Comparison of Biomarker Modalities for Predicting Response to PD-1/PD-L1 Checkpoint Blockade | Cancer Biomarkers | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

Comparison of Biomarker Modalities for Predicting Response to PD-1/PD-L1 Checkpoint BlockadeA Systematic Review and Meta-analysis

Educational Objective
To learn the diagnostic accuracy of biomarker assays for predicting clinical response to anti–PD-1/PD-L1 therapy
1 Credit CME
Key Points

Question  What is the relative diagnostic accuracy of different biomarker assay modalities in predicting clinical response to anti–PD-1/PD-L1 (programmed cell death 1/programmed cell death ligand 1) therapy?

Findings  In this systematic review and meta-analysis involving tumor specimens from 8135 patients, multiplex immunohistochemistry/immunofluorescence (mIHC/IF) had significantly higher diagnostic accuracy than PD-L1 IHC, tumor mutational burden, or gene expression profiling in predicting clinical response to anti–PD-1/PD-L1 therapy and was similar to multimodality cross-platform composite approaches, such as PD-L1 IHC + tumor mutational burden.

Meaning  Multiplex immunohistochemistry/IF facilitates quantification of protein coexpression on immune cell subsets and assessment of their spatial arrangements; initial findings suggest that mIHC/IF has diagnostic accuracy comparable to multimodality cross-platform composite approaches in predicting response to anti–PD-1/PD-L1.

Abstract

Importance  PD-L1 (programmed cell death ligand 1) immunohistochemistry (IHC), tumor mutational burden (TMB), gene expression profiling (GEP), and multiplex immunohistochemistry/immunofluorescence (mIHC/IF) assays have been used to assess pretreatment tumor tissue to predict response to anti–PD-1/PD-L1 therapies. However, the relative diagnostic performance of these modalities has yet to be established.

Objective  To compare studies that assessed the diagnostic accuracy of PD-L1 IHC, TMB, GEP, and mIHC/IF in predicting response to anti–PD-1/PD-L1 therapy.

Evidence Review  A search of PubMed (from inception to June 2018) and 2013 to 2018 annual meeting abstracts from the American Association for Cancer Research, American Society of Clinical Oncology, European Society for Medical Oncology, and Society for Immunotherapy of Cancer was conducted to identify studies that examined the use of PD-L1 IHC, TMB, GEP, and mIHC/IF assays to determine objective response to anti–PD-1/PD-L1 therapy. For PD-L1 IHC, only clinical trials that resulted in US Food and Drug Administration approval of indications for anti–PD-1/PD-L1 were included. Studies combining more than 1 modality were also included. Preferred Reporting Items for Systematic Reviews and Meta-analysis guidelines were followed. Two reviewers independently extracted the clinical outcomes and test results for each individual study.

Main Outcomes and Measures  Summary receiver operating characteristic (sROC) curves; their associated area under the curve (AUC); and pooled sensitivity, specificity, positive and negative predictive values (PPV, NPV), and positive and negative likelihood ratios (LR+ and LR−) for each assay modality.

Results  Tumor specimens representing over 10 different solid tumor types in 8135 patients were assayed, and the results were correlated with anti–PD-1/PD-L1 response. When each modality was evaluated with sROC curves, mIHC/IF had a significantly higher AUC (0.79) compared with PD-L1 IHC (AUC, 0.65, P < .001), GEP (AUC, 0.65, P = .003), and TMB (AUC, 0.69, P = .049). When multiple different modalities were combined such as PD-L1 IHC and/or GEP + TMB, the AUC drew nearer to that of mIHC/IF (0.74). All modalities demonstrated comparable NPV and LR−, whereas mIHC/IF demonstrated higher PPV (0.63) and LR+ (2.86) than the other approaches.

