[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.206.194.83. Please contact the publisher to request reinstatement.
[Skip to Content Landing]

Diagnostic Modalities for Acute Compartment Syndrome of the ExtremitiesA Systematic Review

Educational Objective To identify the existing diagnostic modalities for acute compartment syndrome (ACS) and the pros and cons of each method.
1 Credit CME
Key Points

Question  What are the existing diagnostic modalities and research models for acute compartment syndrome (ACS)?

Findings  In this systematic review of 51 studies, near-infrared spectroscopy and direct intracompartmental pressure measurement using a Stryker device were the most commonly used methods, but all modalities lacked a reliable threshold. Of the most commonly used models, cadaveric studies used saline infusions; most studies with human patients included injured patients with acquired ACS or at risk of developing ACS; in healthy human patients, tourniquets formed the most commonly used ACS model; and application of tourniquets and infusion of saline or albumin among animal studies.

Meaning  Future studies on diagnostic modalities should include continuous assessment tools to better identify the earliest signs of ACS and thereby establish a reliable threshold.

Abstract

Importance  Acute compartment syndrome (ACS) can cause catastrophic tissue damage leading to permanent muscle and nerve loss. Acute compartment syndrome is a clinical diagnosis, with intracompartmental pressure (ICP) used in equivocal cases. There are no reliable diagnostic methods. The clinical evaluation is impossible to standardize, and the threshold for ICP has been known to be unreliable; thus, guidelines for diagnosis can result in overtreatment or delayed diagnosis.

Objective  To present and review the advantages and disadvantages of each diagnostic modality and identify gaps that need to be addressed in the future and to review the most used and appropriate animal and human ACS models.

Evidence Review  We included clinical studies and animal models investigating diagnostic modalities for ACS of the extremities. A MEDLINE and Web of Science search was performed. The protocol for the study was registered on PROSPERO (CRD42017079266). We assessed the quality of the clinical studies with Newcastle-Ottawa scale and reported level of evidence for each article.

Findings  Fifty-one articles were included in this study, reporting on 38 noninvasive and 35 invasive modalities. Near-infrared spectroscopy and direct ICP measurement using a Stryker device were the most common, respectively. Cadaveric studies used saline infusions to create an ACS model. Most studies with human participants included injured patients with acquired ACS or at risk of developing ACS. In healthy human participants, tourniquets formed the most commonly used ACS model. Application of tourniquets and infusion of saline or albumin were the most used ACS models among animal studies.

Conclusions and Relevance  This article reports on the most common as well as many new and modified diagnostic modalities, which can serve as inspiration for future investigations to develop more effective and efficient diagnostic techniques for ACS. Future studies on diagnostic modalities should include the development of tools for continuous assessment of ICP to better identify the earliest alterations suggestive of impending ACS. With the advent of such technologies, it may be possible to develop far less aggressive and more effective approaches for early detection of ACS.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Corresponding Author: Ara Nazarian, PhD, Center for Advanced Orthopaedic Studies, 330 Brookline Ave, RN115, Boston, MA 02215 (anazaria@bidmc.harvard.edu).

Accepted for Publication: November 5, 2018.

Published Online: May 1, 2019. doi:10.1001/jamasurg.2019.1050

Author Contributions: The principal investigator Dr Nazarian and the first author Dr Mortensen had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Drs Mortensen and Mohamadi and Ms Vora contributed equally to the work as first authors. Drs Wixted, Rutkove and Nazarian contributed equally as senior authors.

Concept and design: Mortensen, Vora, Mohamadi, Hanna, Lechtig, Egan, Williamson, Wixted, Rutkove, Nazarian.

Acquisition, analysis, or interpretation of data: Mortensen, Vora, Mohamadi, Wright, Egan, Nazarian.

Drafting of the manuscript: Mortensen, Vora, Mohamadi, Wright, Lechtig, Williamson, Rutkove, Nazarian.

