Management of Preexisting Diabetes in Pregnancy: A Review | Pregnancy | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

Management of Preexisting Diabetes in PregnancyA Review

Educational Objective
To review the clinical management of pregnant women with diabetes.
1 Credit CME
Key Points

Question  What are evidence-based approaches to managing preexisting diabetes in pregnancy?

Findings  Management considerations vary depending on whether women are in the preconception, pregnancy, or postpartum stage. Optimization of glycemic control prior to pregnancy is a very important step, with a target hemoglobin A1c of less than 6.5% at conception. Insulin is the cornerstone of pharmacotherapy for women with type 1 and type 2 diabetes. Attention to nutrition as well as comorbidities, including obesity, nephropathy, and hypertension, is essential.

Meaning  Management of diabetes in pregnant women requires careful attention to glycemic control, medication regimens, and comorbidities and planning throughout all stages before, during, and after pregnancy.


Importance  The presence of preexisting type 1 or type 2 diabetes in pregnancy increases the risk of adverse maternal and neonatal outcomes, such as preeclampsia, cesarean delivery, preterm delivery, macrosomia, and congenital defects. Approximately 0.9% of the 4 million births in the United States annually are complicated by preexisting diabetes.

Observations  Women with diabetes have increased risk for adverse maternal and neonatal outcomes, and similar risks are present with type 1 and type 2 diabetes. Both forms of diabetes require similar intensity of diabetes care. Preconception planning is very important to avoid unintended pregnancies and to minimize risk of congenital defects. Hemoglobin A1c goals are less than 6.5% at conception and less than 6.0% during pregnancy. It is also critical to screen for and manage comorbid illnesses, such as retinopathy and nephropathy. Medications known to be unsafe in pregnancy, such as angiotensin-converting enzyme inhibitors and statins, should be discontinued. Women with obesity should be screened for obstructive sleep apnea, which is often undiagnosed and can result in poor outcomes. Blood pressure goals must be considered carefully because lower treatment thresholds may be required for women with nephropathy. During pregnancy, continuous glucose monitoring can improve glycemic control and neonatal outcomes in women with type 1 diabetes. Insulin is first-line therapy for all women with preexisting diabetes; injections and insulin pump therapy are both effective approaches. Rates of severe hypoglycemia are increased during pregnancy; therefore, glucagon should be available to the patient and close contacts should be trained in its use. Low-dose aspirin is recommended soon after 12 weeks’ gestation to minimize the risk of preeclampsia. The importance of discussing long-acting reversible contraception before and after pregnancy, to allow for appropriate preconception planning, cannot be overstated.

Conclusions and Relevance  Preexisting diabetes in pregnancy is complex and is associated with significant maternal and neonatal risk. Optimization of glycemic control, medication regimens, and careful attention to comorbid conditions can help mitigate these risks and ensure quality diabetes care before, during, and after pregnancy.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Corresponding Author: Anne L. Peters, MD, USC Clinical Diabetes Program, Keck School of Medicine of University of Southern California, 9033 Wilshire Blvd, Ste 406, Los Angeles, CA 90211 (

Accepted for Publication: April 3, 2019.

Author Contributions: Dr Peters had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Alexopoulos, Peters.

Acquisition, analysis, or interpretation of data: Alexopoulos, Blair.

Drafting of the manuscript: All authors.

Critical revision of the manuscript for important intellectual content: All authors.

Administrative, technical, or material support: Alexopoulos, Blair.

Supervision: Peters.

Conflict of Interest Disclosures: Dr Peters reported grants from AstraZeneca, Dexcom, and MannKind and consulting for Abbott Diabetes Care, Eli Lilly, Livongo, MannKind, Medscape, Novo Nordisk, Omada Health, Sanofi and Zafgen. No other disclosures were reported.

Funding/Support: This work was supported by the National Institutes of Health awards T32DK007012 (Dr Alexopoulos) and T32HL007609 (Dr Blair).