Conclusions and Relevance  In this meta-analysis, tumor mutational burden, PD-L1 IHC, and GEP demonstrated comparable AUCs in predicting response to anti–PD-1/PD-L1 treatment. Multiplex immunohistochemistry/IF and multimodality biomarker strategies appear to be associated with improved performance over PD-L1 IHC, TMB, or GEP alone. Further studies with mIHC/IF and composite approaches with a larger number of patients will be required to confirm these findings. Additional study is also required to determine the most predictive analyte combinations and to determine whether biomarker modality performance varies by tumor type.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: March 15, 2019.

Corresponding Author: Janis M. Taube, MD, Division of Dermatopathology Johns Hopkins University, 600 N Wolfe St, Blalock Building Room 907, Baltimore, MD 21287 (jtaube1@jhmi.edu).

Published Online: July 18, 2019. doi:10.1001/jamaoncol.2019.1549

Author Contributions: Dr Taube and Mr Lu had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Lu, Rimm, Hoyt, Pardoll, Taube.

Acquisition, analysis, or interpretation of data: Lu, Stein, D. Wang, Bell, Johnson, Sosman, Schalper, Anders, H. Wang, Hoyt, Danilova, Taube.

Drafting of the manuscript: Lu, Stein, D. Wang, Johnson, Sosman, Danilova, Taube.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Lu, Stein, D. Wang, H. Wang, Danilova.

Administrative, technical, or material support: Lu, Stein, D. Wang, Schalper, Anders, Taube.

Study supervision: Rimm, Hoyt, Pardoll, Danilova, Taube.

Conflict of Interest Disclosures: Dr Rimm reports personal fees from and serves on the advisory board of Amgen, personal fees from Bristol-Myers Squibb, Merck, GlaxoSmithKline, Daiichi Sankyo, Konica Minolta, personal fees from and serves on the advisory board of Cell Signaling Technology, grants and personal fees from Cepheid, AstraZeneca, NextCure, Ultivue, Ventana, Perkin Elmer, grants from Lilly, patents including AQUA software licensing and Navigate Biopharma (Yale owned patent). Dr Johnson serves on the advisory board of Array Biopharma, Bristol-Myers Squibb, Genoptix, Incyte, Merck, and Novartis; receives grant funding from Bristol-Myers Squibb and Incyte; patent pending for using MHC-II as a biomarker for immunotherapy responses. Dr Schalper reports grant funding from Navigate Biopharma, Vasculox, Tesaro, Takeda, Surface Oncology, and Bristol-Myers Squibb; receives grant funding and consulting fees from Celgene, Shattuck Labs, Pierre Fabre, Moderna Therapeutics, AstraZeneca, AbbVie, and Merck; and receives speaking fees from Merck and Fluidigm. Dr Anders receives grant funding from FLX Bio and Five Prime Therapeutics, and is a consultant for Bristol-Myers Squibb, Merck, and AstraZeneca. Mr Hoyt is employed by Akoya Biosciences and owns Akoya Biosciences stock and stock options. Dr. Pardoll reported other support from Aduro Biotech, Amgen, Bayer, Camden Partners, DNAtrix, Dracen, Dynavax, Five Prime, FLX Bio, Immunomic, Janssen, Merck, Rock Springs Capital, Potenza, Tizona, Trieza, and WindMil during the conduct of the study; grants from Astra Zeneca, Medimmune/Amplimmune, and Compugen; grants and other support from ERvaxx and Potenza. Dr Taube reports nonfinancial support from Akoya during the conduct of the study; grants and personal fees from Bristol-Myers Squibb, personal fees from Merck, Astra Zeneca, and Amgen outside the submitted work; equipment and reagents from Akoya Biosciences, and a patent pending related to image processing of mIF/IHC images. No other disclosures were reported.