Critical revision of the manuscript for important intellectual content: Mortensen, Mohamadi, Wright, Hanna, Lechtig, Egan, Wixted, Rutkove, Nazarian.

Statistical analysis: Mortensen, Vora, Mohamadi.

Administrative, technical, or material support: Mohamadi, Lechtig, Egan, Williamson, Wixted, Rutkove.

Supervision: Mortensen, Hanna, Rutkove, Nazarian.

Conflict of Interest Disclosures: None reported.

References
1.
McQueen  MM, Gaston  P, Court-Brown  CM.  Acute compartment syndrome: who is at risk?  J Bone Joint Surg Br. 2000;82(2):200-203. doi:10.1302/0301-620X.82B2 .9799PubMedGoogle ScholarCrossref
2.
von Keudell  AG, Weaver  MJ, Appleton  PT,  et al.  Diagnosis and treatment of acute extremity compartment syndrome.  Lancet. 2015;386(10000):1299-1310. doi:10.1016/S0140-6736(15)00277-9PubMedGoogle ScholarCrossref
3.
McQueen  MM, Christie  J, Court-Brown  CM.  Acute compartment syndrome in tibial diaphyseal fractures.  J Bone Joint Surg Br. 1996;78(1):95-98. doi:10.1302/0301-620X.78B1.0780095PubMedGoogle ScholarCrossref
4.
McQueen  MM, Duckworth  AD, Aitken  SA, Court-Brown  CM.  The estimated sensitivity and specificity of compartment pressure monitoring for acute compartment syndrome.  J Bone Joint Surg Am. 2013;95(8):673-677. doi:10.2106/JBJS.K.01731PubMedGoogle ScholarCrossref
5.
Shadgan  B, Menon  M, O’Brien  PJ, Reid  WD.  Diagnostic techniques in acute compartment syndrome of the leg.  J Orthop Trauma. 2008;22(8):581-587. doi:10.1097/BOT.0b013e318183136dPubMedGoogle ScholarCrossref
6.
OCEBM Levels of Evidence Working Group; Durieux N, Pasleau F, Howick J. The Oxford 2011 Levels of Evidence: group. http://www.cebm.net/index.aspx?o=1025. Published 2011. Accessed February 26, 2018.
7.
The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed May 29, 2018.
8.
Chambers  L, Hame  SL, Levine  B.  Acute exertional medial compartment syndrome of the foot after playing basketball.  Skeletal Radiol. 2011;40(7):931-935. doi:10.1007/s00256-011-1157-8PubMedGoogle ScholarCrossref
9.
Jensen  IW, Olsen  A.  Compartmental syndrome diagnosed by computed tomography.  J R Soc Med. 1986;79(5):300-301. doi:10.1177/014107688607900512PubMedGoogle ScholarCrossref
10.
Jiang  L-F, Li  H, Xin  Z-F, Wu  L-D.  Computed tomography angiography and magnetic resonance imaging performance of acute segmental single compartment syndrome following an Achilles tendon repair: a case report and literature review.  Chin J Traumatol. 2016;19(5):290-294. doi:10.1016/j.cjtee.2016.03.005PubMedGoogle ScholarCrossref
11.
Wang  S-M, Kim  M.  Compartment syndrome after varicose vein surgery evidenced by CT images.  Int J Low Extrem Wounds. 2016;15(1):71-73. doi:10.1177/1534734614555003PubMedGoogle ScholarCrossref
12.
Bariteau  JT, Beutel  BG, Kamal  R, Hayda  R, Born  C.  The use of near-infrared spectrometry for the diagnosis of lower-extremity compartment syndrome.  Orthopedics. 2011;34(3):178-178. doi:10.3928/01477447-20110124-12PubMedGoogle ScholarCrossref
13.