Role of the Funder/Sponsor: The funder had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Disclaimer: The contents of this article are solely the responsibility of the authors and do not necessarily represent the official view of the National Institutes of Health.

Deputy  NP, Kim  SY, Conrey  EJ, Bullard  KM.  Prevalence and changes in preexisting diabetes and gestational diabetes among women who had a live birth - United States, 2012-2016.  MMWR Morb Mortal Wkly Rep. 2018;67(43):1201-1207. doi:10.15585/mmwr.mm6743a2PubMedGoogle ScholarCrossref
Yu  L, Zeng  XL, Cheng  ML,  et al.  Quantitative assessment of the effect of pre-gestational diabetes and risk of adverse maternal, perinatal and neonatal outcomes.  Oncotarget. 2017;8(37):61048-61056. doi:10.18632/oncotarget.17824PubMedGoogle Scholar
Correa  A, Gilboa  SM, Besser  LM,  et al Diabetes mellitus and birth defects.  Am J Obstet Gynecol. 2008;199(3):237.e1-237.e9. doi:10.1016/j.ajog.2008.06.028</jrn>PubMedGoogle Scholar
Centers for Disease Control and Prevention. Maps of trends in diagnosed diabetes and obesity. Published April 2017. Accessed January 27, 2019.
Mayer-Davis  EJ, Dabelea  D, Lawrence  JM.  Incidence trends of type 1 and type 2 diabetes among youths, 2002-2012.  N Engl J Med. 2017;377(3):301. doi:10.1056/NEJMc1706291PubMedGoogle ScholarCrossref
Balsells  M, García-Patterson  A, Gich  I, Corcoy  R.  Maternal and fetal outcome in women with type 2 versus type 1 diabetes mellitus: a systematic review and metaanalysis.  J Clin Endocrinol Metab. 2009;94(11):4284-4291. doi:10.1210/jc.2009-1231PubMedGoogle ScholarCrossref
Holmes  VA, Young  IS, Patterson  CC,  et al; Diabetes and Pre-eclampsia Intervention Trial Study Group.  Optimal glycemic control, pre-eclampsia, and gestational hypertension in women with type 1 diabetes in the diabetes and pre-eclampsia intervention trial.  Diabetes Care. 2011;34(8):1683-1688. doi:10.2337/dc11-0244PubMedGoogle ScholarCrossref
Dabelea  D, Hanson  RL, Lindsay  RS,  et al.  Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships.  Diabetes. 2000;49(12):2208-2211. doi:10.2337/diabetes.49.12.2208PubMedGoogle ScholarCrossref
Lohse  Z, Bytoft  B, Knorr  S,  et al.  Abnormal levels of adipokines in adolescent offspring of women with type 1 diabetes: results from the EPICOM study.  Metabolism. 2017;72:47-56. doi:10.1016/j.metabol.2017.04.002PubMedGoogle ScholarCrossref
Grunnet  LG, Hansen  S, Hjort  L,  et al.  Adiposity, dysmetabolic traits, and earlier onset of female puberty in adolescent offspring of women with gestational diabetes mellitus: a clinical study within the Danish national birth cohort.  Diabetes Care. 2017;40(12):1746-1755. doi:10.2337/dc17-0514PubMedGoogle ScholarCrossref
Vlachová  Z, Bytoft  B, Knorr  S,  et al.  Increased metabolic risk in adolescent offspring of mothers with type 1 diabetes: the EPICOM study.  Diabetologia. 2015;58(7):1454-1463. doi:10.1007/s00125-015-3589-5PubMedGoogle ScholarCrossref
Pitchika  A, Jolink  M, Winkler  C,  et al.  Associations of maternal type 1 diabetes with childhood adiposity and metabolic health in the offspring: a prospective cohort study.  Diabetologia. 2018;61(11):2319-2332. doi:10.1007/s00125-018-4688-xPubMedGoogle ScholarCrossref
