxicity.  J Am Soc Echocardiogr. 2013;26(5):493-498. doi:10.1016/j.echo.2013.02.008PubMedGoogle ScholarCrossref
63.
Thavendiranathan  P, Poulin  F, Lim  KD, Plana  JC, Woo  A, Marwick  TH.  Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review.  J Am Coll Cardiol. 2014;63(25 Pt A):2751-2768. doi:10.1016/j.jacc.2014.01.073PubMedGoogle ScholarCrossref
64.
Negishi  K, Negishi  T, Haluska  BA, Hare  JL, Plana  JC, Marwick  TH.  Use of speckle strain to assess left ventricular responses to cardiotoxic chemotherapy and cardioprotection.  Eur Heart J Cardiovasc Imaging. 2014;15(3):324-331. doi:10.1093/ehjci/jet159PubMedGoogle ScholarCrossref
65.
Negishi  T, Thavendiranathan  P, Negishi  K, Marwick  TH; SUCCOUR investigators.  Rationale and design of the strain surveillance of chemotherapy for improving cardiovascular outcomes: the SUCCOUR trial.  JACC Cardiovasc Imaging. 2018;11(8):1098-1105. doi:10.1016/j.jcmg.2018.03.019PubMedGoogle ScholarCrossref
66.
Darby  SC, McGale  P, Taylor  CW, Peto  R.  Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: prospective cohort study of about 300,000 women in US SEER cancer registries.  Lancet Oncol. 2005;6(8):557-565. doi:10.1016/S1470-2045(05)70251-5PubMedGoogle ScholarCrossref
67.
Darby  SC, Ewertz  M, McGale  P,  et al.  Risk of ischemic heart disease in women after radiotherapy for breast cancer.  N Engl J Med. 2013;368(11):987-998. doi:10.1056/NEJMoa1209825PubMedGoogle ScholarCrossref
68.
Lo  Q, Hee  L, Batumalai  V,  et al.  Subclinical cardiac dysfunction detected by strain imaging during breast irradiation with persistent changes 6 weeks after treatment.  Int J Radiat Oncol Biol Phys. 2015;92(2):268-276. doi:10.1016/j.ijrobp.2014.11.016PubMedGoogle ScholarCrossref
69.
Erven  K, Florian  A, Slagmolen  P,  et al.  Subclinical cardiotoxicity detected by strain rate imaging up to 14 months after breast radiation therapy.  Int J Radiat Oncol Biol Phys. 2013;85(5):1172-1178. doi:10.1016/j.ijrobp.2012.09.022PubMedGoogle ScholarCrossref
70.
Tsai  HR, Gjesdal  O, Wethal  T,  et al.  Left ventricular function assessed by two-dimensional speckle tracking echocardiography in long-term survivors of Hodgkin’s lymphoma treated by mediastinal radiotherapy with or without anthracycline therapy.  Am J Cardiol. 2011;107(3):472-477. doi:10.1016/j.amjcard.2010.09.048PubMedGoogle ScholarCrossref
71.
Kannan  A, Poongkunran  C, Jayaraj  M, Janardhanan  R.  Role of strain imaging in right heart disease: a comprehensive review.  J Clin Med Res. 2014;6(5):309-313.PubMedGoogle Scholar
72.
Meris  A, Faletra  F, Conca  C,  et al.  Timing and magnitude of regional right ventricular function: a speckle tracking-derived strain study of normal subjects and patients with right ventricular dysfunction.  J Am Soc Echocardiogr. 2010;23(8):823-831. doi:10.1016/j.echo.2010.05.009PubMedGoogle ScholarCrossref
73.
Sugiura  E, Dohi  K, Onishi  K,  et al.  Reversible right ventricular regional non-uniformity quantified by speckle-tracking strain imaging in patients with acute pulmonary thromboembolism.  J Am Soc Echocardiogr. 2009;22(12):1353-1359. doi:10.1016/j.echo.2009.09.005PubMedGoogle ScholarCrossref
74.
Cameli  M, Righini  FM, Lisi  M,  et al.  Comparison of right versus left ventricular strain analysis as a predictor of outcome in patients with systolic heart failure referred for heart transplantation.  Am J Cardiol. 2013;112(11):1778-1784. doi:10.1016/j.amjcard.2013.07.046PubMedGoogle ScholarCrossref
75.
Suffoletto  MS, Dohi  K, Cannesson  M, Saba  S, Gorcsan  J  III.  Novel speckle-tracking radial strain from routine black-and-white echocardiographic images to quantify dyssynchrony and predict response to cardiac resynchronization therapy.  Circulation. 2006;113(7):960-968. doi:10.1161/CIRCULATIONAHA.105.571455PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Topics
State Requirements