Blick  SS, Brumback  RJ, Poka  A, Burgess  AR, Ebraheim  NA.  Compartment syndrome in open tibial fractures.  J Bone Joint Surg Am. 1986;68(9):1348-1353. doi:10.2106/00004623-198668090-00007PubMedGoogle ScholarCrossref
14.
Boonstra  RH, Haverkamp  D, Campo  MM, van der Vis  HM.  Acute compartment syndrome of the thigh following total knee arthroplasty.  Knee. 2012;19(2):151-153. doi:10.1016/j.knee.2011.02.007PubMedGoogle ScholarCrossref
15.
de Franciscis  S, De Caridi  G, Massara  M,  et al.  Biomarkers in post-reperfusion syndrome after acute lower limb ischaemia.  Int Wound J. 2016;13(5):854-859. doi:10.1111/iwj.12392PubMedGoogle ScholarCrossref
16.
Geis  S, Gehmert  S, Lamby  P,  et al.  Contrast enhanced ultrasound (CEUS) and time intensity curve (TIC) analysis in compartment syndrome: first results.  Clin Hemorheol Microcirc. 2012;50(1-2):1-11. doi:10.3233/CH-2011-1438PubMedGoogle Scholar
17.
Goyal  S, Naik  MA, Tripathy  SK, Rao  SK.  Functional outcome of tibial fracture with acute compartment syndrome and correlation to deep posterior compartment pressure.  World J Orthop. 2017;8(5):385-393. doi:10.5312/wjo.v8.i5.385PubMedGoogle ScholarCrossref
18.
Katz  LM, Nauriyal  V, Nagaraj  S,  et al.  Infrared imaging of trauma patients for detection of acute compartment syndrome of the leg.  Crit Care Med. 2008;36(6):1756-1761. doi:10.1097/CCM.0b013e318174d800PubMedGoogle ScholarCrossref
19.
Kenny  RM, Beiser  CW, Patel  A.  Supraspinatus and infraspinatus compartment syndrome following scapular fracture.  Int J Shoulder Surg. 2013;7(1):28-31. doi:10.4103/0973-6042.109891PubMedGoogle ScholarCrossref
20.
Lee  SH, Padilla  M, Lynch  JE, Hargens  AR.  Noninvasive measurements of pressure for detecting compartment syndromes.  J Orthop Rheumatol. 2013;1(1):5. doi:10.13188/2334-2846.1000005PubMedGoogle ScholarCrossref
21.
Lynch  JE, Lynch  JK, Cole  SL, Carter  JA, Hargens  AR.  Noninvasive monitoring of elevated intramuscular pressure in a model compartment syndrome via quantitative fascial motion.  J Orthop Res. 2009;27(4):489-494. doi:10.1002/jor.20778PubMedGoogle ScholarCrossref
22.
McQueen  MM, Court-Brown  CM.  Compartment monitoring in tibial fractures: the pressure threshold for decompression.  J Bone Joint Surg Br. 1996;78(1):99-104. doi:10.1302/0301-620X.78B1.0780099PubMedGoogle ScholarCrossref
23.
Mitas  P, Vejrazka  M, Hruby  J,  et al.  Prediction of compartment syndrome based on analysis of biochemical parameters.  Ann Vasc Surg. 2014;28(1):170-177. doi:10.1016/j.avsg.2012.12.006PubMedGoogle ScholarCrossref
24.
Nygren  A, Rennerfelt  K, Zhang  Q.  Detection of changes in muscle oxygen saturation in the human leg: a comparison of two near-infrared spectroscopy devices.  J Clin Monit Comput. 2014;28(1):57-62. doi:10.1007/s10877-013-9494-xPubMedGoogle ScholarCrossref
25.
Ogunlusi  JD, Oginni  LM, Ikem  IC.  Compartmental pressure in adults with tibial fracture.  Int Orthop. 2005;29(2):130-133. doi:10.1007/s00264-004-0630-6PubMedGoogle ScholarCrossref
26.
Özkan  A, Şentürk  S, Tosun  Z.  Fasciotomy procedures on acute compartment syndromes of the upper extremity related to burns.  Electron J Gen Med. 2015;12(4):326–333. doi:10.15197/ejgm.01410Google Scholar