Kawasaki  M, Arata  N, Miyazaki  C,  et al.  Obesity and abnormal glucose tolerance in offspring of diabetic mothers: a systematic review and meta-analysis.  PLoS One. 2018;13(1):e0190676. doi:10.1371/journal.pone.0190676PubMedGoogle ScholarCrossref
Knorr  S, Stochholm  K, Vlachová  Z,  et al.  Multisystem morbidity and mortality in offspring of women with type 1 diabetes (the EPICOM study): a register-based prospective cohort study.  Diabetes Care. 2015;38(5):821-826. doi:10.2337/dc14-2907PubMedGoogle ScholarCrossref
Bytoft  B, Knorr  S, Vlachova  Z,  et al.  Long-term cognitive implications of intrauterine hyperglycemia in adolescent offspring of women with type 1 diabetes (the EPICOM Study).  Diabetes Care. 2016;39(8):1356-1363. doi:10.2337/dc16-0168PubMedGoogle ScholarCrossref
Knorr  S, Clausen  TD, Vlachová  Z,  et al.  Academic achievement in primary school in offspring born to mothers with type 1 diabetes (the EPICOM Study): a register-based prospective cohort study.  Diabetes Care. 2015;38(7):1238-1244. doi:10.2337/dc15-0223PubMedGoogle ScholarCrossref
Xiang  AH, Wang  X, Martinez  MP,  et al.  Association of maternal diabetes with autism in offspring.  JAMA. 2015;313(14):1425-1434. doi:10.1001/jama.2015.2707PubMedGoogle ScholarCrossref
Xiang  AH, Wang  X, Martinez  MP,  et al.  Maternal gestational diabetes mellitus, type 1 diabetes, and type 2 diabetes during pregnancy and risk of ADHD in offspring.  Diabetes Care. 2018;41(12):2502-2508. doi:10.2337/dc18-0733PubMedGoogle ScholarCrossref
Finer  LB, Zolna  MR.  Declines in unintended pregnancy in the United States, 2008-2011.  N Engl J Med. 2016;374(9):843-852. doi:10.1056/NEJMsa1506575PubMedGoogle ScholarCrossref
American Diabetes Association.  14. Management of Diabetes in Pregnancy: Standards of Medical Care in Diabetes-2019.  Diabetes Care. 2019;42(suppl 1):S165-S172. doi:10.2337/dc19-S014PubMedGoogle ScholarCrossref
The American College of Obstetricians and Gynecologists (ACOG).  ACOG Practice Bulletin No. 201: Pregestational Diabetes Mellitus.  Obstet Gynecol. 2018;132(6):e228-e248. doi:10.1097/AOG.0000000000002960PubMedGoogle ScholarCrossref
Wu  JP, Moniz  MH, Ursu  AN.  Long-acting reversible contraception-highly efficacious, safe, and underutilized.  JAMA. 2018;320(4):397-398. doi:10.1001/jama.2018.8877PubMedGoogle ScholarCrossref
Driscoll  KA, Corbin  KD, Maahs  DM,  et al; Advancing Care for Type 1 Diabetes and Obesity Network (ACT1ON).  Biopsychosocial aspects of weight management in type 1 diabetes: a review and next steps.  Curr Diab Rep. 2017;17(8):58. doi:10.1007/s11892-017-0892-1PubMedGoogle ScholarCrossref
Zhu  Y, Chen  Y, Feng  Y, Yu  D, Mo  X.  Association between maternal body mass index and congenital heart defects in infants: a meta-analysis.  Congenit Heart Dis. 2018;13(2):271-281. doi:10.1111/chd.12567PubMedGoogle ScholarCrossref
Persson  M, Razaz  N, Edstedt Bonamy  AK, Villamor  E, Cnattingius  S.  Maternal overweight and obesity and risk of congenital heart defects.  J Am Coll Cardiol. 2019;73(1):44-53. doi:10.1016/j.jacc.2018.10.050PubMedGoogle ScholarCrossref
