[Skip to Content]
[Skip to Content Landing]

Association of Intraocular Cataract Lens Replacement With Circadian Rhythms, Cognitive Function, and Sleep in Older Adults

Educational Objective
To test whether intraocular cataract lens (IOL) replacement (blue blocking [BB] or ultraviolet [UV] only blocking) in older patients with previous cataract is associated with the beneficial light effects on the circadian system, cognition, and sleep regulation.
1 Credit CME
Key Points

Question  What is the association of intraocular cataract lens replacement with circadian rhythms, cognitive function, and sleep?

Findings  In this cross-sectional study of 13 patients with previous cataract and 16 healthy controls, intraocular cataract lens replacement significantly increased melatonin sensitivity to light by approximately 45%, ultraviolet lens improved cognitive function by approximately 70%, and sleep function by approximately 50% compared with blue-blocking lens.

Meaning  These in-laboratory empirical findings suggest that optimizing the spectral lens transmission in patients with cataract may be associated with better circadian, cognitive, and sleep function.

Abstract

Importance  Cataract is associated with a progressive decline in light transmission due to the clouding and yellowing of the natural crystalline lens. While the downstream effects of aging lenses include long-term disruption of circadian rhythms, cognitive function, and sleep regulation, it remains unknown whether there is an association of intraocular cataract lens (IOLs) replacement with circadian rhythms, cognition, and sleep.

Objective  To test whether IOL replacement (blue blocking [BB] or ultraviolet [UV] only blocking) in older patients with previous cataract is associated with the beneficial light effects on the circadian system, cognition, and sleep regulation.

Design, Setting, and Participants  Cross-sectional study at the Centre for Chronobiology, University of Basel in Switzerland from February 2012 to April 2014, analyzed between June 2012 and September 2018. Sixteen healthy older controls and 13 patients with previous cataract and IOL replacement participated without medication and no medical and sleep comorbidities.

Exposures  Three and a half hours of prior light control (dim-dark adaptation), followed by 2 hours of evening blue-enriched (6500 K) or non–blue-enriched light exposure (3000 K and 2500 K), 30 minutes in dim post–light exposure, 8 hours of sleep opportunity, and 2 hours of morning dim light following sleep.

Main Outcomes and Measures  Salivary melatonin, cognitive tests, and sleep structure and electroencephalographic activity to test the association of IOLs with markers of circadian rhythmicity, cognitive performance, and sleep regulation, respectively.

Results  The participants included 16 healthy older controls with a mean (standard error of the mean [SEM]) of 63.6 (5.6) years; 8 women and 13 patients with previous cataract (mean [SEM] age, 69.9 [5.2] years; 10 women); 5 patients had UV IOLs and 8 had BB IOLs. Patients with previous cataract and IOLs had an attenuated increase in melatonin levels during light exposure (mean [SEM] increase in the BB group: 23.3% [2.6%] and in the UV lens group: 19.1% [2.1%]) than controls (mean [SEM] increase, 48.8% [5.2%]) (difference between means, 27.7; 95% CI, 15.4%-41.7%; P < .001). Cognitive function, indexed by sustained attention performance, was improved in patients with UV lens (mean [SEM], 276.9 [11.1] milliseconds) compared with patients with BB lens (mean [SEM], 348.3 [17.8] milliseconds) (difference between means, 71.4; 95% CI, 29.5%-113.1%; P = .002) during light exposure and in the morning after sleep. Patients with UV lens had increased slow-wave sleep (mean [SEM] increase, 13% [3.4%]) compared with controls (mean [SEM] increase, 5.2% [0.8%]) (percentage of total sleep time; difference between means, 7.9; 95% CI, 2.4%-13.4%; P = .02) and frontal non–rapid eye movement slow-wave activity (0.75-4.5 Hz) during the first sleep cycle (mean [SEM], 79.9 [13.6] μV2/Hz) compared with patients with BB lens (mean [SEM], 53.2 [10.7] μV2/Hz) (difference between means, 26.7; 95% CI, 9.2-48.9; P = .03).

