[Skip to Content]
[Skip to Content Landing]

Guidelines for Perioperative Care in Cardiac SurgeryEnhanced Recovery After Surgery Society Recommendations

Educational Objective
To state the evidence for several care options for Enhanced Recovery After Surgery after cardiac surgery.
1 Credit CME
Abstract

Enhanced Recovery After Surgery (ERAS) evidence-based protocols for perioperative care can lead to improvements in clinical outcomes and cost savings. This article aims to present consensus recommendations for the optimal perioperative management of patients undergoing cardiac surgery. A review of meta-analyses, randomized clinical trials, large nonrandomized studies, and reviews was conducted for each protocol element. The quality of the evidence was graded and used to form consensus recommendations for each topic. Development of these recommendations was endorsed by the Enhanced Recovery After Surgery Society.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Accepted for Publication: March 16, 2019.

Corresponding Author: Daniel T. Engelman, MD, Heart and Vascular Program, Baystate Medical Center, 759 Chestnut St, Springfield, MA 01199 (daniel.engelman@baystatehealth.org).

Published Online: May 4, 2019. doi:10.1001/jamasurg.2019.1153

Author Contributions: Dr Engelman had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: D. Engelman, Williams, Perrault, Reddy, Arora, Roselli, Gerdisch, Lobdell, Fletcher, Kirsch, Nelson, Gregory, Boyle.

Acquisition, analysis, or interpretation of data: D. Engelman, Ben Ali, Williams, Perrault, Reddy, Arora, Khoynezhad, Levy, Lobdell, Fletcher, Nelson, R. Engelman.

Drafting of the manuscript: D. Engelman, Williams, Perrault, Arora, Khoynezhad, Gerdisch, Levy, Lobdell, Fletcher, R. Engelman, Boyle.

Critical revision of the manuscript for important intellectual content: D. Engelman, Ben Ali, Williams, Perrault, Reddy, Arora, Roselli, Gerdisch, Levy, Lobdell, Fletcher, Kirsch, Nelson, Gregory.

Statistical analysis: Ben Ali.

Administrative, technical, or material support: D. Engelman, Williams, Perrault, Reddy, Levy, Lobdell, R. Engelman, Boyle.

Supervision: D. Engelman, Perrault, Reddy, Fletcher, Nelson.

Conflict of Interest Disclosures: Dr Khoynezhad consults for and receives speaking honoraria from Atricure Inc. Dr Levy reported serving on research and steering committees for Boehringer-Ingelheim, CSL Behring, Octapharma, Instrumentation Labs, and Merck. Dr Perrault is on the scientific advisory board for ClearFlow Inc and a consultant and principal investigator for Somahlution. Dr Gerdisch is a consultant and principal investigator for and receives speaker honoraria from Zimmer Biomet and Cryolife and consults for and receives speaking honoraria from Atricure Inc. Dr Arora has received honoraria from Mallinckrodt Pharmaceuticals and an unrestricted education grant from Pfizer Canada. Dr R. Engelman is a consultant for Cryolife. Dr D. Engelman reported personal fees from Astute Medical, Edwards Lifescience, and Zimmer-Biomet outside the submitted work. Dr Reddy reports personal fees from Astute Medical outside the submitted work. Dr Arora reports grants from Pfizer Canada and honoraria from Mallickrodt Pharmaceuticals. Dr Roselli reports personal fees from Abbott, Edwards, LivaNova, and Cryolife and grants and personal fees from Gore, Medtronic, and TerumoAortic, outside the submitted work. Dr Boyle reports personal fees from ClearFlow Medical during the conduct of the study and is a founder of and has a patent to ClearFlow Medical pending and issued. No other disclosures were reported.

Disclaimer: The authors verify that all information and materials in this article are original, except for the Box, which is reprinted with permission.

Previous Presentation: American Association for Thoracic Surgery 98th Annual Meeting; April 28 and May 1, 2018; San Diego, California.

Additional Contributions: We thank Olle Ljungqvist, MD, PhD, Örebro University, for his support throughout this process and Gudrun Kunst, MD PhD, FRCA, FFICM, King’s College Hospital, and Michael Grant, MD, Johns Hopkins, for their review of the manuscript. They were not compensated.

