[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.153.73.72. Please contact the publisher to request reinstatement.
[Skip to Content Landing]

Associations of Amyloid, Tau, and Neurodegeneration Biomarker Profiles With Rates of Memory Decline Among Individuals Without Dementia

Educational Objective
To understand that combinations of biomarkers may be associated with memory decline in older adults.
1 Credit CME
Key Points

Question  Do rates of memory decline vary by the amyloid, tau, and neurodegeneration biomarker profiles described in the recent National Institute on Aging–Alzheimer’s Association Research Framework?

Findings  In this longitudinal cohort study that included 480 participants without dementia, the addition of amyloid positron emission tomography, tau positron emission tomography, and magnetic resonance imaging cortical thickness to a model that included clinical and genetic variables resulted in a small but statistically significant improvement in predictive accuracy for memory decline (R2, 0.31 vs 0.26).

Meaning  Amyloid, tau, and neurodegeneration biomarkers may provide incremental prognostic value in addition to more readily available clinical and genetic variables, but the clinical importance of this difference is uncertain.

Abstract

Importance  A National Institute on Aging and Alzheimer’s Association workgroup proposed a research framework for Alzheimer disease in which biomarker classification of research participants is labeled AT(N) for amyloid, tau, and neurodegeneration biomarkers.

Objective  To determine the associations between AT(N) biomarker profiles and memory decline in a population-based cohort of individuals without dementia age 60 years or older, and to determine whether biomarkers provide incremental prognostic value beyond more readily available clinical and genetic information.

Design, Setting, and Participants  Population-based cohort study of cognitive aging in Olmsted County, Minnesota, that included 480 nondemented Mayo Clinic Study of Aging participants who had a clinical evaluation and amyloid positron emission tomography (PET) (A), tau PET (T), and magnetic resonance imaging (MRI) cortical thickness (N) measures between April 16, 2015, and November 1, 2017, and at least 1 clinical evaluation follow-up by November 12, 2018.

Exposures  Age, sex, education, cardiovascular and metabolic conditions score, APOE genotype, and AT(N) biomarker profiles. Each of A, T, or (N) can be abnormal (+) or normal (−), resulting in 8 AT(N) profiles.

Main Outcomes and Measures  Primary outcome was a composite memory score measured longitudinally at 15-month intervals. Analyses measured the associations between predictor variables and the memory score, and whether AT(N) biomarker profiles significantly improved prediction of memory z score rates of change beyond a model with clinical and genetic variables only.

Results  Participants were followed up for a median of 4.8 years (interquartile range [IQR], 3.8-5.1) and 44% were women (211/480). Median (IQR) ages ranged from 67 years (65-73) in the A−T−(N)− group to 83 years (76-87) in the A+T+(N)+ group. Of the participants, 92% (441/480) were cognitively unimpaired but the A+T+(N)+ group had the largest proportion of mild cognitive impairment (30%). AT(N) biomarkers improved the prediction of memory performance over a clinical model from an R2 of 0.26 to 0.31 (P < .001). Memory declined fastest in the A+T+(N)+, A+T+(N)−, and A+T−(N)+ groups compared with the other 5 AT(N) groups (P = .002). Estimated rates of decline in the 3 fastest declining groups were −0.13 (95% CI, −0.17 to −0.09), −0.10 (95% CI, −0.16 to −0.05), and −0.10 (95% CI, −0.13 to −0.06) z score units per year, respectively, for an 85-year-old APOE ε4 noncarrier.

Conclusions and Relevance  Among older persons without baseline dementia followed for a median of 4.8 years, a prediction model that included amyloid PET, tau PET, and MRI cortical thickness resulted in a small but statistically significant improvement in predicting memory decline over a model with more readily available clinical and genetic variables. The clinical importance of this difference is uncertain.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ from JAMA Network is your new home for CME and MOC from a source you trust. Earn AMA PRA Category 1 CME Credit™ from relevant articles, audio, and Clinical Challenge image quizzes, explore interactives and videos, and – depending on your specialty or state – have your MOC points automatically transferred to the relevant board. Learn more about CME

Article Information

Corresponding Author: Clifford R. Jack Jr, MD, Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (jack.clifford@mayo.edu).