Karalis  DG, Hill  AN, Clifton  S, Wild  RA.  The risks of statin use in pregnancy: a systematic review.  J Clin Lipidol. 2016;10(5):1081-1090. doi:10.1016/j.jacl.2016.07.002PubMedGoogle ScholarCrossref
Shen  H, Liu  X, Chen  Y, He  B, Cheng  W.  Associations of lipid levels during gestation with hypertensive disorders of pregnancy and gestational diabetes mellitus: a prospective longitudinal cohort study.  BMJ Open. 2016;6(12):e013509. doi:10.1136/bmjopen-2016-013509PubMedGoogle ScholarCrossref
Hitti  J, Sienas  L, Walker  S, Benedetti  TJ, Easterling  T.  Contribution of hypertension to severe maternal morbidity.  Am J Obstet Gynecol. 2018;219(4):405.e1-405.e7. doi:10.1016/j.ajog.2018.07.002PubMedGoogle ScholarCrossref
Bourjeily  G, Danilack  VA, Bublitz  MH,  et al.  Obstructive sleep apnea in pregnancy is associated with adverse maternal outcomes: a national cohort.  Sleep Med. 2017;38:50-57. doi:10.1016/j.sleep.2017.06.035PubMedGoogle ScholarCrossref
Liu  L, Su  G, Wang  S, Zhu  B.  The prevalence of obstructive sleep apnea and its association with pregnancy-related health outcomes: a systematic review and meta-analysis  [published September 25, 2018].  Sleep Breath. doi:10.1007/s11325-018-1714-7PubMedGoogle Scholar
Lecomte  P, Criniere  L, Fagot-Campagna  A, Druet  C, Fuhrman  C.  Underdiagnosis of obstructive sleep apnoea syndrome in patients with type 2 diabetes in France: ENTRED 2007.  Diabetes Metab. 2013;39(2):139-147. doi:10.1016/j.diabet.2012.10.004PubMedGoogle ScholarCrossref
Farabi  SS, Barbour  LA, Heiss  K, Hirsch  NM, Dunn  E, Hernandez  TL.  Obstructive sleep apnea is associated with altered glycemic patterns in pregnant women with obesity  [published February 22, 2019].  J Clin Endocrinol Metab. doi:10.1210/jc.2019-00159PubMedGoogle Scholar
Chirakalwasan  N, Amnakkittikul  S, Wanitcharoenkul  E,  et al.  Continuous positive airway pressure therapy in gestational diabetes with obstructive sleep apnea: a randomized controlled trial.  J Clin Sleep Med. 2018;14(3):327-336. doi:10.5664/jcsm.6972PubMedGoogle ScholarCrossref
Wing  RR, Lang  W, Wadden  TA,  et al; Look AHEAD Research Group.  Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes.  Diabetes Care. 2011;34(7):1481-1486. doi:10.2337/dc10-2415PubMedGoogle ScholarCrossref
Bibbins-Domingo  K, Grossman  DC, Curry  SJ,  et al; US Preventive Services Task Force.  Folic acid supplementation for the prevention of neural tube defects: US Preventive Services Task Force recommendation statement.  JAMA. 2017;317(2):183-189. doi:10.1001/jama.2016.19438PubMedGoogle ScholarCrossref
Nutrition during pregnancy. The American College of Obstetricians and Gynecologists website. Published February 2018. Accessed January 28, 2019.
ACOG Committee on Obstetric Practice.  ACOG Committee Opinion No. 495: vitamin D: screening and supplementation during pregnancy.  Obstet Gynecol. 2011;118(1):197-198. doi:10.1097/AOG.0b013e318227f06bPubMedGoogle ScholarCrossref
Feldman-Billard  S, Larger  É, Massin  P; Standards for screening and surveillance of ocular complications in people with diabetes SFD study group.  Early worsening of diabetic retinopathy after rapid improvement of blood glucose control in patients with diabetes.  Diabetes Metab. 2018;44(1):4-14. doi:10.1016/j.diabet.2017.10.014PubMedGoogle ScholarCrossref