27.
Phillips  JH, Mackinnon  SE, Beatty  SE, Dellon  AL, O’Brien  JP.  Vibratory sensory testing in acute compartment syndromes: a clinical and experimental study.  Plast Reconstr Surg. 1987;79(5):796-801. doi:10.1097/00006534-198705000-00020PubMedGoogle ScholarCrossref
28.
Reisman  WM, Shuler  MS, Kinsey  TL,  et al.  Relationship between near infrared spectroscopy and intra-compartmental pressures.  J Emerg Med. 2013;44(2):292-298. doi:10.1016/j.jemermed.2012.06.018PubMedGoogle ScholarCrossref
29.
Roskosky  M, Robinson  G, Reisman  W, Ziran  B, Shuler  MS, Freedman  B.  Subcutaneous depth in a traumatized lower extremity.  J Trauma Acute Care Surg. 2014;77(3)(suppl 2):S190-S193. doi:10.1097/TA.0000000000000323PubMedGoogle ScholarCrossref
30.
Schmidt  AH, Bosse  MJ, Frey  KP,  et al; METRC.  Predicting Acute Compartment Syndrome (PACS): the role of continuous monitoring.  J Orthop Trauma. 2017;31(suppl 1):S40-S47. doi:10.1097/BOT.0000000000000796PubMedGoogle ScholarCrossref
31.
Sellei  RM, Waehling  A, Weber  CD,  et al.  Contrast enhanced ultrasound (CEUS) reliably detects critical perfusion changes in compartmental muscle: a model in healthy volunteers.  Eur J Trauma Emerg Surg. 2014;40(5):535-539. doi:10.1007/s00068-014-0443-2PubMedGoogle ScholarCrossref
32.
Shuler  MS, Reisman  WM, Kinsey  TL,  et al.  Correlation between muscle oxygenation and compartment pressures in acute compartment syndrome of the leg.  J Bone Joint Surg Am. 2010;92(4):863-870. doi:10.2106/JBJS.I.00816PubMedGoogle ScholarCrossref
33.
Steinberg  B, Riel  R, Armitage  M, Berrey  H.  Quantitative muscle hardness as a noninvasive means for detecting patients at risk of compartment syndromes.  Physiol Meas. 2011;32(4):433-444. doi:10.1088/0967-3334/32/4/005PubMedGoogle ScholarCrossref
34.
Suzuki  T, Moirmura  N, Kawai  K, Sugiyama  M.  Arterial injury associated with acute compartment syndrome of the thigh following blunt trauma.  Injury. 2005;36(1):151-159. doi:10.1016/j.injury.2004.03.022PubMedGoogle ScholarCrossref
35.
Tobias  JD, Hoernschemeyer  DG.  Near-infrared spectroscopy identifies compartment syndrome in an infant.  J Pediatr Orthop. 2007;27(3):311-313. doi:10.1097/BPO.0b013e3180326591PubMedGoogle ScholarCrossref
36.
Whitney  A, O’Toole  RV, Hui  E,  et al.  Do one-time intracompartmental pressure measurements have a high false-positive rate in diagnosing compartment syndrome?  J Trauma Acute Care Surg. 2014;76(2):479-483. doi:10.1097/TA.0b013e3182aaa63ePubMedGoogle ScholarCrossref
37.
Wiemann  JM, Ueno  T, Leek  BT, Yost  WT, Schwartz  AK, Hargens  AR.  Noninvasive measurements of intramuscular pressure using pulsed phase-locked loop ultrasound for detecting compartment syndromes: a preliminary report.  J Orthop Trauma. 2006;20(7):458-463. doi:10.1097/00005131-200608000-00002PubMedGoogle ScholarCrossref
38.
Yılmaz  TF, Toprak  H, Bilsel  K, Ozdemir  H, Aralasmak  A, Alkan  A.  MRI findings in crural compartment syndrome: a case series.  Emerg Radiol. 2014;21(1):93-97. doi:10.1007/s10140-013-1156-2PubMedGoogle ScholarCrossref