References
1.
Ljungqvist  O, Scott  M, Fearon  KC.  Enhanced recovery after surgery: a review.  JAMA Surg. 2017;152(3):292-298. doi:10.1001/jamasurg.2016.4952PubMedGoogle ScholarCrossref
2.
Eskicioglu  C, Forbes  SS, Aarts  MA, Okrainec  A, McLeod  RS.  Enhanced recovery after surgery (ERAS) programs for patients having colorectal surgery: a meta-analysis of randomized trials.  J Gastrointest Surg. 2009;13(12):2321-2329. doi:10.1007/s11605-009-0927-2PubMedGoogle ScholarCrossref
3.
Lassen  K, Soop  M, Nygren  J,  et al; Enhanced Recovery After Surgery (ERAS) Group.  Consensus review of optimal perioperative care in colorectal surgery: Enhanced Recovery After Surgery (ERAS) Group recommendations.  Arch Surg. 2009;144(10):961-969. doi:10.1001/archsurg.2009.170PubMedGoogle ScholarCrossref
4.
Spanjersberg  WR, Reurings  J, Keus  F, van Laarhoven  CJ.  Fast track surgery versus conventional recovery strategies for colorectal surgery.  Cochrane Database Syst Rev. 2011;(2):CD007635.PubMedGoogle Scholar
5.
Stone  AB, Grant  MC, Pio Roda  C,  et al.  Implementation costs of an enhanced recovery after surgery program in the united states: a financial model and sensitivity analysis based on experiences at a quaternary academic medical center.  J Am Coll Surg. 2016;222(3):219-225. doi:10.1016/j.jamcollsurg.2015.11.021PubMedGoogle ScholarCrossref
6.
Thiele  RH, Rea  KM, Turrentine  FE,  et al.  Standardization of care: impact of an enhanced recovery protocol on length of stay, complications, and direct costs after colorectal surgery.  J Am Coll Surg. 2015;220(4):430-443. doi:10.1016/j.jamcollsurg.2014.12.042PubMedGoogle ScholarCrossref
7.
Fleming  IO, Garratt  C, Guha  R,  et al.  Aggregation of marginal gains in cardiac surgery: feasibility of a perioperative care bundle for enhanced recovery in cardiac surgical patients.  J Cardiothorac Vasc Anesth. 2016;30(3):665-670. doi:10.1053/j.jvca.2016.01.017PubMedGoogle ScholarCrossref
8.
Graham  R, Mancher  M, Miller Wolman  D, Greenfield  S, Steinberg  E, eds.  Institute of Medicine (US) Committee on Standards for Developing Trustworthy Clinical Practice Guidelines: Clinical Practice Guidelines We Can Trust. Washington, DC. US: National Academies Press; 2011.
9.
Moher  D, Liberati  A, Tetzlaff  J, Altman  DG; PRISMA Group.  Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.  Int J Surg. 2010;8(5):336-341. doi:10.1016/j.ijsu.2010.02.007PubMedGoogle ScholarCrossref
10.
Bakaeen  FG, Svensson  LG, Mitchell  JD, Keshavjee  S, Patterson  GA, Weisel  RD.  The American Association for Thoracic Surgery/Society of Thoracic Surgeons position statement on developing clinical practice documents.  J Thorac Cardiovasc Surg. 2017;153(4):999-1005. doi:10.1016/j.jtcvs.2017.01.003PubMedGoogle ScholarCrossref
11.
Gustafsson  UO, Scott  MJ, Hubner  M,  et al.  Guidelines for perioperative care in elective colorectal surgery: Enhanced Recovery After Surgery (ERAS) Society recommendations: 2018.  World J Surg. 2019;43(3):659-695. doi:10.1007/s00268-018-4844-yPubMedGoogle ScholarCrossref
12.
Jacobs  AK, Anderson  JL, Halperin  JL,  et al; ACC/AHA TASK FORCE MEMBERS.  The evolution and future of ACC/AHA clinical practice guidelines: a 30-year journey: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines.  Circulation. 2014;130(14):1208-1217. doi:10.1161/CIR.0000000000000090PubMedGoogle ScholarCrossref
13.
Narayan  P, Kshirsagar  SN, Mandal  CK,  et al.  Preoperative glycosylated hemoglobin: a risk factor for patients undergoing coronary artery bypass.  Ann Thorac Surg. 2017;104(2):606-612. doi:10.1016/j.athoracsur.2016.12.020PubMedGoogle ScholarCrossref
14.
Whang  W, Bigger  JT  Jr; The CABG Patch Trial Investigators and Coordinators.  Diabetes and outcomes of coronary artery bypass graft surgery in patients with severe left ventricular dysfunction: results from the CABG Patch Trial database.  J Am Coll Cardiol. 2000;36(4):1166-1172. doi:10.1016/S0735-1097(00)00823-8PubMedGoogle ScholarCrossref
15.
Wong  J, Zoungas  S, Wright  C, Teede  H.  Evidence-based guidelines for perioperative management of diabetes in cardiac and vascular surgery.  World J Surg. 2010;34(3):500-513. doi:10.1007/s00268-009-0380-0PubMedGoogle ScholarCrossref
16.
Halkos  ME, Puskas  JD, Lattouf  OM,  et al.  Elevated preoperative hemoglobin A1c level is predictive of adverse events after coronary artery bypass surgery.  J Thorac Cardiovasc Surg. 2008;136(3):631-640. doi:10.1016/j.jtcvs.2008.02.091PubMedGoogle ScholarCrossref
17.
Robich  MP, Iribarne  A, Leavitt  BJ,  et al; Northern New England Cardiovascular Disease Study Group.  Intensity of glycemic control affects long-term survival after coronary artery bypass graft surgery.  Ann Thorac Surg. 2019;107(2):477-484. doi:10.1016/j.athoracsur.2018.07.078PubMedGoogle ScholarCrossref
18.
Engelman  DT, Adams  DH, Byrne  JG,  et al.  Impact of body mass index and albumin on morbidity and mortality after cardiac surgery.  J Thorac Cardiovasc Surg. 1999;118(5):866-873. doi:10.1016/S0022-5223(99)70056-5PubMedGoogle ScholarCrossref
19.
Kudsk  KA, Tolley  EA, DeWitt  RC,  et al.  Preoperative albumin and surgical site identify surgical risk for major postoperative complications.  JPEN J Parenter Enteral Nutr. 2003;27(1):1-9. doi:10.1177/014860710302700101PubMedGoogle ScholarCrossref
20.
Lee  EH, Kim  WJ, Kim  JY,  et al.  Effect of exogenous albumin on the incidence of postoperative acute kidney injury in patients undergoing off-pump coronary artery bypass surgery with a preoperative albumin level of less than 4.0 g/dl.  Anesthesiology. 2016;124(5):1001-1011. doi:10.1097/ALN.0000000000001051PubMedGoogle ScholarCrossref
21.
Karas  PL, Goh  SL, Dhital  K.  Is low serum albumin associated with postoperative complications in patients undergoing cardiac surgery?  Interact Cardiovasc Thorac Surg. 2015;21(6):777-786.PubMedGoogle Scholar
22.
Waitzberg  DL, Saito  H, Plank  LD,  et al.  Postsurgical infections are reduced with specialized nutrition support.  World J Surg. 2006;30(8):1592-1604. doi:10.1007/s00268-005-0657-xPubMedGoogle ScholarCrossref
23.
Jie  B, Jiang  ZM, Nolan  MT, Zhu  SN, Yu  K, Kondrup  J.  Impact of preoperative nutritional support on clinical outcome in abdominal surgical patients at nutritional risk.  Nutrition. 2012;28(10):1022-1027. doi:10.1016/j.nut.2012.01.017PubMedGoogle ScholarCrossref
24.
Lauck  SB, Wood  DA, Achtem  L,  et al.  Risk stratification and clinical pathways to optimize length of stay after transcatheter aortic valve replacement.  Can J Cardiol. 2014;30(12):1583-1587. doi:10.1016/j.cjca.2014.07.012PubMedGoogle ScholarCrossref
25.
McClave  SA, Kozar  R, Martindale  RG,  et al.  Summary points and consensus recommendations from the North American Surgical Nutrition Summit.  JPEN J Parenter Enteral Nutr. 2013;37(5)(suppl):99S-105S. doi:10.1177/0148607113495892PubMedGoogle ScholarCrossref
26.
Yu  PJ, Cassiere  HA, Dellis  SL, Manetta  F, Kohn  N, Hartman  AR.  Impact of preoperative prealbumin on outcomes after cardiac surgery.  JPEN J Parenter Enteral Nutr. 2015;39(7):870-874. doi:10.1177/0148607114536735PubMedGoogle ScholarCrossref
27.
Stoppe  C, Goetzenich  A, Whitman  G,  et al.  Role of nutrition support in adult cardiac surgery: a consensus statement from an international multidisciplinary expert group on nutrition in cardiac surgery.  Crit Care. 2017;21(1):131. doi:10.1186/s13054-017-1690-5PubMedGoogle ScholarCrossref