Accepted for Publication: May 13, 2019.

Author Contributions: Dr Jack and Ms Wiste had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Jack, Lowe, Graff-Radford, Jones, Petersen.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Jack.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Wiste, Therneau, Weigand, Schwarz.

Obtained funding: Jack, Lowe, Vemuri, Roberts, Petersen.

Administrative, technical, or material support: Jack, Lowe, Schwarz, Gunter, Senjem, Graff-Radford, Jones, Roberts, Petersen.

Supervision: Jack, Lowe.

Conflict of Interest Disclosures: Dr Jack reported receiving grants from the National Institutes of Health (NIH) and Alexander Family Professorship of Alzheimer’s Disease Research during the conduct of the study, consulting for Eli Lily, and serving on an independent data monitoring board for Roche outside the submitted work but receives no personal compensation from any commercial entity. Drs Therneau, Vemuri, Machulda, and Schwarz reported receiving grants from the NIH. Dr Knopman reported receiving personal fees from the Dominantly Inherited Alzheimer Network–Trials Unit data and safety monitoring board; serving as an investigator in clinical trials sponsored by Biogen, Lilly Pharmaceuticals, and the University of Southern California; and receiving research support from the NIH/National Institute on Aging (NIA) outside the submitted work. Dr Mielke reported receiving grants from the NIH/NIA during the conduct of the study and grants from Biogen, Lundbeck, and Roche and personal fees from Eli Lilly outside the submitted work. Dr Lowe reported consulting for Bayer Schering Pharma, Piramal Life Science, and Merck Research and receiving research support from GE Healthcare, Siemens Molecular Imaging, AVID Radiopharmaceuticals, and the NIH. Dr Senjem reported owning shares of the following medical-related stocks, unrelated to the current work, at the time of manuscript submission: Align Technology Inc, LHC Group Inc, Mesa Laboratories Inc, Natus Medical Inc, and Varex Imaging Corp. Within the past 3 years, he reported owning the following medical-related stocks, unrelated to the current work: CRISPR Therapeutics, Gilead Sciences Inc, Globus Medical Inc, Inovio Biomedical Corp, Ionis Pharmaceuticals, Johnson & Johnson, Medtronic Inc, and Parexel International Corp. Dr Graff-Radford reported receiving grants from the NIA during the conduct of the study. Dr Jones reported receiving grants from the NIH and State of Minnesota during the conduct of the study. Dr Petersen reported receiving personal fees from Hoffman-La Roche Inc, Merck Inc, Genentech Inc, Biogen Inc, GE Healthcare, and Eisai Inc and royalties from Oxford University Press for “Mild Cognitive Impairment: Aging to Alzheimer’s Disease” outside the submitted work. No other disclosures were reported.

Funding/Support: Study funding was provided by the NIH (grants R37 AG011378, RO1 AG041851, R01 AG056366, R01 NS097495, U01 AG06786, and R01 AG034676), the Alexander Family Professorship of Alzheimer’s Disease Research, and the GHR Foundation.

Role of Funder/Sponsor Statement: The funding organizations/sponsors had no role in design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Additional Contributions: We thank AVID Radiopharmaceuticals Inc for its support in supplying AV-1451 ([18F]flortaucipir) precursor, chemistry production advice and oversight, and Food and Drug Administration regulatory cross-filing permission and documentation needed for this study.