Conclusions and Relevance  These in-laboratory empirical findings suggest that optimizing the spectral lens transmission in patients with previous cataract may minimize the adverse age-related effects on circadian rhythms, cognition, and sleep.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ from JAMA Network is your new home for CME and MOC from a source you trust. Earn AMA PRA Category 1 CME Credit™ from relevant articles, audio, and Clinical Challenge image quizzes, explore interactives and videos, and – depending on your specialty or state – have your MOC points automatically transferred to the relevant board. Learn more about CME

Article Information

Corresponding authors: Sarah L. Chellappa, MD, PhD, Division of Sleep Medicine, Harvard Medical School, 221 Longwood Ave BL 039C, Boston, MA, 02115 (schellappa@bwh.harvard.edu); Christian Cajochen, PhD, Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Wilhelm Kleinstrasse 27, CH-4002 Basel, Switzerland (christian.cajochen@upkbs.ch).

Accepted for Publication: March 29, 2019.

Published Online: May 23, 2019. doi:10.1001/jamaophthalmol.2019.1406

Author Contributions: Drs Chellappa and Cajochen had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Chellappa, Bromundt, Frey, Schlote, Goldblum, Cajochen.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Chellappa.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Chellappa, Cajochen.

Obtained funding: Steinemann, Cajochen.

Administrative, technical, or material support: Frey, Goldblum, Cajochen.

Supervision: Goldblum, Cajochen.

Conflict of Interest Disclosures: Drs Cajochen, Bromundt, and Frey report grants from AXA Foundation and the Swiss Federal Office for Public Health during the conduct of the study. No other disclosures were reported.

Funding/Support: This study was financially supported by the AXA Foundation (https://www.axa-research.org/en/project/christian-cajochen) and by the Swiss Federal Office for Public Health (Consumer Protection Directorate, 11.007647).

Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Additional Contributions: We thank research volunteers and the technical staff at the Center for Chronobiology, University of Basel. In particular, we thank Roland Steiner, Ing. HTL (University of Basel), for performing the transmission spectra of the lenses. Dr Steiner was not compensated for this work.