28.
 Practice guidelines for preoperative fasting and the use of pharmacologic agents to reduce the risk of pulmonary aspiration: application to healthy patients undergoing elective procedures: an updated report by the American Society of Anesthesiologists Task Force on Preoperative Fasting and the Use of Pharmacologic Agents to Reduce the Risk of Pulmonary Aspiration.  Anesthesiology. 2017;126(3):376-393. doi:10.1097/ALN.0000000000001452PubMedGoogle ScholarCrossref
29.
Brady  M, Kinn  S, Ness  V, O’Rourke  K, Randhawa  N, Stuart  P.  Preoperative fasting for preventing perioperative complications in children.  Cochrane Database Syst Rev. 2009;(4):CD005285.PubMedGoogle Scholar
30.
Brady  M, Kinn  S, Stuart  P.  Preoperative fasting for adults to prevent perioperative complications.  Cochrane Database Syst Rev. 2003;(4):CD004423.PubMedGoogle Scholar
31.
Ljungqvist  O.  Modulating postoperative insulin resistance by preoperative carbohydrate loading.  Best Pract Res Clin Anaesthesiol. 2009;23(4):401-409. doi:10.1016/j.bpa.2009.08.004PubMedGoogle ScholarCrossref
32.
Järvelä  K, Maaranen  P, Sisto  T.  Pre-operative oral carbohydrate treatment before coronary artery bypass surgery.  Acta Anaesthesiol Scand. 2008;52(6):793-797. doi:10.1111/j.1399-6576.2008.01660.xPubMedGoogle ScholarCrossref
33.
Feguri  GR, de Lima  PRL, de Cerqueira Borges  D,  et al.  Preoperative carbohydrate load and intraoperatively infused omega-3 polyunsaturated fatty acids positively impact nosocomial morbidity after coronary artery bypass grafting: a double-blind controlled randomized trial.  Nutr J. 2017;16(1):24. doi:10.1186/s12937-017-0245-6PubMedGoogle ScholarCrossref
34.
Breuer  JP, von Dossow  V, von Heymann  C,  et al.  Preoperative oral carbohydrate administration to ASA III-IV patients undergoing elective cardiac surgery.  Anesth Analg. 2006;103(5):1099-1108. doi:10.1213/01.ane.0000237415.18715.1dPubMedGoogle ScholarCrossref
35.
Hibbard  JH, Greene  J.  What the evidence shows about patient activation: better health outcomes and care experiences; fewer data on costs.  Health Aff (Millwood). 2013;32(2):207-214. doi:10.1377/hlthaff.2012.1061PubMedGoogle ScholarCrossref
36.
Oshima Lee  E, Emanuel  EJ.  Shared decision making to improve care and reduce costs.  N Engl J Med. 2013;368(1):6-8. doi:10.1056/NEJMp1209500PubMedGoogle ScholarCrossref
37.
Cook  DJ, Manning  DM, Holland  DE,  et al.  Patient engagement and reported outcomes in surgical recovery: effectiveness of an e-health platform.  J Am Coll Surg. 2013;217(4):648-655. doi:10.1016/j.jamcollsurg.2013.05.003PubMedGoogle ScholarCrossref
38.
Arthur  HM, Daniels  C, McKelvie  R, Hirsh  J, Rush  B.  Effect of a preoperative intervention on preoperative and postoperative outcomes in low-risk patients awaiting elective coronary artery bypass graft surgery: a randomized, controlled trial.  Ann Intern Med. 2000;133(4):253-262. doi:10.7326/0003-4819-133-4-200008150-00007PubMedGoogle ScholarCrossref
39.
Sawatzky  JA, Kehler  DS, Ready  AE,  et al.  Prehabilitation program for elective coronary artery bypass graft surgery patients: a pilot randomized controlled study.  Clin Rehabil. 2014;28(7):648-657. doi:10.1177/0269215513516475PubMedGoogle ScholarCrossref
40.
Stammers  AN, Kehler  DS, Afilalo  J,  et al.  Protocol for the PREHAB study—Pre-operative Rehabilitation for Reduction of Hospitalization After Coronary Bypass and Valvular Surgery: a randomised controlled trial.  BMJ Open. 2015;5(3):e007250. doi:10.1136/bmjopen-2014-007250PubMedGoogle ScholarCrossref
41.
Snowden  CP, Prentis  J, Jacques  B,  et al.  Cardiorespiratory fitness predicts mortality and hospital length of stay after major elective surgery in older people.  Ann Surg. 2013;257(6):999-1004. doi:10.1097/SLA.0b013e31828dbac2PubMedGoogle ScholarCrossref
42.
Valkenet  K, van de Port  IG, Dronkers  JJ, de Vries  WR, Lindeman  E, Backx  FJ.  The effects of preoperative exercise therapy on postoperative outcome: a systematic review.  Clin Rehabil. 2011;25(2):99-111. doi:10.1177/0269215510380830PubMedGoogle ScholarCrossref
43.
Waite  I, Deshpande  R, Baghai  M, Massey  T, Wendler  O, Greenwood  S.  Home-based preoperative rehabilitation (prehab) to improve physical function and reduce hospital length of stay for frail patients undergoing coronary artery bypass graft and valve surgery.  J Cardiothorac Surg. 2017;12(1):91. doi:10.1186/s13019-017-0655-8PubMedGoogle ScholarCrossref
44.
Orange  ST, Northgraves  MJ, Marshall  P, Madden  LA, Vince  RV.  Exercise prehabilitation in elective intra-cavity surgery: A role within the ERAS pathway? a narrative review.  Int J Surg. 2018;56:328-333. doi:10.1016/j.ijsu.2018.04.054PubMedGoogle ScholarCrossref
45.
Barberan-Garcia  A, Ubré  M, Roca  J,  et al.  Personalised prehabilitation in high-risk patients undergoing elective major abdominal surgery: a randomized blinded controlled trial.  Ann Surg. 2018;267(1):50-56. doi:10.1097/SLA.0000000000002293PubMedGoogle ScholarCrossref
46.
Li  C, Carli  F, Lee  L,  et al.  Impact of a trimodal prehabilitation program on functional recovery after colorectal cancer surgery: a pilot study.  Surg Endosc. 2013;27(4):1072-1082. doi:10.1007/s00464-012-2560-5PubMedGoogle ScholarCrossref
47.
Gillis  C, Li  C, Lee  L,  et al.  Prehabilitation versus rehabilitation: a randomized control trial in patients undergoing colorectal resection for cancer.  Anesthesiology. 2014;121(5):937-947. doi:10.1097/ALN.0000000000000393PubMedGoogle ScholarCrossref
48.
Reid  MC, Fiellin  DA, O’Connor  PG.  Hazardous and harmful alcohol consumption in primary care.  Arch Intern Med. 1999;159(15):1681-1689. doi:10.1001/archinte.159.15.1681PubMedGoogle ScholarCrossref
49.
Gaskill  CE, Kling  CE, Varghese  TK  Jr,  et al.  Financial benefit of a smoking cessation program prior to elective colorectal surgery.  J Surg Res. 2017;215:183-189. doi:10.1016/j.jss.2017.03.067PubMedGoogle ScholarCrossref
50.
Levett  DZ, Edwards  M, Grocott  M, Mythen  M.  Preparing the patient for surgery to improve outcomes.  Best Pract Res Clin Anaesthesiol. 2016;30(2):145-157. doi:10.1016/j.bpa.2016.04.002PubMedGoogle ScholarCrossref
51.
Tønnesen  H, Nielsen  PR, Lauritzen  JB, Møller  AM.  Smoking and alcohol intervention before surgery: evidence for best practice.  Br J Anaesth. 2009;102(3):297-306. doi:10.1093/bja/aen401PubMedGoogle ScholarCrossref
52.
Sørensen  LT.  Wound healing and infection in surgery: the pathophysiological impact of smoking, smoking cessation, and nicotine replacement therapy: a systematic review.  Ann Surg. 2012;255(6):1069-1079. doi:10.1097/SLA.0b013e31824f632dPubMedGoogle ScholarCrossref
53.
Wong  J, Lam  DP, Abrishami  A, Chan  MT, Chung  F.  Short-term preoperative smoking cessation and postoperative complications: a systematic review and meta-analysis.  Can J Anaesth. 2012;59(3):268-279. doi:10.1007/s12630-011-9652-xPubMedGoogle ScholarCrossref
54.
Oppedal  K, Møller  AM, Pedersen  B, Tønnesen  H.  Preoperative alcohol cessation prior to elective surgery.  Cochrane Database Syst Rev. 2012;(7):CD008343.PubMedGoogle Scholar
55.