39.
Shuler  MS, Reisman  WM, Whitesides  TE  Jr,  et al.  Near-infrared spectroscopy in lower extremity trauma.  J Bone Joint Surg Am. 2009;91(6):1360-1368. doi:10.2106/JBJS.H.00347PubMedGoogle ScholarCrossref
40.
Joseph  B, Varghese  RA, Mulpuri  K, Paravatty  S, Kamath  S, Nagaraja  N.  Measurement of tissue hardness: can this be a method of diagnosing compartment syndrome noninvasively in children?  J Pediatr Orthop B. 2006;15(6):443-448. doi:10.1097/01.bpb.0000236226.21949.5cPubMedGoogle ScholarCrossref
41.
Tian  S, Lu  Y, Liu  J, Zhu  Y, Cui  Y, Lu  J.  Comparison of 2 available methods with Bland-Altman analysis for measuring intracompartmental pressure.  Am J Emerg Med. 2016;34(9):1765-1771. doi:10.1016/j.ajem.2016.06.010PubMedGoogle ScholarCrossref
42.
Lynch  JE, Heyman  JS, Hargens  AR.  Ultrasonic device for the noninvasive diagnosis of compartment syndrome.  Physiol Meas. 2004;25(1):1-9.Google Scholar
43.
Sellei  RM, Hingmann  SJ, Weber  C,  et al.  Assessment of elevated compartment pressures by pressure-related ultrasound: a cadaveric model.  Eur J Trauma Emerg Surg. 2015;41(6):639-645. doi:10.1007/s00068-014-0449-9PubMedGoogle ScholarCrossref
44.
Doro  CJ, Sitzman  TJ, O’Toole  RV.  Can intramuscular glucose levels diagnose compartment syndrome?  J Trauma Acute Care Surg. 2014;76(2):474-478. doi:10.1097/TA.0b013e3182a9ccd1PubMedGoogle ScholarCrossref
45.
Weick  JW, Kang  H, Lee  L,  et al.  Direct measurement of tissue oxygenation as a method of diagnosis of acute compartment syndrome.  J Orthop Trauma. 2016;30(11):585-591. doi:10.1097/BOT.0000000000000651PubMedGoogle ScholarCrossref
46.
Garabekyan  T, Murphey  GC, Macias  BR, Lynch  JE, Hargens  AR.  New noninvasive ultrasound technique for monitoring perfusion pressure in a porcine model of acute compartment syndrome.  J Orthop Trauma. 2009;23(3):186-193. doi:10.1097/BOT.0b013e31819901dbPubMedGoogle ScholarCrossref
47.
Altay  MA, Ertürk  C, Altay  N,  et al.  Comparison of intracompartmental pressures in a rabbit model of open and closed tibial fractures: an experimental study.  Bone Joint J. 2013;95-B(1):111-114. doi:10.1302/0301-620X.95B1.29504PubMedGoogle ScholarCrossref
48.
Babinkov  VI, Khitrov  NK, Cherkashina  ZA.  Effect of early fasciotomy on intramuscular pressure and electrical excitability of muscles in experimental compartment syndrome.  Bull Exp Biol Med. 2000;130(9):857-860. doi:10.1023/A:1015358027188PubMedGoogle ScholarCrossref
49.
Daly  KA, Wolf  M, Johnson  SA, Badylak  SF.  A rabbit model of peripheral compartment syndrome with associated rhabdomyolysis and a regenerative medicine approach for treatment.  Tissue Eng Part C Methods. 2011;17(6):631-640. doi:10.1089/ten.tec.2010.0699PubMedGoogle ScholarCrossref
50.
Greenberg  BM, Masem  M, Ragozzino  M, Schoenfeld  DA, May  JW  Jr.  The role of magnetic resonance imaging in assessing elevated intracompartmental pressure in the rabbit hindlimb.  Plast Reconstr Surg. 1988;82(4):678-687. doi:10.1097/00006534-198810000-00021PubMedGoogle ScholarCrossref