Funding/Support: This work was supported by the Melanoma Research Alliance (Dr Taube); Harry J. Lloyd Trust (Dr Taube); the Emerson Collective (Dr Taube); Moving for Melanoma of Delaware (Dr Taube); Bristol-Myers Squibb (Drs Taube, Stein, Pardoll, and Ms Wang); Navigate BioPharma (Dr Rimm); Sidney Kimmel Cancer Center Core Grant P30 CA006973 (Drs Taube and Danilova); Yale Cancer Center P30 CA016359 (Dr Rimm); National Institutes of Health (NIH) Lung SPORE in Lung Cancer P50CA196530 (Drs Rimm and Schalper); Department of Defense Lung Cancer Research Program award W81XWH-16-1-0160 (Dr Schalper); Stand Up To Cancer/AACR SU2C-AACR-DT17-15 SU2C-AACR-DT22-17.ACS (Dr Schalper); Melanoma Professorship No. RP-14-246-06 (Dr Sosman); National Cancer Institute R01 CA142779 (Drs Taube and Pardoll); NIH T32 CA193145 (Dr Stein); P50 CA062924 (Dr Anders); K23 CA204726 (Dr Johnson); and The Bloomberg~Kimmel Institute for Cancer Immunotherapy.

Role of Funder/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, and approval of the manuscript; or decision to submit the manuscript for publication.

Additional Contributions: The authors would like to acknowledge Matthew Hellmann, MD (Memorial Sloan Kettering Cancer Center), Evan Lipson, MD, and Suzanne L. Topalian, MD (both Johns Hopkins University), and Robin Edwards, MD (Bristol-Myers Squibb), for helpful discussions. These contributions were not compensated.