Lavallée  JF, Gray  TA, Dumville  J, Russell  W, Cullum  N.  The effects of care bundles on patient outcomes: a systematic review and meta-analysis.  Implement Sci. 2017;12(1):142. doi:10.1186/s13012-017-0670-0PubMedGoogle ScholarCrossref
56.
Mutters  NT, De Angelis  G, Restuccia  G,  et al.  Use of evidence-based recommendations in an antibiotic care bundle for the intensive care unit.  Int J Antimicrob Agents. 2018;51(1):65-70. doi:10.1016/j.ijantimicag.2017.06.020PubMedGoogle ScholarCrossref
57.
Lazar  HL, Salm  TV, Engelman  R, Orgill  D, Gordon  S.  Prevention and management of sternal wound infections.  J Thorac Cardiovasc Surg. 2016;152(4):962-972. doi:10.1016/j.jtcvs.2016.01.060PubMedGoogle ScholarCrossref
58.
Bode  LG, Kluytmans  JA, Wertheim  HF,  et al.  Preventing surgical-site infections in nasal carriers of Staphylococcus aureus N Engl J Med. 2010;362(1):9-17. doi:10.1056/NEJMoa0808939PubMedGoogle ScholarCrossref
59.
Paling  FP, Olsen  K, Ohneberg  K,  et al.  Risk prediction for Staphylococcus aureus surgical site infection following cardiothoracic surgery: a secondary analysis of the V710-P003 trial.  PLoS One. 2018;13(3):e0193445. doi:10.1371/journal.pone.0193445PubMedGoogle ScholarCrossref
60.
Courville  XF, Tomek  IM, Kirkland  KB, Birhle  M, Kantor  SR, Finlayson  SR.  Cost-effectiveness of preoperative nasal mupirocin treatment in preventing surgical site infection in patients undergoing total hip and knee arthroplasty: a cost-effectiveness analysis.  Infect Control Hosp Epidemiol. 2012;33(2):152-159. doi:10.1086/663704PubMedGoogle ScholarCrossref
61.
Hong  JC, Saraswat  MK, Ellison  TA,  et al.  Staphylococcus aureus prevention strategies in cardiac surgery: a cost-effectiveness analysis.  Ann Thorac Surg. 2018;105(1):47-53. doi:10.1016/j.athoracsur.2017.06.033PubMedGoogle ScholarCrossref
62.
Murphy  E, Spencer  SJ, Young  D, Jones  B, Blyth  MJ.  MRSA colonisation and subsequent risk of infection despite effective eradication in orthopaedic elective surgery.  J Bone Joint Surg Br. 2011;93(4):548-551. doi:10.1302/0301-620X.93B4.24969PubMedGoogle ScholarCrossref
63.
Cimochowski  GE, Harostock  MD, Brown  R, Bernardi  M, Alonzo  N, Coyle  K.  Intranasal mupirocin reduces sternal wound infection after open heart surgery in diabetics and nondiabetics.  Ann Thorac Surg. 2001;71(5):1572-1578. doi:10.1016/S0003-4975(01)02519-XPubMedGoogle ScholarCrossref
64.
Edwards  FH, Engelman  RM, Houck  P, Shahian  DM, Bridges  CR; Society of Thoracic Surgeons.  The Society of Thoracic Surgeons practice guideline series: antibiotic prophylaxis in cardiac surgery, part I: duration.  Ann Thorac Surg. 2006;81(1):397-404. doi:10.1016/j.athoracsur.2005.06.034PubMedGoogle ScholarCrossref
65.
Engelman  R, Shahian  D, Shemin  R,  et al; Workforce on Evidence-Based Medicine, Society of Thoracic Surgeons.  The Society of Thoracic Surgeons practice guideline series: antibiotic prophylaxis in cardiac surgery, part II: antibiotic choice.  Ann Thorac Surg. 2007;83(4):1569-1576. doi:10.1016/j.athoracsur.2006.09.046PubMedGoogle ScholarCrossref
66.
Trent Magruder  J, Grimm  JC, Dungan  SP,  et al.  Continuous intraoperative cefazolin infusion may reduce surgical site infections during cardiac surgical procedures: a propensity-matched analysis.  J Cardiothorac Vasc Anesth. 2015;29(6):1582-1587. doi:10.1053/j.jvca.2015.03.026PubMedGoogle ScholarCrossref
67.
Tanner  J, Norrie  P, Melen  K.  Preoperative hair removal to reduce surgical site infection.  Cochrane Database Syst Rev. 2011;(11):CD004122.PubMedGoogle Scholar
68.
Leaper  D, Burman-Roy  S, Palanca  A,  et al; Guideline Development Group.  Prevention and treatment of surgical site infection: summary of NICE guidance.  BMJ. 2008;337:a1924. doi:10.1136/bmj.a1924PubMedGoogle ScholarCrossref
69.
Ban  KA, Minei  JP, Laronga  C,  et al.  American College of Surgeons and Surgical Infection Society: surgical site infection guidelines, 2016 update.  J Am Coll Surg. 2017;224(1):59-74. doi:10.1016/j.jamcollsurg.2016.10.029PubMedGoogle ScholarCrossref
70.
Keenan  JE, Speicher  PJ, Thacker  JK, Walter  M, Kuchibhatla  M, Mantyh  CR.  The preventive surgical site infection bundle in colorectal surgery: an effective approach to surgical site infection reduction and health care cost savings.  JAMA Surg. 2014;149(10):1045-1052. doi:10.1001/jamasurg.2014.346PubMedGoogle ScholarCrossref
71.
Grocott  HP, Mackensen  GB, Grigore  AM,  et al; Neurologic Outcome Research Group (NORG); Cardiothoracic Anesthesiology Research Endeavors (CARE) Investigators’ of the Duke Heart Center.  Postoperative hyperthermia is associated with cognitive dysfunction after coronary artery bypass graft surgery.  Stroke. 2002;33(2):537-541. doi:10.1161/hs0202.102600PubMedGoogle ScholarCrossref
72.
Groom  RC, Rassias  AJ, Cormack  JE,  et al; Northern New England Cardiovascular Disease Study Group.  Highest core temperature during cardiopulmonary bypass and rate of mediastinitis.  Perfusion. 2004;19(2):119-125. doi:10.1191/0267659104pf731oaPubMedGoogle ScholarCrossref
73.
Newland  RF, Baker  RA, Mazzone  AL, Quinn  SS, Chew  DP; Perfusion Downunder Collaboration.  Rewarming temperature during cardiopulmonary bypass and acute kidney injury: a multicenter analysis.  Ann Thorac Surg. 2016;101(5):1655-1662. doi:10.1016/j.athoracsur.2016.01.086PubMedGoogle ScholarCrossref
74.
Bar-Yosef  S, Mathew  JP, Newman  MF, Landolfo  KP, Grocott  HP; Neurological Outcome Research Group; C A R E Investigators of the Duke Heart Center.  Prevention of cerebral hyperthermia during cardiac surgery by limiting on-bypass rewarming in combination with post-bypass body surface warming: a feasibility study.  Anesth Analg. 2004;99(3):641-646. doi:10.1213/01.ANE.0000130354.90659.63PubMedGoogle ScholarCrossref
75.
Allen  KB, Thourani  VH, Naka  Y,  et al.  Randomized, multicenter trial comparing sternotomy closure with rigid plate fixation to wire cerclage.  J Thorac Cardiovasc Surg. 2017;153(4):888-896.e1. doi:10.1016/j.jtcvs.2016.10.093PubMedGoogle ScholarCrossref
76.
Allen  KB, Thourani  VH, Naka  Y,  et al.  Rigid plate fixation versus wire cerclage: patient-reported and economic outcomes from a randomized trial.  Ann Thorac Surg. 2018;105(5):1344-1350. doi:10.1016/j.athoracsur.2017.12.011PubMedGoogle ScholarCrossref
77.
Park  JS, Kuo  JH, Young  JN, Wong  MS.  Rigid sternal fixation versus modified wire technique for poststernotomy closures: a retrospective cost analysis.  Ann Plast Surg. 2017;78(5):537-542. doi:10.1097/SAP.0000000000000901PubMedGoogle ScholarCrossref
78.
Nazerali  RS, Hinchcliff  K, Wong  MS.  Rigid fixation for the prevention and treatment of sternal complications.  Ann Plast Surg. 2014;72(suppl 1):S27-S30. doi:10.1097/SAP.0000000000000155PubMedGoogle ScholarCrossref
79.
Raman  J, Lehmann  S, Zehr  K,  et al.  Sternal closure with rigid plate fixation versus wire closure: a randomized controlled multicenter trial.  Ann Thorac Surg. 2012;94(6):1854-1861. doi:10.1016/j.athoracsur.2012.07.085PubMedGoogle ScholarCrossref
80.
Christensen  MC, Dziewior  F, Kempel  A, von Heymann  C.  Increased chest tube drainage is independently associated with adverse outcome after cardiac surgery.  J Cardiothorac Vasc Anesth. 2012;26(1):46-51. doi:10.1053/j.jvca.2011.09.021PubMedGoogle ScholarCrossref
81.