Vestgaard  M, Sommer  MC, Ringholm  L, Damm  P, Mathiesen  ER.  Prediction of preeclampsia in type 1 diabetes in early pregnancy by clinical predictors: a systematic review.  J Matern Fetal Neonatal Med. 2018;31(14):1933-1939. doi:10.1080/14767058.2017.1331429PubMedGoogle ScholarCrossref
Zhang  JJ, Ma  XX, Hao  L, Liu  LJ, Lv  JC, Zhang  H.  A systematic review and meta-analysis of outcomes of pregnancy in CKD and CKD outcomes in pregnancy.  Clin J Am Soc Nephrol. 2015;10(11):1964-1978. doi:10.2215/CJN.09250914PubMedGoogle ScholarCrossref
Shah  S, Venkatesan  RL, Gupta  A,  et al.  Pregnancy outcomes in women with kidney transplant: metaanalysis and systematic review.  BMC Nephrol. 2019;20(1):24. doi:10.1186/s12882-019-1213-5PubMedGoogle ScholarCrossref
Magee  LA, von Dadelszen  P, Rey  E,  et al.  Less-tight versus tight control of hypertension in pregnancy.  N Engl J Med. 2015;372(5):407-417. doi:10.1056/NEJMoa1404595PubMedGoogle ScholarCrossref
Magee  LA, von Dadelszen  P, Singer  J,  et al; CHIPS Study Group.  The CHIPS randomized controlled trial (control of hypertension in pregnancy study): is severe hypertension just an elevated blood pressure?  Hypertension. 2016;68(5):1153-1159. doi:10.1161/HYPERTENSIONAHA.116.07862PubMedGoogle ScholarCrossref
Pels  A, Mol  BWJ, Singer  J,  et al; CHIPS Study Group.  Influence of gestational age at initiation of antihypertensive therapy: secondary analysis of CHIPS trial data (control of hypertension in pregnancy study).  Hypertension. 2018;71(6):1170-1177. doi:10.1161/HYPERTENSIONAHA.117.10689PubMedGoogle ScholarCrossref
Butalia  S, Audibert  F, Côté  AM,  et al; Hypertension Canada.  Hypertension Canada’s 2018 Guidelines for the management of hypertension in pregnancy.  Can J Cardiol. 2018;34(5):526-531. doi:10.1016/j.cjca.2018.02.021PubMedGoogle ScholarCrossref
The National Institute for Health and Care Excellence (NICE). Hypertension in pregnancy: diagnosis and management. Published August 2010. Last updated January 2011. Accessed January 29, 2019.
Duley  L, Meher  S, Jones  L.  Drugs for treatment of very high blood pressure during pregnancy.  Cochrane Database Syst Rev. 2013;(7):CD001449.PubMedGoogle Scholar
The American College of Obstetricians and Gynecologoists (ACOG).  ACOG Practice Bulletin No. 203: chronic hypertension in pregnancy.  Obstet Gynecol. 2019;133(1):e26-e50. doi:10.1097/AOG.0000000000003020PubMedGoogle ScholarCrossref
Bakris  GL, Weir  MR, Secic  M, Campbell  B, Weis-McNulty  A.  Differential effects of calcium antagonist subclasses on markers of nephropathy progression.  Kidney Int. 2004;65(6):1991-2002. doi:10.1111/j.1523-1755.2004.00620.xPubMedGoogle ScholarCrossref
Khandelwal  M, Kumanova  M, Gaughan  JP, Reece  EA.  Role of diltiazem in pregnant women with chronic renal disease.  J Matern Fetal Neonatal Med. 2002;12(6):408-412. doi:10.1080/jmf.12.6.408.412PubMedGoogle ScholarCrossref
Côté  AM, Sauvé  N.  The management challenges of non-preeclampsia-related nephrotic syndrome in pregnancy.  Obstet Med. 2011;4(4):133-139. doi:10.1258/om.2011.110001PubMedGoogle ScholarCrossref