References
References
1.
Jack  CR  Jr, Bennett  DA, Blennow  K,  et al; Contributors.  NIA-AA research framework: toward a biological definition of Alzheimer’s disease.  Alzheimers Dement. 2018;14(4):535-562. doi:10.1016/j.jalz.2018.02.018PubMedGoogle ScholarCrossref
2.
Hyman  BT, Phelps  CH, Beach  TG,  et al.  National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease.  Alzheimers Dement. 2012;8(1):1-13. doi:10.1016/j.jalz.2011.10.007PubMedGoogle ScholarCrossref
3.
Jack  CR  Jr, Wiste  HJ, Weigand  SD,  et al.  Defining imaging biomarker cut points for brain aging and Alzheimer’s disease.  Alzheimers Dement. 2017;13(3):205-216. doi:10.1016/j.jalz.2016.08.005PubMedGoogle ScholarCrossref
4.
Caselli  RJ, Dueck  AC, Osborne  D,  et al.  Longitudinal modeling of age-related memory decline and the APOE epsilon4 effect.  N Engl J Med. 2009;361(3):255-263. doi:10.1056/NEJMoa0809437PubMedGoogle ScholarCrossref
5.
Roberts  RO, Geda  YE, Knopman  DS,  et al.  The Mayo Clinic Study of Aging: design and sampling, participation, baseline measures and sample characteristics.  Neuroepidemiology. 2008;30(1):58-69. doi:10.1159/000115751PubMedGoogle ScholarCrossref
6.
St Sauver  JL, Grossardt  BR, Leibson  CL, Yawn  BP, Melton  LJ  III, Rocca  WA.  Generalizability of epidemiological findings and public health decisions: an illustration from the Rochester Epidemiology Project.  Mayo Clin Proc. 2012;87(2):151-160. doi:10.1016/j.mayocp.2011.11.009PubMedGoogle ScholarCrossref
7.
Petersen  RC.  Mild cognitive impairment as a diagnostic entity.  J Intern Med. 2004;256(3):183-194. doi:10.1111/j.1365-2796.2004.01388.xPubMedGoogle ScholarCrossref
8.
American Psychiatric Association.  Diagnostic and Statistical Manual of Mental Disorders. 4th ed. Washington, DC: American Psychiatric Association; 1994.
9.
Rocca  WA, Boyd  CM, Grossardt  BR,  et al.  Prevalence of multimorbidity in a geographically defined American population: patterns by age, sex, and race/ethnicity.  Mayo Clin Proc. 2014;89(10):1336-1349. doi:10.1016/j.mayocp.2014.07.010PubMedGoogle ScholarCrossref
10.
Jack  CR  Jr, Wiste  HJ, Weigand  SD,  et al.  Age-specific and sex-specific prevalence of cerebral β-amyloidosis, tauopathy, and neurodegeneration in cognitively unimpaired individuals aged 50-95 years: a cross-sectional study.  Lancet Neurol. 2017;16(6):435-444. doi:10.1016/S1474-4422(17)30077-7PubMedGoogle ScholarCrossref
11.
Klunk  WE, Engler  H, Nordberg  A,  et al.  Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B.  Ann Neurol. 2004;55(3):306-319. doi:10.1002/ana.20009PubMedGoogle ScholarCrossref
12.
Chien  DT, Bahri  S, Szardenings  AK,  et al.  Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807.  J Alzheimers Dis. 2013;34(2):457-468. doi:10.3233/JAD-122059PubMedGoogle ScholarCrossref
13.
Klunk  WE, Koeppe  RA, Price  JC,  et al.  The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET.  Alzheimers Dement. 2015;11(1):1-15.e1, 4. doi:10.1016/j.jalz.2014.07.003PubMedGoogle ScholarCrossref
14.
Knopman  DS, Beiser  A, Machulda  MM,  et al.  Spectrum of cognition short of dementia: Framingham Heart Study and Mayo Clinic Study of Aging.  Neurology. 2015;85(19):1712-1721. doi:10.1212/WNL.0000000000002100PubMedGoogle ScholarCrossref