References
1.
Bourne  RRA, Flaxman  SR, Braithwaite  T,  et al; Vision Loss Expert Group.  Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis.  Lancet Glob Health. 2017;5(9):e888-e897. doi:10.1016/S2214-109X(17)30293-0PubMedGoogle ScholarCrossref
2.
Pescosolido  N, Barbato  A, Giannotti  R, Komaiha  C, Lenarduzzi  F.  Age-related changes in the kinetics of human lenses: prevention of the cataract.  Int J Ophthalmol. 2016;9(10):1506-1517.PubMedGoogle Scholar
3.
Xu  J, Pokorny  J, Smith  VC.  Optical density of the human lens.  J Opt Soc Am A Opt Image Sci Vis. 1997;14(5):953-960. doi:10.1364/JOSAA.14.000953PubMedGoogle ScholarCrossref
4.
Daneault  V, Hébert  M, Albouy  G,  et al.  Aging reduces the stimulating effect of blue light on cognitive brain functions.  Sleep. 2014;37(1):85-96. doi:10.5665/sleep.3314PubMedGoogle ScholarCrossref
5.
Gabel  V, Reichert  CF, Maire  M,  et al Differential impact in young and older individuals of blue-enriched white light on circadian physiology and alertness during sustained wakefulness.  Sci Rep. 2017;7(1):7620. doi:10.1038/s41598-017-07060-8Google ScholarCrossref
6.
Mishima  K, Okawa  M, Shimizu  T, Hishikawa  Y.  Diminished melatonin secretion in the elderly caused by insufficient environmental illumination.  J Clin Endocrinol Metab. 2001;86(1):129-134.PubMedGoogle Scholar
7.
World Medical Association.  World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects.  JAMA. 2013;310(20):2191-2194. doi:10.1001/jama.2013.281053.Google ScholarCrossref
8.
Buysse  DJ, Reynolds  CF  III, Monk  TH, Berman  SR, Kupfer  DJ.  The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research.  Psychiatry Res. 1989;28(2):193-213. doi:10.1016/0165-1781(89)90047-4PubMedGoogle ScholarCrossref
9.
Roenneberg  T, Wirz-Justice  A, Merrow  M.  Life between clocks: daily temporal patterns of human chronotypes.  J Biol Rhythms. 2003;18(1):80-90. doi:10.1177/0748730402239679PubMedGoogle ScholarCrossref
10.
Chellappa  SL, Ly  JQ, Meyer  C,  et al.  Photic memory for executive brain responses.  Proc Natl Acad Sci U S A. 2014;111(16):6087-6091. doi:10.1073/pnas.1320005111PubMedGoogle ScholarCrossref
11.
Cajochen  C, Frey  S, Anders  D,  et al.  Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance.  J Appl Physiol (1985). 2011;110(5):1432-1438. doi:10.1152/japplphysiol.00165.2011PubMedGoogle ScholarCrossref
12.
Chellappa  SL, Steiner  R, Oelhafen  P,  et al.  Acute exposure to evening blue-enriched light impacts on human sleep.  J Sleep Res. 2013;22(5):573-580. doi:10.1111/jsr.12050PubMedGoogle ScholarCrossref
13.
Münch  M, Kobialka  S, Steiner  R, Oelhafen  P, Wirz-Justice  A, Cajochen  C.  Wavelength-dependent effects of evening light exposure on sleep architecture and sleep EEG power density in men.  Am J Physiol Regul Integr Comp Physiol. 2006;290(5):r1421-r1428. doi:10.1152/ajpregu.00478.2005PubMedGoogle ScholarCrossref
14.
Skene  DJ, Arendt  J.  Human circadian rhythms: physiological and therapeutic relevance of light and melatonin.  Ann Clin Biochem. 2006;43(Pt 5):344-353. doi:10.1258/000456306778520142PubMedGoogle ScholarCrossref
15.
Aeschbach  D, Borbély  AA.  All-night dynamics of the human sleep EEG.  J Sleep Res. 1993;2(2):70-81. doi:10.1111/j.1365-2869.1993.tb00065.xPubMedGoogle ScholarCrossref
16.
Dinges  DF, Pack  F, Williams  K,  et al.  Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4-5 hours per night.  Sleep. 1997;20(4):267-277.PubMedGoogle Scholar
17.
Graw  P, Kräuchi  K, Knoblauch  V, Wirz-Justice  A, Cajochen  C.  Circadian and wake-dependent modulation of fastest and slowest reaction times during the psychomotor vigilance task.  Physiol Behav. 2004;80(5):695-701. doi:10.1016/j.physbeh.2003.12.004PubMedGoogle ScholarCrossref
18.
Rechtschaffen  A, Kales  A.  A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Bethesda, MD: US Dept of Health, Education and Welfare, Public Health Service; 1968.
19.
Feinberg  I, Floyd  TC.  Systematic trends across the night in human sleep cycles.  Psychophysiology. 1979;16(3):283-291. doi:10.1111/j.1469-8986.1979.tb02991.xPubMedGoogle ScholarCrossref
20.
Ludbrook  J.  Multiple comparison procedures updated.  Clin Exp Pharmacol Physiol. 1998;25(12):1032-1037. doi:10.1111/j.1440-1681.1998.tb02179.xPubMedGoogle ScholarCrossref
21.