Roberge  S, Nicolaides  K, Demers  S, Hyett  J, Chaillet  N, Bujold  E.  The role of aspirin dose on the prevention of preeclampsia and fetal growth restriction: systematic review and meta-analysis.  Am J Obstet Gynecol. 2017;216(2):110-120.e6. doi:10.1016/j.ajog.2016.09.076PubMedGoogle ScholarCrossref
Roberge  S, Bujold  E, Nicolaides  KH.  Aspirin for the prevention of preterm and term preeclampsia: systematic review and metaanalysis.  Am J Obstet Gynecol. 2018;218(3):287-293.e1. doi:10.1016/j.ajog.2017PubMedGoogle ScholarCrossref
Alexander  EK, Pearce  EN, Brent  GA,  et al.  2017 Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and the postpartum.  Thyroid. 2017;27(3):315-389. doi:10.1089/thy.2016.0457PubMedGoogle ScholarCrossref
Murphy  HR, Rayman  G, Lewis  K,  et al.  Effectiveness of continuous glucose monitoring in pregnant women with diabetes: randomised clinical trial.  BMJ. 2008;337:a1680. doi:10.1136/bmj.a1680PubMedGoogle ScholarCrossref
Feig  DS, Donovan  LE, Corcoy  R,  et al; CONCEPTT Collaborative Group.  Continuous glucose monitoring in pregnant women with type 1 diabetes (CONCEPTT): a multicentre international randomised controlled trial.  Lancet. 2017;390(10110):2347-2359. doi:10.1016/S0140-6736(17)32400-5PubMedGoogle ScholarCrossref
Secher  AL, Ringholm  L, Andersen  HU, Damm  P, Mathiesen  ER.  The effect of real-time continuous glucose monitoring in pregnant women with diabetes: a randomized controlled trial.  Diabetes Care. 2013;36(7):1877-1883. doi:10.2337/dc12-2360PubMedGoogle ScholarCrossref
Voormolen  DN, DeVries  JH, Sanson  RME,  et al.  Continuous glucose monitoring during diabetic pregnancy (GlucoMOMS): a multicentre randomized controlled trial.  Diabetes Obes Metab. 2018;20(8):1894-1902. doi:10.1111/dom.13310PubMedGoogle ScholarCrossref
Basu  A, Veettil  S, Dyer  R, Peyser  T, Basu  R.  Direct evidence of acetaminophen interference with subcutaneous glucose sensing in humans: a pilot study.  Diabetes Technol Ther. 2016;18(suppl 2):S243-S247. doi:10.1089/dia.2015.0410PubMedGoogle ScholarCrossref
Nielsen  LR, Pedersen-Bjergaard  U, Thorsteinsson  B, Johansen  M, Damm  P, Mathiesen  ER.  Hypoglycemia in pregnant women with type 1 diabetes: predictors and role of metabolic control.  Diabetes Care. 2008;31(1):9-14. doi:10.2337/dc07-1066PubMedGoogle ScholarCrossref
Skajaa  GO, Fuglsang  J, Kampmann  U, Ovesen  PG.  Parity increases insulin requirements in pregnant women with type 1 diabetes.  J Clin Endocrinol Metab. 2018;103(6):2302-2308. doi:10.1210/jc.2018-00094PubMedGoogle ScholarCrossref
Sibai  BM, Viteri  OA.  Diabetic ketoacidosis in pregnancy.  Obstet Gynecol. 2014;123(1):167-178. doi:10.1097/AOG.0000000000000060PubMedGoogle ScholarCrossref
Kamalakannan  D, Baskar  V, Barton  DM, Abdu  TA.  Diabetic ketoacidosis in pregnancy.  Postgrad Med J. 2003;79(934):454-457. doi:10.1136/pmj.79.934.454PubMedGoogle ScholarCrossref
Cheung  KL, Lafayette  RA.  Renal physiology of pregnancy.  Adv Chronic Kidney Dis. 2013;20(3):209-214. doi:10.1053/j.ackd.2013.01.012PubMedGoogle ScholarCrossref
Modi  A, Agrawal  A, Morgan  F.  Euglycemic diabetic ketoacidosis: a review.  Curr Diabetes Rev. 2017;13(3):315-321. doi:10.2174/1573399812666160421121307PubMedGoogle ScholarCrossref