Dyke  C, Aronson  S, Dietrich  W,  et al.  Universal definition of perioperative bleeding in adult cardiac surgery.  J Thorac Cardiovasc Surg. 2014;147(5):1458-1463.e1. doi:10.1016/j.jtcvs.2013.10.070PubMedGoogle ScholarCrossref
82.
Ferraris  VA, Brown  JR, Despotis  GJ,  et al; Society of Thoracic Surgeons Blood Conservation Guideline Task Force; Society of Cardiovascular Anesthesiologists Special Task Force on Blood Transfusion; International Consortium for Evidence Based Perfusion.  2011 update to the Society of Thoracic Surgeons and the Society of Cardiovascular Anesthesiologists blood conservation clinical practice guidelines.  Ann Thorac Surg. 2011;91(3):944-982. doi:10.1016/j.athoracsur.2010.11.078PubMedGoogle ScholarCrossref
83.
Pagano  D, Milojevic  M, Meesters  MI,  et al.  2017 EACTS/EACTA Guidelines on patient blood management for adult cardiac surgery.  Eur J Cardiothorac Surg. 2018;53(1):79-111. doi:10.1093/ejcts/ezx325PubMedGoogle ScholarCrossref
84.
Myles  PS, Smith  JA, Forbes  A,  et al; ATACAS Investigators of the ANZCA Clinical Trials Network.  Tranexamic acid in patients undergoing coronary-artery surgery.  N Engl J Med. 2017;376(2):136-148. doi:10.1056/NEJMoa1606424PubMedGoogle ScholarCrossref
85.
Koster  A, Faraoni  D, Levy  JH.  Antifibrinolytic therapy for cardiac surgery: an update.  Anesthesiology. 2015;123(1):214-221. doi:10.1097/ALN.0000000000000688PubMedGoogle ScholarCrossref
86.
Levy  JH, Koster  A, Quinones  QJ, Milling  TJ, Key  NS.  Antifibrinolytic therapy and perioperative considerations.  Anesthesiology. 2018;128(3):657-670. doi:10.1097/ALN.0000000000001997PubMedGoogle ScholarCrossref
87.
Tengborn  L, Blombäck  M, Berntorp  E.  Tranexamic acid—an old drug still going strong and making a revival.  Thromb Res. 2015;135(2):231-242. doi:10.1016/j.thromres.2014.11.012PubMedGoogle ScholarCrossref
88.
Macisaac  RJ, Jerums  G.  Intensive glucose control and cardiovascular outcomes in type 2 diabetes.  Heart Lung Circ. 2011;20(10):647-654. doi:10.1016/j.hlc.2010.07.013PubMedGoogle ScholarCrossref
89.
Moghissi  ES, Korytkowski  MT, DiNardo  M,  et al; American Association of Clinical Endocrinologists; American Diabetes Association.  American Association of Clinical Endocrinologists and American Diabetes Association consensus statement on inpatient glycemic control.  Diabetes Care. 2009;32(6):1119-1131. doi:10.2337/dc09-9029PubMedGoogle ScholarCrossref
90.
Selvin  E, Marinopoulos  S, Berkenblit  G,  et al.  Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus.  Ann Intern Med. 2004;141(6):421-431. doi:10.7326/0003-4819-141-6-200409210-00007PubMedGoogle ScholarCrossref
91.
van den Berghe  G, Wouters  P, Weekers  F,  et al.  Intensive insulin therapy in critically ill patients.  N Engl J Med. 2001;345(19):1359-1367. doi:10.1056/NEJMoa011300PubMedGoogle ScholarCrossref
92.
Gianotti  L, Biffi  R, Sandini  M,  et al.  Preoperative Oral Carbohydrate Load Versus Placebo in Major Elective Abdominal Surgery (PROCY): a randomized, placebo-controlled, multicenter, phase III trial.  Ann Surg. 2018;267(4):623-630. doi:10.1097/SLA.0000000000002325PubMedGoogle ScholarCrossref
93.
Williams  JB, McConnell  G, Allender  JE,  et al.  One-year results from the first US-based enhanced recovery after cardiac surgery (ERAS cardiac) program.  J Thorac Cardiovasc Surg. 2018;pii:S0022-5223(18)33225-2.PubMedGoogle Scholar
94.
Greisen  J, Nielsen  DV, Sloth  E, Jakobsen  CJ.  High thoracic epidural analgesia decreases stress hyperglycemia and insulin need in cardiac surgery patients.  Acta Anaesthesiol Scand. 2013;57(2):171-177. doi:10.1111/j.1399-6576.2012.02731.xPubMedGoogle ScholarCrossref
95.
Lazar  HL, Chipkin  SR, Fitzgerald  CA, Bao  Y, Cabral  H, Apstein  CS.  Tight glycemic control in diabetic coronary artery bypass graft patients improves perioperative outcomes and decreases recurrent ischemic events.  Circulation. 2004;109(12):1497-1502. doi:10.1161/01.CIR.0000121747.71054.79PubMedGoogle ScholarCrossref
96.
Furnary  AP, Wu  Y.  Eliminating the diabetic disadvantage: the Portland Diabetic Project.  Semin Thorac Cardiovasc Surg. 2006;18(4):302-308. doi:10.1053/j.semtcvs.2006.04.005PubMedGoogle ScholarCrossref
97.
Chaney  MA, Nikolov  MP, Blakeman  BP, Bakhos  M.  Attempting to maintain normoglycemia during cardiopulmonary bypass with insulin may initiate postoperative hypoglycemia.  Anesth Analg. 1999;89(5):1091-1095. doi:10.1213/00000539-199911000-00004PubMedGoogle ScholarCrossref
98.
Gandhi  GY, Nuttall  GA, Abel  MD,  et al.  Intensive intraoperative insulin therapy versus conventional glucose management during cardiac surgery: a randomized trial.  Ann Intern Med. 2007;146(4):233-243. doi:10.7326/0003-4819-146-4-200702200-00002PubMedGoogle ScholarCrossref
99.
White  PF, Kehlet  H, Neal  JM, Schricker  T, Carr  DB, Carli  F; Fast-Track Surgery Study Group.  The role of the anesthesiologist in fast-track surgery: from multimodal analgesia to perioperative medical care.  Anesth Analg. 2007;104(6):1380-1396. doi:10.1213/01.ane.0000263034.96885.e1PubMedGoogle ScholarCrossref
100.
Wick  EC, Grant  MC, Wu  CL.  Postoperative multimodal analgesia pain management with nonopioid analgesics and techniques: a review.  JAMA Surg. 2017;152(7):691-697. doi:10.1001/jamasurg.2017.0898PubMedGoogle ScholarCrossref
101.
Qazi  SM, Sindby  EJ, Nørgaard  MA.  Ibuprofen—a safe analgesic during cardiac surgery recovery? a randomized controlled trial.  J Cardiovasc Thorac Res. 2015;7(4):141-148. doi:10.15171/jcvtr.2015.31PubMedGoogle ScholarCrossref
102.
Nussmeier  NA, Whelton  AA, Brown  MT,  et al.  Complications of the COX-2 inhibitors parecoxib and valdecoxib after cardiac surgery.  N Engl J Med. 2005;352(11):1081-1091. doi:10.1056/NEJMoa050330PubMedGoogle ScholarCrossref
103.
Jelacic  S, Bollag  L, Bowdle  A, Rivat  C, Cain  KC, Richebe  P.  Intravenous acetaminophen as an adjunct analgesic in cardiac surgery reduces opioid consumption but not opioid-related adverse effects: a randomized controlled trial.  J Cardiothorac Vasc Anesth. 2016;30(4):997-1004. doi:10.1053/j.jvca.2016.02.010PubMedGoogle ScholarCrossref
104.
Petring  OU, Dawson  PJ, Blake  DW,  et al.  Normal postoperative gastric emptying after orthopaedic surgery with spinal anaesthesia and I.M. ketorolac as the first postoperative analgesic.  Br J Anaesth. 1995;74(3):257-260. doi:10.1093/bja/74.3.257PubMedGoogle ScholarCrossref
105.
Apfel  CC, Turan  A, Souza  K, Pergolizzi  J, Hornuss  C.  Intravenous acetaminophen reduces postoperative nausea and vomiting: a systematic review and meta-analysis.  Pain. 2013;154(5):677-689. doi:10.1016/j.pain.2012.12.025PubMedGoogle ScholarCrossref
106.
Radbruch  L, Glaeske  G, Grond  S,  et al.  Topical review on the abuse and misuse potential of tramadol and tilidine in Germany.  Subst Abus. 2013;34(3):313-320. doi:10.1080/08897077.2012.735216PubMedGoogle ScholarCrossref
107.
But  AK, Erdil  F, Yucel  A, Gedik  E, Durmus  M, Ersoy  MO.  The effects of single-dose tramadol on post-operative pain and morphine requirements after coronary artery bypass surgery.  Acta Anaesthesiol Scand. 2007;51(5):601-606. doi:10.1111/j.1399-6576.2007.01275.xPubMedGoogle ScholarCrossref
108.