References
1.
Topalian  SL, Hodi  FS, Brahmer  JR,  et al.  Safety, activity, and immune correlates of anti-PD-1 antibody in cancer.  N Engl J Med. 2012;366(26):2443-2454. doi:10.1056/NEJMoa1200690PubMedGoogle ScholarCrossref
2.
Taube  JM, Klein  A, Brahmer  JR,  et al.  Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy.  Clin Cancer Res. 2014;20(19):5064-5074. doi:10.1158/1078-0432.CCR-13-3271PubMedGoogle ScholarCrossref
3.
Taube  JM, Galon  J, Sholl  LM,  et al.  Implications of the tumor immune microenvironment for staging and therapeutics.  Mod Pathol. 2018;31(2):214-234. doi:10.1038/modpathol.2017.156PubMedGoogle ScholarCrossref
4.
Gong  J, Chehrazi-Raffle  A, Reddi  S, Salgia  R.  Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations.  J Immunother Cancer. 2018;6(1):8. doi:10.1186/s40425-018-0316-zPubMedGoogle ScholarCrossref
5.
Hellmann  MD, Rizvi  NA, Goldman  JW,  et al.  Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study.  Lancet Oncol. 2017;18(1):31-41. doi:10.1016/S1470-2045(16)30624-6PubMedGoogle ScholarCrossref
6.
Kulangara  K, Zhang  N, Corigliano  E,  et al.  Clinical utility of the combined positive score for programmed death ligand-1 expression and the approval of pembrolizumab for treatment of gastric cancer.  Arch Pathol Lab Med. 2019;143(3):330-337. doi:10.5858/arpa.2018-0043-OAPubMedGoogle ScholarCrossref
7.
Rimm  DL, Han  G, Taube  JM,  et al.  A prospective, multi-institutional, pathologist-based assessment of 4 immunohistochemistry assays for PD-L1 expression in non-small cell lung cancer.  JAMA Oncol. 2017;3(8):1051-1058. doi:10.1001/jamaoncol.2017.0013PubMedGoogle ScholarCrossref
8.
Taube  JM, Anders  RA, Young  GD,  et al.  Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape.  Sci Transl Med. 2012;4(127):127ra37. doi:10.1126/scitranslmed.3003689PubMedGoogle ScholarCrossref
9.
Tumeh  PC, Harview  CL, Yearley  JH,  et al.  PD-1 blockade induces responses by inhibiting adaptive immune resistance.  Nature. 2014;515(7528):568-571. doi:10.1038/nature13954PubMedGoogle ScholarCrossref
10.
Gubin  MM, Schreiber  RD.  Cancer. the odds of immunotherapy success.  Science. 2015;350(6257):158-159. doi:10.1126/science.aad4140PubMedGoogle ScholarCrossref
11.
Snyder  A, Makarov  V, Merghoub  T,  et al.  Genetic basis for clinical response to CTLA-4 blockade in melanoma.  N Engl J Med. 2014;371(23):2189-2199. doi:10.1056/NEJMoa1406498PubMedGoogle ScholarCrossref
12.
Rizvi  NA, Hellmann  MD, Snyder  A,  et al.  Cancer immunology. mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer.  Science. 2015;348(6230):124-128. doi:10.1126/science.aaa1348PubMedGoogle ScholarCrossref
13.
Cristescu  R, Mogg  R, Ayers  M,  et al.  Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy.  Science. 2018;362(6411):eaar3593. doi:10.1126/science.aar3593PubMedGoogle ScholarCrossref
14.
Ayers  M, Lunceford  J, Nebozhyn  M,  et al.  IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade.  J Clin Invest. 2017;127(8):2930-2940. doi:10.1172/JCI91190PubMedGoogle ScholarCrossref
15.
Giraldo  NA, Nguyen  P, Engle  EL,  et al.  Multidimensional, quantitative assessment of PD-1/PD-L1 expression in patients with Merkel cell carcinoma and association with response to pembrolizumab.  J Immunother Cancer. 2018;6(1):99. doi:10.1186/s40425-018-0404-0PubMedGoogle ScholarCrossref
16.
Johnson  DB, Bordeaux  J, Kim  JY,  et al.  Quantitative spatial profiling of PD-1/PD-L1 interaction and HLA-DR/IDO-1 predicts improved outcomes of anti-PD-1 therapies in metastatic melanoma.  Clin Cancer Res. 2018;24(21):5250-5260.PubMedGoogle Scholar
17.
Gettinger  SN, Choi  J, Mani  N,  et al.  A dormant TIL phenotype defines non-small cell lung carcinomas sensitive to immune checkpoint blockers.  Nat Commun. 2018;9(1):3196. doi:10.1038/s41467-018-05032-8PubMedGoogle ScholarCrossref