Kominiarek  MA, Saade  G, Mele  L,  et al; Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Maternal-Fetal Medicine Units (MFMU) Network.  Association between gestational weight gain and perinatal outcomes.  Obstet Gynecol. 2018;132(4):875-881. doi:10.1097/AOG.0000000000002854PubMedGoogle ScholarCrossref
Lambert  K, Holt  RI.  The use of insulin analogues in pregnancy.  Diabetes Obes Metab. 2013;15(10):888-900. doi:10.1111/dom.12098PubMedGoogle ScholarCrossref
Hedrington  MS, Davis  SN.  The care of pregestational and gestational diabetes and drug metabolism considerations.  Expert Opin Drug Metab Toxicol. 2017;13(10):1029-1038. doi:10.1080/17425255.2017.1372423PubMedGoogle ScholarCrossref
Farrar  D, Tuffnell  DJ, West  J.  Continuous subcutaneous insulin infusion versus multiple daily injections of insulin for pregnant women with diabetes.  Cochrane Database Syst Rev. 2007;(3):CD005542.PubMedGoogle Scholar
Feig  DS, Corcoy  R, Donovan  LE,  et al; CONCEPTT Collaborative Group.  Pumps or multiple daily injections in pregnancy involving type 1 diabetes: a prespecified analysis of the CONCEPTT randomized trial.  Diabetes Care. 2018;41(12):2471-2479. doi:10.2337/dc18-1437PubMedGoogle ScholarCrossref
Messer  LH, Forlenza  GP, Sherr  JL,  et al.  Optimizing hybrid closed-loop therapy in adolescents and emerging adults using the MiniMed 670G System.  Diabetes Care. 2018;41(4):789-796. doi:10.2337/dc17-1682PubMedGoogle ScholarCrossref
Forlenza  GP, Li  Z, Buckingham  BA,  et al.  Predictive low-glucose suspend reduces hypoglycemia in adults, adolescents, and children with type 1 diabetes in an at-home randomized crossover study: results of the PROLOG trial.  Diabetes Care. 2018;41(10):2155-2161. doi:10.2337/dc18-0771PubMedGoogle ScholarCrossref
Stewart  ZA, Wilinska  ME, Hartnell  S,  et al.  Day-and-night closed-loop insulin delivery in a broad population of pregnant women with type 1 diabetes: a randomized controlled crossover trial.  Diabetes Care. 2018;41(7):1391-1399. doi:10.2337/dc17-2534PubMedGoogle ScholarCrossref
Murphy  HR, Kumareswaran  K, Elleri  D,  et al.  Safety and efficacy of 24-h closed-loop insulin delivery in well-controlled pregnant women with type 1 diabetes: a randomized crossover case series.  Diabetes Care. 2011;34(12):2527-2529. doi:10.2337/dc11-1430PubMedGoogle ScholarCrossref
Murphy  HR, Elleri  D, Allen  JM,  et al.  Closed-loop insulin delivery during pregnancy complicated by type 1 diabetes.  Diabetes Care. 2011;34(2):406-411. doi:10.2337/dc10-1796PubMedGoogle ScholarCrossref
Stewart  ZA, Wilinska  ME, Hartnell  S,  et al.  Closed-loop insulin delivery during pregnancy in women with type 1 diabetes.  N Engl J Med. 2016;375(7):644-654. doi:10.1056/NEJMoa1602494PubMedGoogle ScholarCrossref
Barbour  LA, Scifres  C, Valent  AM,  et al.  A cautionary response to SMFM statement: pharmacological treatment of gestational diabetes.  Am J Obstet Gynecol. 2018;219(4):367.e1-367.e7. doi:10.1016/j.ajog.2018.06.013PubMedGoogle ScholarCrossref