Joshi  SS, Jagadeesh  AM.  Efficacy of perioperative pregabalin in acute and chronic post-operative pain after off-pump coronary artery bypass surgery: a randomized, double-blind placebo controlled trial.  Ann Card Anaesth. 2013;16(3):180-185. doi:10.4103/0971-9784.114239PubMedGoogle ScholarCrossref
109.
Borde  DP, Futane  SS, Asegaonkar  B,  et al.  Effect of perioperative pregabalin on postoperative quality of recovery in patients undergoing off-pump coronary artery bypass grafting (OPCABG): a prospective, randomized, double-blind trial.  J Cardiothorac Vasc Anesth. 2017;31(4):1241-1245. doi:10.1053/j.jvca.2016.09.029PubMedGoogle ScholarCrossref
110.
Menda  F, Köner  O, Sayın  M, Ergenoğlu  M, Küçükaksu  S, Aykaç  B.  Effects of single-dose gabapentin on postoperative pain and morphine consumption after cardiac surgery.  J Cardiothorac Vasc Anesth. 2010;24(5):808-813. doi:10.1053/j.jvca.2009.10.023PubMedGoogle ScholarCrossref
111.
Khalil  MA, Abdel Azeem  MS.  The impact of dexmedetomidine infusion in sparing morphine consumption in off-pump coronary artery bypass grafting.  Semin Cardiothorac Vasc Anesth. 2013;17(1):66-71. doi:10.1177/1089253212463969PubMedGoogle ScholarCrossref
112.
Ji  F, Li  Z, Young  N, Moore  P, Liu  H.  Perioperative dexmedetomidine improves mortality in patients undergoing coronary artery bypass surgery.  J Cardiothorac Vasc Anesth. 2014;28(2):267-273. doi:10.1053/j.jvca.2013.06.022PubMedGoogle ScholarCrossref
113.
Liu  X, Xie  G, Zhang  K,  et al.  Dexmedetomidine vs propofol sedation reduces delirium in patients after cardiac surgery: A meta-analysis with trial sequential analysis of randomized controlled trials.  J Crit Care. 2017;38:190-196. doi:10.1016/j.jcrc.2016.10.026PubMedGoogle ScholarCrossref
114.
Cho  JS, Shim  JK, Soh  S, Kim  MK, Kwak  YL.  Perioperative dexmedetomidine reduces the incidence and severity of acute kidney injury following valvular heart surgery.  Kidney Int. 2016;89(3):693-700. doi:10.1038/ki.2015.306PubMedGoogle ScholarCrossref
115.
Hudetz  JA, Patterson  KM, Iqbal  Z,  et al.  Ketamine attenuates delirium after cardiac surgery with cardiopulmonary bypass.  J Cardiothorac Vasc Anesth. 2009;23(5):651-657. doi:10.1053/j.jvca.2008.12.021PubMedGoogle ScholarCrossref
116.
Faritous  Z, Barzanji  A, Azarfarin  R,  et al.  Comparison of bispectral index monitoring with the critical-care pain observation tool in the pain assessment of intubated adult patients after cardiac surgery.  Anesth Pain Med. 2016;6(4):e38334. doi:10.5812/aapm.38334PubMedGoogle ScholarCrossref
117.
Gélinas  C, Fillion  L, Puntillo  KA, Viens  C, Fortier  M.  Validation of the critical-care pain observation tool in adult patients.  Am J Crit Care. 2006;15(4):420-427.PubMedGoogle Scholar
118.
Payen  JF, Bru  O, Bosson  JL,  et al.  Assessing pain in critically ill sedated patients by using a behavioral pain scale.  Crit Care Med. 2001;29(12):2258-2263. doi:10.1097/00003246-200112000-00004PubMedGoogle ScholarCrossref
119.
Rijkenberg  S, Stilma  W, Bosman  RJ, van der Meer  NJ, van der Voort  PHJ.  Pain measurement in mechanically ventilated patients after cardiac surgery: comparison of the Behavioral Pain Scale (BPS) and the Critical-Care Pain Observation Tool (CPOT).  J Cardiothorac Vasc Anesth. 2017;31(4):1227-1234. doi:10.1053/j.jvca.2017.03.013PubMedGoogle ScholarCrossref
120.
Arenson  BG, MacDonald  LA, Grocott  HP, Hiebert  BM, Arora  RC.  Effect of intensive care unit environment on in-hospital delirium after cardiac surgery.  J Thorac Cardiovasc Surg. 2013;146(1):172-178. doi:10.1016/j.jtcvs.2012.12.042PubMedGoogle ScholarCrossref
121.
Barr  J, Fraser  GL, Puntillo  K,  et al; American College of Critical Care Medicine.  Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit.  Crit Care Med. 2013;41(1):263-306. doi:10.1097/CCM.0b013e3182783b72PubMedGoogle ScholarCrossref
122.
European Delirium Association; American Delirium Society.  The DSM-5 criteria, level of arousal and delirium diagnosis: inclusiveness is safer.  BMC Med. 2014;12:141. doi:10.1186/s12916-014-0141-2PubMedGoogle ScholarCrossref
123.
McPherson  JA, Wagner  CE, Boehm  LM,  et al.  Delirium in the cardiovascular ICU: exploring modifiable risk factors  [correction published in Crit Care Med. 2013;41(4):e41].  Crit Care Med. 2013;41(2):405-413. doi:10.1097/CCM.0b013e31826ab49bPubMedGoogle ScholarCrossref
124.
Milbrandt  EB, Deppen  S, Harrison  PL,  et al.  Costs associated with delirium in mechanically ventilated patients.  Crit Care Med. 2004;32(4):955-962. doi:10.1097/01.CCM.0000119429.16055.92PubMedGoogle ScholarCrossref
125.
Rudolph  JL, Inouye  SK, Jones  RN,  et al.  Delirium: an independent predictor of functional decline after cardiac surgery.  J Am Geriatr Soc. 2010;58(4):643-649. doi:10.1111/j.1532-5415.2010.02762.xPubMedGoogle ScholarCrossref
126.
Rudolph  JL, Jones  RN, Grande  LJ,  et al.  Impaired executive function is associated with delirium after coronary artery bypass graft surgery.  J Am Geriatr Soc. 2006;54(6):937-941. doi:10.1111/j.1532-5415.2006.00735.xPubMedGoogle ScholarCrossref
127.
Maldonado  JR.  Neuropathogenesis of delirium: review of current etiologic theories and common pathways.  Am J Geriatr Psychiatry. 2013;21(12):1190-1222. doi:10.1016/j.jagp.2013.09.005PubMedGoogle ScholarCrossref
128.
Bergeron  N, Dubois  MJ, Dumont  M, Dial  S, Skrobik  Y.  Intensive Care Delirium Screening Checklist: evaluation of a new screening tool.  Intensive Care Med. 2001;27(5):859-864. doi:10.1007/s001340100909PubMedGoogle ScholarCrossref
129.
Ely  EW, Inouye  SK, Bernard  GR,  et al.  Delirium in mechanically ventilated patients: validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU).  JAMA. 2001;286(21):2703-2710. doi:10.1001/jama.286.21.2703PubMedGoogle ScholarCrossref
130.
Siddiqi  N, Harrison  JK, Clegg  A,  et al.  Interventions for preventing delirium in hospitalised non-ICU patients.  Cochrane Database Syst Rev. 2016;3:CD005563.PubMedGoogle Scholar
131.
Young  J, Murthy  L, Westby  M, Akunne  A, O’Mahony  R; Guideline Development Group.  Diagnosis, prevention, and management of delirium: summary of NICE guidance.  BMJ. 2010;341:c3704. doi:10.1136/bmj.c3704PubMedGoogle ScholarCrossref
132.
Page  VJ, Ely  EW, Gates  S,  et al.  Effect of intravenous haloperidol on the duration of delirium and coma in critically ill patients (Hope-ICU): a randomised, double-blind, placebo-controlled trial.  Lancet Respir Med. 2013;1(7):515-523. doi:10.1016/S2213-2600(13)70166-8PubMedGoogle ScholarCrossref
133.
van den Boogaard  M, Slooter  AJC, Brüggemann  RJM,  et al; REDUCE Study Investigators.  Effect of haloperidol on survival among critically ill adults with a high risk of delirium: the REDUCE randomized clinical trial.  JAMA. 2018;319(7):680-690. doi:10.1001/jama.2018.0160PubMedGoogle ScholarCrossref
134.
Sessler  DI.  Perioperative heat balance.  Anesthesiology. 2000;92(2):578-596. doi:10.1097/00000542-200002000-00042PubMedGoogle ScholarCrossref
135.
Karalapillai  D, Story  D, Hart  GK,  et al.  Postoperative hypothermia and patient outcomes after elective cardiac surgery.  Anaesthesia. 2011;66(9):780-784. doi:10.1111/j.1365-2044.2011.06784.xPubMedGoogle ScholarCrossref
136.
Karalapillai  D, Story  D, Hart  GK,  et al.  Postoperative hypothermia and patient outcomes after major elective non-cardiac surgery.  Anaesthesia. 2013;68(6):605-611. doi:10.1111/anae.12129PubMedGoogle ScholarCrossref
137.