51.
Sheridan  GW, Matsen  FA  III.  An animal model of the compartmental syndrome.  Clin Orthop Relat Res. 1975;(113):36-42. doi:10.1097/00003086-197511000-00006PubMedGoogle Scholar
52.
Kearns  SR, O’Briain  DE, Sheehan  KM, Kelly  C, Bouchier-Hayes  D.  N-acetylcysteine protects striated muscle in a model of compartment syndrome.  Clin Orthop Relat Res. 2010;468(8):2251-2259. doi:10.1007/s11999-010-1287-7PubMedGoogle ScholarCrossref
53.
Lawendy  A-R, Sanders  DW, Bihari  A, Parry  N, Gray  D, Badhwar  A.  Compartment syndrome-induced microvascular dysfunction: an experimental rodent model.  Can J Surg. 2011;54(3):194-200. doi:10.1503/cjs.048309PubMedGoogle ScholarCrossref
54.
Oyster  N, Witt  M, Gharaibeh  B, Poddar  M, Schneppendahl  J, Huard  J.  Characterization of a compartment syndrome-like injury model.  Muscle Nerve. 2015;51(5):750-758. doi:10.1002/mus.24461PubMedGoogle ScholarCrossref
55.
Zhou  Y, Lovell  D, Bethea  M,  et al.  Age-dependent changes cooperatively impact skeletal muscle regeneration after compartment syndrome injury.  Am J Pathol. 2014;184(8):2225-2236. doi:10.1016/j.ajpath.2014.03.018PubMedGoogle ScholarCrossref
56.
Budsberg  SC, Shuler  MS, Hansen  M, Uhl  E, Freedman  BA.  Comparison of NIRS, serum biomarkers, and muscle damage in a porcine balloon compression model of acute compartment syndrome.  J Trauma Acute Care Surg. 2016;81(5):876-881. doi:10.1097/TA.0000000000001225PubMedGoogle ScholarCrossref
57.
Cathcart  CC, Shuler  MS, Freedman  BA, Reno  LR, Budsberg  SC.  Correlation of near-infrared spectroscopy and direct pressure monitoring in an acute porcine compartmental syndrome model.  J Orthop Trauma. 2014;28(6):365-369. doi:10.1097/BOT.0b013e3182a75cebPubMedGoogle ScholarCrossref
58.
Garr  JL, Gentilello  LM, Cole  PA, Mock  CN, Matsen  FA  III.  Monitoring for compartmental syndrome using near-infrared spectroscopy: a noninvasive, continuous, transcutaneous monitoring technique.  J Trauma. 1999;46(4):613-616. doi:10.1097/00005373-199904000-00009PubMedGoogle ScholarCrossref
59.
Heckman  MM, Whitesides  TE  Jr, Grewe  SR, Judd  RL, Miller  M, Lawrence  JH  III.  Histologic determination of the ischemic threshold of muscle in the canine compartment syndrome model.  J Orthop Trauma. 1993;7(3):199-210. doi:10.1097/00005131-199306000-00001PubMedGoogle ScholarCrossref
60.
Hargens  AR, Akeson  WH, Mubarak  SJ,  et al.  Fluid balance within the canine anterolateral compartment and its relationship to compartment syndromes.  J Bone Joint Surg Am. 1978;60(4):499-505. doi:10.2106/00004623-197860040-00012PubMedGoogle ScholarCrossref
61.
Sapega  AA, Heppenstall  RB, Chance  B, Park  YS, Sokolow  D.  Optimizing tourniquet application and release times in extremity surgery: a biochemical and ultrastructural study.  J Bone Joint Surg Am. 1985;67(2):303-314. doi:10.2106/00004623-198567020-00018PubMedGoogle ScholarCrossref
62.
Newman  RJ.  Metabolic effects of tourniquet ischaemia studied by nuclear magnetic resonance spectroscopy.  J Bone Joint Surg Br. 1984;66(3):434-440. doi:10.1302/0301-620X.66B3.6725357PubMedGoogle ScholarCrossref