Rowan  JA, Rush  EC, Obolonkin  V, Battin  M, Wouldes  T, Hague  WM.  Metformin in gestational diabetes: the offspring follow-up (MiG TOFU): body composition at 2 years of age.  Diabetes Care. 2011;34(10):2279-2284. doi:10.2337/dc11-0660PubMedGoogle ScholarCrossref
Ainuddin  JA, Karim  N, Zaheer  S, Ali  SS, Hasan  AA.  Metformin treatment in type 2 diabetes in pregnancy: an active controlled, parallel-group, randomized, open label study in patients with type 2 diabetes in pregnancy.  J Diabetes Res. 2015;2015:325851. doi:10.1155/2015/325851PubMedGoogle ScholarCrossref
Hanem  LGE, Stridsklev  S, Júlíusson  PB,  et al.  Metformin use in PCOS pregnancies increases the risk of offspring overweight at 4 years of age: follow-up of two RCTs.  J Clin Endocrinol Metab. 2018;103(4):1612-1621. doi:10.1210/jc.2017-02419PubMedGoogle ScholarCrossref
Feig  DS, Murphy  K, Asztalos  E,  et al; MiTy Collaborative Group.  Metformin in women with type 2 diabetes in pregnancy (MiTy): a multi-center randomized controlled trial.  BMC Pregnancy Childbirth. 2016;16(1):173. doi:10.1186/s12884-016-0954-4PubMedGoogle ScholarCrossref
Sénat  MV, Affres  H, Letourneau  A,  et al; Groupe de Recherche en Obstétrique et Gynécologie (GROG).  Effect of glyburide vs subcutaneous insulin on perinatal complications among women with gestational diabetes: a randomized clinical trial.  JAMA. 2018;319(17):1773-1780. doi:10.1001/jama.2018.4072PubMedGoogle ScholarCrossref
Hemmingsen  B, Schroll  JB, Wetterslev  J,  et al.  Sulfonylurea versus metformin monotherapy in patients with type 2 diabetes: a Cochrane systematic review and meta-analysis of randomized clinical trials and trial sequential analysis.  CMAJ Open. 2014;2(3):E162-E175. doi:10.9778/cmajo.20130073PubMedGoogle ScholarCrossref
Hiles  RA, Bawdon  RE, Petrella  EM.  Ex vivo human placental transfer of the peptides pramlintide and exenatide (synthetic exendin-4).  Hum Exp Toxicol. 2003;22(12):623-628. doi:10.1191/0960327103ht402oaPubMedGoogle ScholarCrossref
Kaul  P, Bowker  SL, Savu  A, Yeung  RO, Donovan  LE, Ryan  EA.  Association between maternal diabetes, being large for gestational age and breast-feeding on being overweight or obese in childhood.  Diabetologia. 2019;62(2):249-258. doi:10.1007/s00125-018-4758-0PubMedGoogle ScholarCrossref
Martens  PJ, Shafer  LA, Dean  HJ,  et al.  Breastfeeding initiation associated with reduced incidence of diabetes in mothers and offspring.  Obstet Gynecol. 2016;128(5):1095-1104. doi:10.1097/AOG.0000000000001689PubMedGoogle ScholarCrossref
Kiley  JW, Hammond  C, Niznik  C, Rademaker  A, Liu  D, Shulman  LP.  Postpartum glucose tolerance in women with gestational diabetes using levonorgestrel intrauterine contraception.  Contraception. 2015;91(1):67-70. doi:10.1016/j.contraception.2014.08.004PubMedGoogle ScholarCrossref
Heller  R, Cameron  S, Briggs  R, Forson  N, Glasier  A.  Postpartum contraception: a missed opportunity to prevent unintended pregnancy and short inter-pregnancy intervals.  J Fam Plann Reprod Health Care. 2016;42(2):93-98. doi:10.1136/jfprhc-2014-101165PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience

Lookup An Activity



My Saved Searches

You currently have no searches saved.

With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right