Campbell  G, Alderson  P, Smith  AF, Warttig  S.  Warming of intravenous and irrigation fluids for preventing inadvertent perioperative hypothermia.  Cochrane Database Syst Rev. 2015;(4):CD009891.PubMedGoogle Scholar
138.
Engelen  S, Himpe  D, Borms  S,  et al.  An evaluation of underbody forced-air and resistive heating during hypothermic, on-pump cardiac surgery.  Anaesthesia. 2011;66(2):104-110. doi:10.1111/j.1365-2044.2010.06609.xPubMedGoogle ScholarCrossref
139.
Grocott  HP, Mathew  JP, Carver  EH, Phillips-Bute  B, Landolfo  KP, Newman  MF; Duke Heart Center Neurologic Outcome Research Group.  A randomized controlled trial of the Arctic Sun temperature management system versus conventional methods for preventing hypothermia during off-pump cardiac surgery.  Anesth Analg. 2004;98(2):298-302. doi:10.1213/01.ANE.0000096242.06561.C0PubMedGoogle ScholarCrossref
140.
Karimov  JH, Gillinov  AM, Schenck  L,  et al.  Incidence of chest tube clogging after cardiac surgery: a single-center prospective observational study.  Eur J Cardiothorac Surg. 2013;44(6):1029-1036. doi:10.1093/ejcts/ezt140PubMedGoogle ScholarCrossref
141.
Shalli  S, Saeed  D, Fukamachi  K,  et al.  Chest tube selection in cardiac and thoracic surgery: a survey of chest tube-related complications and their management.  J Card Surg. 2009;24(5):503-509. doi:10.1111/j.1540-8191.2009.00905.xPubMedGoogle ScholarCrossref
142.
Balzer  F, von Heymann  C, Boyle  EM, Wernecke  KD, Grubitzsch  H, Sander  M.  Impact of retained blood requiring reintervention on outcomes after cardiac surgery.  J Thorac Cardiovasc Surg. 2016;152(2):595-601.e4. doi:10.1016/j.jtcvs.2016.03.086PubMedGoogle ScholarCrossref
143.
Boyle  EM  Jr, Gillinov  AM, Cohn  WE, Ley  SJ, Fischlein  T, Perrault  LP.  Retained blood syndrome after cardiac surgery: a new look at an old problem.  Innovations (Phila). 2015;10(5):296-303.PubMedGoogle ScholarCrossref
144.
Tauriainen  TKE, Morosin  MA, Airaksinen  J, Biancari  F.  Outcome after procedures for retained blood syndrome in coronary surgery.  Eur J Cardiothorac Surg. 2017;51(6):1078-1085. doi:10.1093/ejcts/ezx015Google ScholarCrossref
145.
St-Onge  S, Perrault  LP, Demers  P,  et al.  Pericardial blood as a trigger for postoperative atrial fibrillation after cardiac surgery.  Ann Thorac Surg. 2018;105(1):321-328. doi:10.1016/j.athoracsur.2017.07.045PubMedGoogle ScholarCrossref
146.
Day  TG, Perring  RR, Gofton  K.  Is manipulation of mediastinal chest drains useful or harmful after cardiac surgery?  Interact Cardiovasc Thorac Surg. 2008;7(5):888-890. doi:10.1510/icvts.2008.185413PubMedGoogle ScholarCrossref
147.
Halm  MA.  To strip or not to strip? physiological effects of chest tube manipulation.  Am J Crit Care. 2007;16(6):609-612.PubMedGoogle Scholar
148.
Boyacıoğlu  K, Kalender  M, Özkaynak  B, Mert  B, Kayalar  N, Erentuğ  V.  A new use of Fogarty catheter: chest tube clearance.  Heart Lung Circ. 2014;23(10):e229-e230. doi:10.1016/j.hlc.2014.04.255PubMedGoogle ScholarCrossref
149.
Grieshaber  P, Heim  N, Herzberg  M, Niemann  B, Roth  P, Boening  A.  Active chest tube clearance after cardiac surgery is associated with reduced reexploration rates.  Ann Thorac Surg. 2018;105(6):1771-1777. doi:10.1016/j.athoracsur.2018.01.002PubMedGoogle ScholarCrossref
150.
Maltais  S, Davis  ME, Haglund  NA,  et al.  Active clearance of chest tubes reduces re-exploration for bleeding after ventricular assist device implantation.  ASAIO J. 2016;62(6):704-709. doi:10.1097/MAT.0000000000000437PubMedGoogle ScholarCrossref
151.
Perrault  LP, Pellerin  M, Carrier  M,  et al.  The PleuraFlow Active chest tube clearance system: initial clinical experience in adult cardiac surgery.  Innovations (Phila). 2012;7(5):354-358.PubMedGoogle ScholarCrossref
152.
Sirch  J, Ledwon  M, Püski  T, Boyle  EM, Pfeiffer  S, Fischlein  T.  Active clearance of chest drainage catheters reduces retained blood.  J Thorac Cardiovasc Surg. 2016;151(3):832-838.e2. doi:10.1016/j.jtcvs.2015.10.015PubMedGoogle ScholarCrossref
153.
St-Onge  S, Ben Ali  W, Bouhout  I,  et al.  Examining the impact of active clearance of chest drainage catheters on postoperative atrial fibrillation.  J Thorac Cardiovasc Surg. 2017;154(2):501-508. doi:10.1016/j.jtcvs.2017.03.046PubMedGoogle ScholarCrossref
154.
Gercekoglu  H, Aydin  NB, Dagdeviren  B,  et al.  Effect of timing of chest tube removal on development of pericardial effusion following cardiac surgery.  J Card Surg. 2003;18(3):217-224. doi:10.1046/j.1540-8191.2003.02020.xPubMedGoogle ScholarCrossref
155.
Edelman  JJ, Reddel  CJ, Kritharides  L,  et al.  Natural history of hypercoagulability in patients undergoing coronary revascularization and effect of preoperative myocardial infarction.  J Thorac Cardiovasc Surg. 2014;148(2):536-543. doi:10.1016/j.jtcvs.2013.10.028PubMedGoogle ScholarCrossref
156.
Parolari  A, Mussoni  L, Frigerio  M,  et al.  Increased prothrombotic state lasting as long as one month after on-pump and off-pump coronary surgery.  J Thorac Cardiovasc Surg. 2005;130(2):303-308. doi:10.1016/j.jtcvs.2004.11.002PubMedGoogle ScholarCrossref
157.
Hill  J, Treasure  T.  Senkung des Risikos für venöse Thromboembolien bei stationären Patienten: Zusammenfassung der NICE-Leitlinien.  Praxis (Bern). 2010;99(16):977-980. doi:10.1024/1661-8157/a000221Google ScholarCrossref
158.
Kakkos  SK, Caprini  JA, Geroulakos  G,  et al.  Combined intermittent pneumatic leg compression and pharmacological prophylaxis for prevention of venous thromboembolism.  Cochrane Database Syst Rev. 2016;9:CD005258.PubMedGoogle Scholar
159.
Sachdeva  A, Dalton  M, Lees  T.  Graduated compression stockings for prevention of deep vein thrombosis.  Cochrane Database Syst Rev. 2018;11:CD001484.PubMedGoogle Scholar
160.
Dunning  J, Versteegh  M, Fabbri  A,  et al; EACTS Audit and Guidelines Committee.  Guideline on antiplatelet and anticoagulation management in cardiac surgery.  Eur J Cardiothorac Surg. 2008;34(1):73-92. doi:10.1016/j.ejcts.2008.02.024PubMedGoogle ScholarCrossref
161.
Ho  KM, Bham  E, Pavey  W.  Incidence of venous thromboembolism and benefits and risks of thromboprophylaxis after cardiac surgery: a systematic review and meta-analysis.  J Am Heart Assoc. 2015;4(10):e002652. doi:10.1161/JAHA.115.002652PubMedGoogle ScholarCrossref
162.
Ahmed  AB, Koster  A, Lance  M, Faraoni  D; ESA VTE Guidelines Task Force.  European guidelines on perioperative venous thromboembolism prophylaxis: cardiovascular and thoracic surgery.  Eur J Anaesthesiol. 2018;35(2):84-89.PubMedGoogle Scholar
163.
Rajakaruna  C, Rogers  CA, Angelini  GD, Ascione  R.  Risk factors for and economic implications of prolonged ventilation after cardiac surgery.  J Thorac Cardiovasc Surg. 2005;130(5):1270-1277. doi:10.1016/j.jtcvs.2005.06.050PubMedGoogle ScholarCrossref
164.
Barker  J, Martino  R, Reichardt  B, Hickey  EJ, Ralph-Edwards  A.  Incidence and impact of dysphagia in patients receiving prolonged endotracheal intubation after cardiac surgery.  Can J Surg. 2009;52(2):119-124.PubMedGoogle Scholar
165.
Camp  SL, Stamou  SC, Stiegel  RM,  et al.  Can timing of tracheal extubation predict improved outcomes after cardiac surgery?  HSR Proc Intensive Care Cardiovasc Anesth. 2009;1(2):39-47.PubMedGoogle Scholar
166.