63.
Riquelme  A, Avellanal  M, Vigil  D, Salinero  E, Vaquero  J.  Ischemia-reperfusion challenge in human skeletal muscle: study in knee arthroplasty surgery.  J Anesth Clin Res. 2011;2(12). doi:10.4172/2155-6148.1000178Google Scholar
64.
Townsend  HS, Goodman  SB, Schurman  DJ, Hackel  A, Brock-Utne  JG.  Tourniquet release: systemic and metabolic effects.  Acta Anaesthesiol Scand. 1996;40(10):1234-1237. doi:10.1111/j.1399-6576.1996.tb05556.xPubMedGoogle ScholarCrossref
65.
Janzing  HMJ, Broos  PLO.  Routine monitoring of compartment pressure in patients with tibial fractures: beware of overtreatment!  Injury. 2001;32(5):415-421. doi:10.1016/S0020-1383(01)00005-5PubMedGoogle ScholarCrossref
66.
McQueen  M.  How to monitor compartment pressures.  Tech Orthop. 1996;11(1):99-101. doi:10.1097/00013611-199601110-00015Google ScholarCrossref
67.
Whitesides  TE, Haney  TC, Morimoto  K, Harada  H.  Tissue pressure measurements as a determinant for the need of fasciotomy.  Clin Orthop Relat Res. 1975;(113):43-51. doi:10.1097/00003086-197511000-00007PubMedGoogle Scholar
68.
Sangwan  SS, Marya  KM, Devgan  A, Siwach  RC, Kundu  ZS, Gupta  PK.  Critical evaluation of compartment pressure measurement by saline manometer in peripheral hospital setup.  Trop Doct. 2003;33(2):100-103. doi:10.1177/004947550303300216PubMedGoogle ScholarCrossref
69.
Moed  BR, Thorderson  PK.  Measurement of intracompartmental pressure: a comparison of the slit catheter, side-ported needle, and simple needle.  J Bone Joint Surg Am. 1993;75(2):231-235. doi:10.2106/00004623-199302000-00010PubMedGoogle ScholarCrossref
70.
Boody  AR, Wongworawat  MD.  Accuracy in the measurement of compartment pressures: a comparison of three commonly used devices.  J Bone Joint Surg Am. 2005;87(11):2415-2422. doi:10.2106/JBJS.D.02826PubMedGoogle Scholar
71.
Jöbsis  FF.  Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters.  Science. 1977;198(4323):1264-1267. doi:10.1126/science.929199PubMedGoogle ScholarCrossref
72.
Jackson  K  II, Cole  A, Potter  BK, Shuler  M, Kinsey  T, Freedman  B.  Identification of optimal control compartments for serial near-infrared spectroscopy assessment of lower extremity compartmental perfusion.  J Surg Orthop Adv. 2013;22(1):2-9. doi:10.3113/JSOA.2013.0002PubMedGoogle ScholarCrossref
73.
Shuler  MS, Reisman  WM, Cole  AL, Whitesides  TE  Jr, Moore  TJ.  Near-infrared spectroscopy in acute compartment syndrome: case report.  Injury. 2011;42(12):1506-1508. doi:10.1016/j.injury.2011.03.022PubMedGoogle ScholarCrossref
74.
Ueno  T, Ballard  RE, Shuer  LM, Cantrell  JH, Yost  WT, Hargens  AR.  Noninvasive measurement of pulsatile intracranial pressure using ultrasound.  Acta Neurochir Suppl. 1998;71:66-69.PubMedGoogle Scholar
75.
Shadgan  B, Menon  M, Sanders  D,  et al.  Current thinking about acute compartment syndrome of the lower extremity.  Can J Surg. 2010;53(5):329-334.PubMedGoogle Scholar
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Topics
State Requirements