18.
Moher  D, Liberati  A, Tetzlaff  J, Altman  DG; PRISMA Group.  Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.  PLoS Med. 2009;6(7):e1000097. doi:10.1371/journal.pmed.1000097PubMedGoogle ScholarCrossref
19.
National Institutes of Health. US National Library of Medicine. DailyMed website. https://dailymed.nlm.nih.gov/dailymed/. Accessed May 10, 2019.
20.
Motzer  RJ, Escudier  B, McDermott  DF,  et al; CheckMate 025 Investigators.  Nivolumab versus everolimus in advanced renal-cell carcinoma.  N Engl J Med. 2015;373(19):1803-1813. doi:10.1056/NEJMoa1510665PubMedGoogle ScholarCrossref
21.
Mariathasan  S, Turley  SJ, Nickles  D,  et al.  TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells.  Nature. 2018;554(7693):544-548. doi:10.1038/nature25501PubMedGoogle ScholarCrossref
22.
Powles  T, Durán  I, van der Heijden  MS,  et al.  Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial.  Lancet. 2018;391(10122):748-757. doi:10.1016/S0140-6736(17)33297-XPubMedGoogle ScholarCrossref
23.
Fehrenbacher  L, Spira  A, Ballinger  M,  et al; POPLAR Study Group.  Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial.  Lancet. 2016;387(10030):1837-1846. doi:10.1016/S0140-6736(16)00587-0PubMedGoogle ScholarCrossref
24.
Carbone  DP, Reck  M, Paz-Ares  L,  et al; CheckMate 026 Investigators.  First-line nivolumab in stage IV or recurrent non–small-cell lung cancer.  N Engl J Med. 2017;376(25):2415-2426. doi:10.1056/NEJMoa1613493PubMedGoogle ScholarCrossref
25.
Wong  PF, Smithy  JW, Blenman  KR, Kluger  HM, Rimm  DL.  Quantitative assessment of tumor-infiltrating lymphocytes and immunotherapy outcome in metastatic melanoma [Abstract 3638].  Cancer Res. 2018;78(13)(suppl):3638. doi:10.1158/1538-7445.AM2018-3638Google Scholar
26.
Hanley  JA, McNeil  BJ.  A method of comparing the areas under receiver operating characteristic curves derived from the same cases.  Radiology. 1983;148(3):839-843. doi:10.1148/radiology.148.3.6878708PubMedGoogle ScholarCrossref
27.
Hellmann  MD, Callahan  MK, Awad  MM,  et al.  Tumor mutational burden and efficacy of nivolumab monotherapy and in combination with ipilimumab in small-cell lung cancer.  Cancer Cell. 2018;33(5):853-861.e4. doi:10.1016/j.ccell.2018.04.001PubMedGoogle ScholarCrossref
28.
R: a language and environment for statistical computing [computer program]. Vienna, Austria: the R Foundation for Statistical Computing; 2011.
29.
Zamora  J, Abraira  V, Muriel  A, Khan  K, Coomarasamy  A.  Meta-DiSc: a software for meta-analysis of test accuracy data.  BMC Med Res Methodol. 2006;6:31. doi:10.1186/1471-2288-6-31PubMedGoogle ScholarCrossref
30.
Kefford  R, Ribas  A, Hamid  O,  et al.  Clinical efficacy and correlation with tumor PD-L1 expression in patients (pts) with melanoma (MEL) treated with the anti-PD-1 monoclonal antibody MK-3475.  J Clin Oncol. 2014;32(15)(suppl):3005-3005. doi:10.1200/jco.2014.32.15_suppl.3005PubMedGoogle ScholarCrossref
31.
Puzanov  I, Dummer  R, Schachter  J,  et al.  Efficacy based on tumor PD-L1 expression in KEYNOTE-002, a randomized comparison of pembrolizumab (PEMBRO; MK-3475) versus chemotherapy in patients (pts) with ipilimumab-refractory (IPI-R) advanced melanoma (MEL).  J Clin Oncol. 2015;33(15)(suppl):3012-3012. doi:10.1200/jco.2015.33.15_suppl.3012Google ScholarCrossref
32.
Larkin  J, Minor  D, D’Angelo  S,  et al.  Overall survival in patients with advanced melanoma who received nivolumab versus investigator’s choice chemotherapy in CheckMate 037: a randomized, controlled, open-label phase III trial.  J Clin Oncol. 2018;36(4):383-390. doi:10.1200/JCO.2016.71.8023PubMedGoogle ScholarCrossref
33.