Chellappa  SL, Steiner  R, Oelhafen  P, Cajochen  C.  Sex differences in light sensitivity impact on brightness perception, vigilant attention and sleep in humans.  Sci Rep. 2017;7(1):14215. doi:10.1038/s41598-017-13973-1Google ScholarCrossref
22.
Provencio  I, Rodriguez  IR, Jiang  G, Hayes  WP, Moreira  EF, Rollag  MD.  A novel human opsin in the inner retina.  J Neurosci. 2000;20(2):600-605. doi:10.1523/JNEUROSCI.20-02-00600.2000PubMedGoogle ScholarCrossref
23.
Charman  WN.  Age, lens transmittance, and the possible effects of light on melatonin suppression.  Ophthalmic Physiol Opt. 2003;23(2):181-187. doi:10.1046/j.1475-1313.2003.00105.xPubMedGoogle ScholarCrossref
24.
Schmoll  C, Tendo  C, Aspinall  P, Dhillon  B.  Reaction time as a measure of enhanced blue-light mediated cognitive function following cataract surgery.  Br J Ophthalmol. 2011;95(12):1656-1659. doi:10.1136/bjophthalmol-2011-300677PubMedGoogle ScholarCrossref
25.
Riemersma-van der Lek  RF, Swaab  DF, Twisk  J, Hol  EM, Hoogendijk  WJ, Van Someren  EJ.  Effect of bright light and melatonin on cognitive and noncognitive function in elderly residents of group care facilities: a randomized controlled trial.  JAMA. 2008;299(22):2642-2655. doi:10.1001/jama.299.22.2642PubMedGoogle ScholarCrossref
26.
Daneault  V, Dumont  M, Massé  É,  et al.  Plasticity in the sensitivity to light in aging: decreased non-visual impact of light on cognitive brain activity in older individuals but no impact of lens replacement.  Front Physiol. 2018;9(1557):1557. doi:10.3389/fphys.2018.01557PubMedGoogle ScholarCrossref
27.
Kessel  L, Siganos  G, Jørgensen  T, Larsen  M.  Sleep disturbances are related to decreased transmission of blue light to the retina caused by lens yellowing.  Sleep. 2011;34(9):1215-1219. doi:10.5665/SLEEP.1242PubMedGoogle ScholarCrossref
28.
Münch  M, Ladaique  M, Roemer  S, Hashemi  K, Kawasaki  A.  Melanopsin-mediated acute light responses measured in winter and in summer: seasonal variations in adults with and without cataracts.  Front Neurol. 2017;8(464):464. doi:10.3389/fneur.2017.00464PubMedGoogle ScholarCrossref
29.
Dijk  DJ, Duffy  JF, Czeisler  CA.  Age-related increase in awakenings: impaired consolidation of nonREM sleep at all circadian phases.  Sleep. 2001;24(5):565-577. doi:10.1093/sleep/24.5.565PubMedGoogle ScholarCrossref
30.
Ham  WT  Jr, Mueller  HA, Sliney  DH.  Retinal sensitivity to damage from short wavelength light.  Nature. 1976;260(5547):153-155. doi:10.1038/260153a0PubMedGoogle ScholarCrossref
31.
Noell  WK.  Possible mechanisms of photoreceptor damage by light in mammalian eyes.  Vision Res. 1980;20(12):1163-1171. doi:10.1016/0042-6989(80)90055-3PubMedGoogle ScholarCrossref
32.
Davison  JA, Patel  AS.  Light normalizing intraocular lenses.  Int Ophthalmol Clin. 2005;45(1):55-106.PubMedGoogle Scholar
33.
Neumaier-Ammerer  B, Felke  S, Hagen  S,  et al.  Comparison of visual performance with blue light-filtering and ultraviolet light-filtering intraocular lenses.  J Cataract Refract Surg. 2010;36(12):2073-2079. doi:10.1016/j.jcrs.2010.06.069PubMedGoogle ScholarCrossref
34.
Hayashi  K, Hayashi  H.  Visual function in patients with yellow tinted intraocular lenses compared with vision in patients with non-tinted intraocular lenses.  Br J Ophthalmol. 2006;90(8):1019-1023. doi:10.1136/bjo.2006.090712PubMedGoogle ScholarCrossref
35.
Kara-Junior  N, Espindola  RF, Gomes  BA, Ventura  B, Smadja  D, Santhiago  MR.  Effects of blue light-filtering intraocular lenses on the macula, contrast sensitivity, and color vision after a long-term follow-up.  J Cataract Refract Surg. 2011;37(12):2115-2119. doi:10.1016/j.jcrs.2011.06.024PubMedGoogle ScholarCrossref
36.
Schmack  I, Schimpf  M, Stolzenberg  A, Conrad-Hengerer  I, Hengerer  FH, Dick  HB.  Visual quality assessment in patients with orange-tinted blue light-filtering and clear ultraviolet light-filtering intraocular lenses.  J Cataract Refract Surg. 2012;38(5):823-832. doi:10.1016/j.jcrs.2011.12.028PubMedGoogle ScholarCrossref
37.
Cuthbertson  FM, Peirson  SN, Wulff  K, Foster  RG, Downes  SM.  Blue light-filtering intraocular lenses: review of potential benefits and side effects.  J Cataract Refract Surg. 2009;35(7):1281-1297. doi:10.1016/j.jcrs.2009.04.017PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Topics
State Requirements