Camp  SL, Stamou  SC, Stiegel  RM,  et al.  Quality improvement program increases early tracheal extubation rate and decreases pulmonary complications and resource utilization after cardiac surgery.  J Card Surg. 2009;24(4):414-423. doi:10.1111/j.1540-8191.2008.00783.xPubMedGoogle ScholarCrossref
167.
Cheng  DC, Karski  J, Peniston  C,  et al.  Morbidity outcome in early versus conventional tracheal extubation after coronary artery bypass grafting: a prospective randomized controlled trial.  J Thorac Cardiovasc Surg. 1996;112(3):755-764. doi:10.1016/S0022-5223(96)70062-4PubMedGoogle ScholarCrossref
168.
Cheng  DC, Wall  C, Djaiani  G,  et al.  Randomized assessment of resource use in fast-track cardiac surgery 1-year after hospital discharge.  Anesthesiology. 2003;98(3):651-657. doi:10.1097/00000542-200303000-00013PubMedGoogle ScholarCrossref
169.
Guller  U, Anstrom  KJ, Holman  WL, Allman  RM, Sansom  M, Peterson  ED.  Outcomes of early extubation after bypass surgery in the elderly.  Ann Thorac Surg. 2004;77(3):781-788. doi:10.1016/j.athoracsur.2003.09.059PubMedGoogle ScholarCrossref
170.
Konstantakos  AK, Lee  JH.  Optimizing timing of early extubation in coronary artery bypass surgery patients.  Ann Thorac Surg. 2000;69(6):1842-1845. doi:10.1016/S0003-4975(00)01248-0PubMedGoogle ScholarCrossref
171.
London  MJ, Shroyer  AL, Coll  JR,  et al.  Early extubation following cardiac surgery in a veterans population.  Anesthesiology. 1998;88(6):1447-1458. doi:10.1097/00000542-199806000-00006PubMedGoogle ScholarCrossref
172.
Flynn  BC, He  J, Richey  M, Wirtz  K, Daon  E.  Early extubation without increased adverse events in high-risk cardiac surgical patients.  Ann Thorac Surg. 2019;107(2):453-459. doi:10.1016/j.athoracsur.2018.09.034PubMedGoogle ScholarCrossref
173.
Meade  MO, Guyatt  G, Butler  R,  et al.  Trials comparing early vs late extubation following cardiovascular surgery.  Chest. 2001;120(6)(suppl):445S-453S. doi:10.1378/chest.120.6_suppl.445SPubMedGoogle ScholarCrossref
174.
Hu  J, Chen  R, Liu  S, Yu  X, Zou  J, Ding  X.  Global incidence and outcomes of adult patients with acute kidney injury after cardiac surgery: a systematic review and meta-analysis.  J Cardiothorac Vasc Anesth. 2016;30(1):82-89. doi:10.1053/j.jvca.2015.06.017PubMedGoogle ScholarCrossref
175.
Kuitunen  A, Vento  A, Suojaranta-Ylinen  R, Pettilä  V.  Acute renal failure after cardiac surgery: evaluation of the RIFLE classification.  Ann Thorac Surg. 2006;81(2):542-546. doi:10.1016/j.athoracsur.2005.07.047PubMedGoogle ScholarCrossref
176.
Xie  X, Wan  X, Ji  X,  et al.  Reassessment of acute kidney injury after cardiac surgery: a retrospective study.  Intern Med. 2017;56(3):275-282. doi:10.2169/internalmedicine.56.7638PubMedGoogle ScholarCrossref
177.
Kashani  K, Al-Khafaji  A, Ardiles  T,  et al.  Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury.  Crit Care. 2013;17(1):R25. doi:10.1186/cc12503PubMedGoogle ScholarCrossref
178.
Mayer  T, Bolliger  D, Scholz  M,  et al.  Urine biomarkers of tubular renal cell damage for the prediction of acute kidney injury after cardiac surgery: a pilot study.  J Cardiothorac Vasc Anesth. 2017;31(6):2072-2079. doi:10.1053/j.jvca.2017.04.024PubMedGoogle ScholarCrossref
179.
Khwaja  A.  KDIGO clinical practice guidelines for acute kidney injury.  Nephron Clin Pract. 2012;120(4):c179-c184.PubMedGoogle Scholar
180.
Meersch  M, Schmidt  C, Hoffmeier  A,  et al.  Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial.  Intensive Care Med. 2017;43(11):1551-1561. doi:10.1007/s00134-016-4670-3PubMedGoogle ScholarCrossref
181.
Göcze  I, Jauch  D, Götz  M,  et al.  Biomarker-guided intervention to prevent acute kidney injury after major surgery: the prospective randomized BigpAK study.  Ann Surg. 2018;267(6):1013-1020. doi:10.1097/SLA.0000000000002485PubMedGoogle ScholarCrossref
182.
Vanmassenhove  J, Kielstein  J, Jörres  A, Biesen  WV.  Management of patients at risk of acute kidney injury.  Lancet. 2017;389(10084):2139-2151. doi:10.1016/S0140-6736(17)31329-6PubMedGoogle ScholarCrossref
183.
Thomson  R, Meeran  H, Valencia  O, Al-Subaie  N.  Goal-directed therapy after cardiac surgery and the incidence of acute kidney injury.  J Crit Care. 2014;29(6):997-1000. doi:10.1016/j.jcrc.2014.06.011PubMedGoogle ScholarCrossref
184.
Osawa  EA, Rhodes  A, Landoni  G,  et al.  Effect of perioperative goal-directed hemodynamic resuscitation therapy on outcomes following cardiac surgery: a randomized clinical trial and systematic review.  Crit Care Med. 2016;44(4):724-733.PubMedGoogle Scholar
185.
Dalfino  L, Giglio  MT, Puntillo  F, Marucci  M, Brienza  N.  Haemodynamic goal-directed therapy and postoperative infections: earlier is better, a systematic review and meta-analysis.  Crit Care. 2011;15(3):R154. doi:10.1186/cc10284PubMedGoogle ScholarCrossref
186.
Sun  Y, Chai  F, Pan  C, Romeiser  JL, Gan  TJ.  Effect of perioperative goal-directed hemodynamic therapy on postoperative recovery following major abdominal surgery—a systematic review and meta-analysis of randomized controlled trials.  Crit Care. 2017;21(1):141. doi:10.1186/s13054-017-1728-8PubMedGoogle ScholarCrossref
187.
Goepfert  MS, Richter  HP, Zu Eulenburg  C,  et al.  Individually optimized hemodynamic therapy reduces complications and length of stay in the intensive care unit: a prospective, randomized controlled trial.  Anesthesiology. 2013;119(4):824-836. doi:10.1097/ALN.0b013e31829bd770PubMedGoogle ScholarCrossref
188.
Aya  HD, Cecconi  M, Hamilton  M, Rhodes  A.  Goal-directed therapy in cardiac surgery: a systematic review and meta-analysis.  Br J Anaesth. 2013;110(4):510-517. doi:10.1093/bja/aet020PubMedGoogle ScholarCrossref
189.
Baron  DM, Hochrieser  H, Posch  M,  et al; European Surgical Outcomes Study (EuSOS) group for Trials Groups of European Society of Intensive Care Medicine; European Society of Anaesthesiology.  Preoperative anaemia is associated with poor clinical outcome in non-cardiac surgery patients.  Br J Anaesth. 2014;113(3):416-423. doi:10.1093/bja/aeu098PubMedGoogle ScholarCrossref
190.
Muñoz  M, Acheson  AG, Auerbach  M,  et al.  International consensus statement on the peri-operative management of anaemia and iron deficiency.  Anaesthesia. 2017;72(2):233-247. doi:10.1111/anae.13773PubMedGoogle ScholarCrossref
191.
Lannemyr  L, Bragadottir  G, Hjärpe  A, Redfors  B, Ricksten  SE.  Impact of cardiopulmonary bypass flow on renal oxygenation in patients undergoing cardiac operations.  Ann Thorac Surg. 2019;107(2):505-511. doi:10.1016/j.athoracsur.2018.08.085PubMedGoogle ScholarCrossref
192.
Zamani  MM, Najafi  A, Sehat  S,  et al.  The effect of intraoperative lung protective ventilation vs conventional ventilation, on postoperative pulmonary complications after cardiopulmonary bypass.  J Cardiovasc Thorac Res. 2017;9(4):221-228. doi:10.15171/jcvtr.2017.38PubMedGoogle ScholarCrossref
193.
Engelman  RM, Rousou  JA, Flack  JE  III,  et al.  Fast-track recovery of the coronary bypass patient.  Ann Thorac Surg. 1994;58(6):1742-1746. doi:10.1016/0003-4975(94)91674-8PubMedGoogle ScholarCrossref
194.
Kehlet  H.  Multimodal approach to control postoperative pathophysiology and rehabilitation.  Br J Anaesth. 1997;78(5):606-617.PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Topics
State Requirements