15.
Roberts  RO, Knopman  DS, Syrjanen  JA,  et al.  Weighting and standardization of frequencies to determine prevalence of AD imaging biomarkers.  Neurology. 2017;89(20):2039-2048. doi:10.1212/WNL.0000000000004652PubMedGoogle ScholarCrossref
16.
Machulda  MM, Pankratz  VS, Christianson  TJ,  et al.  Practice effects and longitudinal cognitive change in normal aging vs incident mild cognitive impairment and dementia in the Mayo Clinic Study of Aging.  Clin Neuropsychol. 2013;27(8):1247-1264. doi:10.1080/13854046.2013.836567PubMedGoogle ScholarCrossref
17.
Johnson  KA, Schultz  A, Betensky  RA,  et al.  Tau positron emission tomographic imaging in aging and early Alzheimer disease.  Ann Neurol. 2016;79(1):110-119. doi:10.1002/ana.24546PubMedGoogle ScholarCrossref
18.
Maass  A, Lockhart  SN, Harrison  TM,  et al.  Entorhinal tau pathology, episodic memory decline, and neurodegeneration in aging.  J Neurosci. 2018;38(3):530-543. doi:10.1523/JNEUROSCI.2028-17.2017PubMedGoogle ScholarCrossref
19.
Meltzer  CC, Leal  JP, Mayberg  HS, Wagner  HN  Jr, Frost  JJ.  Correction of PET data for partial volume effects in human cerebral cortex by MR imaging.  J Comput Assist Tomogr. 1990;14(4):561-570. doi:10.1097/00004728-199007000-00011PubMedGoogle ScholarCrossref
20.
Sperling  RA, Rentz  DM, Johnson  KA,  et al.  The A4 study: stopping AD before symptoms begin?  Sci Transl Med. 2014;6(228):228fs13. doi:10.1126/scitranslmed.3007941PubMedGoogle ScholarCrossref
21.
Sevigny  J, Chiao  P, Bussière  T,  et al.  The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease.  Nature. 2016;537(7618):50-56. doi:10.1038/nature19323PubMedGoogle ScholarCrossref
22.
Food and Drug Administration.  Early Alzheimer's Disease: Developing Drugs for Treatment: Guidance for Industry. Silver Spring, MD: Office of the Federal Register, National Archives and Records Administration; 2018:7060-7061.
23.
Botha  H, Mantyh  WG, Graff-Radford  J,  et al.  Tau-negative amnestic dementia masquerading as Alzheimer disease dementia.  Neurology. 2018;90(11):e940-e946. doi:10.1212/WNL.0000000000005124PubMedGoogle ScholarCrossref
24.
Nelson  PT, Dickson  DW, Trojanowski  JQ,  et al.  Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report.  Brain. 2019;awz099. doi:10.1093/brain/awz1099PubMedGoogle Scholar
25.
Nelson  PT, Alafuzoff  I, Bigio  EH,  et al.  Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature.  J Neuropathol Exp Neurol. 2012;71(5):362-381. doi:10.1097/NEN.0b013e31825018f7PubMedGoogle ScholarCrossref
26.
Jack  CR  Jr, Knopman  DS, Jagust  WJ,  et al.  Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers.  Lancet Neurol. 2013;12(2):207-216. doi:10.1016/S1474-4422(12)70291-0PubMedGoogle ScholarCrossref
27.
Power  MC, Mormino  E, Soldan  A,  et al.  Combined neuropathological pathways account for age-related risk of dementia.  Ann Neurol. 2018;84(1):10-22. doi:10.1002/ana.25246PubMedGoogle ScholarCrossref
28.
Nelson  PT, Head  E, Schmitt  FA,  et al.  Alzheimer’s disease is not “brain aging”: neuropathological, genetic, and epidemiological human studies.  Acta Neuropathol. 2011;121(5):571-587. doi:10.1007/s00401-011-0826-yPubMedGoogle ScholarCrossref
29.
Schneider  JA, Arvanitakis  Z, Bang  W, Bennett  DA.  Mixed brain pathologies account for most dementia cases in community-dwelling older persons.  Neurology. 2007;69(24):2197-2204. doi:10.1212/01.wnl.0000271090.28148.24PubMedGoogle ScholarCrossref
30.
Kawas  CH, Kim  RC, Sonnen  JA, Bullain  SS, Trieu  T, Corrada  MM.  Multiple pathologies are common and related to dementia in the oldest-old: the 90+ Study.  Neurology. 2015;85(6):535-542. doi:10.1212/WNL.0000000000001831PubMedGoogle ScholarCrossref
31.
Lowe  VJ, Wiste  HJ, Senjem  ML,  et al.  Widespread brain tau and its association with ageing, Braak stage and Alzheimer’s dementia.  Brain. 2018;141(1):271-287. doi:10.1093/brain/awx320PubMedGoogle ScholarCrossref
32.
Maass  A, Landau  S, Baker  SL,  et al; Alzheimer’s Disease Neuroimaging Initiative.  Comparison of multiple tau-PET measures as biomarkers in aging and Alzheimer’s disease.  Neuroimage. 2017;157:448-463. doi:10.1016/j.neuroimage.2017.05.058PubMedGoogle ScholarCrossref
33.
Cho  H, Choi  JY, Hwang  MS,  et al.  In vivo cortical spreading pattern of tau and amyloid in the Alzheimer disease spectrum.  Ann Neurol. 2016;80(2):247-258. doi:10.1002/ana.24711PubMedGoogle ScholarCrossref
34.
Gordon  BA, Blazey  TM, Su  Y,  et al.  Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: a longitudinal study.  Lancet Neurol. 2018;17(3):241-250. doi:10.1016/S1474-4422(18)30028-0PubMedGoogle ScholarCrossref
35.
Rabinovici  GD, Gatsonis  C, Apgar  C,  et al.  Association of amyloid positron emission tomography with subsequent change in clinical management among Medicare beneficiaries with mild cognitive impairment or dementia.  JAMA. 2019;321(13):1286-1294. doi:10.1001/jama.2019.2000PubMedGoogle ScholarCrossref
36.
Burnham  SC, Bourgeat  P, Doré  V,  et al; AIBL Research Group.  Clinical and cognitive trajectories in cognitively healthy elderly individuals with suspected non-Alzheimer’s disease pathophysiology (SNAP) or Alzheimer’s disease pathology: a longitudinal study.  Lancet Neurol. 2016;15(10):1044-1053. doi:10.1016/S1474-4422(16)30125-9PubMedGoogle ScholarCrossref
37.
Villemagne  VL, Burnham  S, Bourgeat  P,  et al; Australian Imaging Biomarkers and Lifestyle (AIBL) Research Group.  Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study.  Lancet Neurol. 2013;12(4):357-367. doi:10.1016/S1474-4422(13)70044-9PubMedGoogle ScholarCrossref
38.
Caselli  RJ, Locke  DE, Dueck  AC,  et al.  The neuropsychology of normal aging and preclinical Alzheimer’s disease.  Alzheimers Dement. 2014;10(1):84-92. doi:10.1016/j.jalz.2013.01.004PubMedGoogle ScholarCrossref
39.
Lim  YY, Maruff  P, Pietrzak  RH,  et al; AIBL Research Group.  Effect of amyloid on memory and non-memory decline from preclinical to clinical Alzheimer’s disease.  Brain. 2014;137(pt 1):221-231. doi:10.1093/brain/awt286PubMedGoogle ScholarCrossref
40.
Mormino  EC, Papp  KV, Rentz  DM,  et al.  Early and late change on the preclinical Alzheimer’s cognitive composite in clinically normal older individuals with elevated amyloid β.  Alzheimers Dement. 2017;13(9):1004-1012. doi:10.1016/j.jalz.2017.01.018PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Topics
State Requirements