Wolchok  JD, Chiarion-Sileni  V, Gonzalez  R,  et al.  Overall survival with combined nivolumab and ipilimumab in advanced melanoma.  N Engl J Med. 2017;377(14):1345-1356. doi:10.1056/NEJMoa1709684PubMedGoogle ScholarCrossref
34.
Robert  C, Long  GV, Brady  B,  et al.  Nivolumab in previously untreated melanoma without BRAF mutation.  N Engl J Med. 2015;372(4):320-330. doi:10.1056/NEJMoa1412082PubMedGoogle ScholarCrossref
35.
Herbst  RS, Baas  P, Kim  DW,  et al.  Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial.  Lancet. 2016;387(10027):1540-1550. doi:10.1016/S0140-6736(15)01281-7PubMedGoogle ScholarCrossref
36.
Horn  L, Spigel  DR, Vokes  EE,  et al.  Nivolumab versus docetaxel in previously treated patients with advanced non-small-cell lung cancer: two-year outcomes from two randomized, open-label, phase III trials (CheckMate 017 and CheckMate 057).  J Clin Oncol. 2017;35(35):3924-3933. doi:10.1200/JCO.2017.74.3062PubMedGoogle ScholarCrossref
37.
Rittmeyer  A, Barlesi  F, Waterkamp  D,  et al; OAK Study Group.  Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial.  Lancet. 2017;389(10066):255-265. doi:10.1016/S0140-6736(16)32517-XPubMedGoogle ScholarCrossref
38.
Balar  AV, Castellano  D, O’Donnell  PH,  et al.  First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study.  Lancet Oncol. 2017;18(11):1483-1492. doi:10.1016/S1470-2045(17)30616-2PubMedGoogle ScholarCrossref
39.
Bellmunt  J, de Wit  R, Vaughn  DJ,  et al; KEYNOTE-045 Investigators.  Pembrolizumab as second-line therapy for advanced urothelial carcinoma.  N Engl J Med. 2017;376(11):1015-1026. doi:10.1056/NEJMoa1613683PubMedGoogle ScholarCrossref
40.
Sharma  P, Retz  M, Siefker-Radtke  A,  et al.  Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial.  Lancet Oncol. 2017;18(3):312-322. doi:10.1016/S1470-2045(17)30065-7PubMedGoogle ScholarCrossref
41.
Rosenberg  JE, Hoffman-Censits  J, Powles  T,  et al.  Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial.  Lancet. 2016;387(10031):1909-1920. doi:10.1016/S0140-6736(16)00561-4PubMedGoogle ScholarCrossref
42.
Balar  AV, Galsky  MD, Rosenberg  JE,  et al; IMvigor210 Study Group.  Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial.  Lancet. 2017;389(10064):67-76. doi:10.1016/S0140-6736(16)32455-2PubMedGoogle ScholarCrossref
43.
Powles  T, O’Donnell  PH, Massard  C,  et al.  Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: updated results from a phase 1/2 open-label study.  JAMA Oncol. 2017;3(9):e172411. doi:10.1001/jamaoncol.2017.2411PubMedGoogle ScholarCrossref
44.
Patel  MR, Ellerton  J, Infante  JR,  et al.  Avelumab in metastatic urothelial carcinoma after platinum failure (JAVELIN Solid Tumor): pooled results from two expansion cohorts of an open-label, phase 1 trial.  Lancet Oncol. 2018;19(1):51-64. doi:10.1016/S1470-2045(17)30900-2PubMedGoogle ScholarCrossref
45.
Chow  LQM, Haddad  R, Gupta  S,  et al.  Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: results from the phase Ib KEYNOTE-012 expansion cohort.  J Clin Oncol. 2016;34(32):3838-3845. doi:10.1200/JCO.2016.68.1478PubMedGoogle ScholarCrossref
46.
Ferris  RL, Blumenschein  G  Jr, Fayette  J,  et al.  Nivolumab for recurrent squamous-cell carcinoma of the head and neck.  N Engl J Med. 2016;375(19):1856-1867. doi:10.1056/NEJMoa1602252PubMedGoogle ScholarCrossref
47.
Fuchs  CS, Doi  T, Jang  RW,  et al.  Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: phase 2 clinical KEYNOTE-059 trial.  JAMA Oncol. 2018;4(5):e180013. doi:10.1001/jamaoncol.2018.0013PubMedGoogle ScholarCrossref
48.
Overman  MJ, McDermott  R, Leach  JL,  et al.  Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study.  Lancet Oncol. 2017;18(9):1182-1191. doi:10.1016/S1470-2045(17)30422-9PubMedGoogle ScholarCrossref
49.
El-Khoueiry  AB, Sangro  B, Yau  T,  et al.  Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial.  Lancet. 2017;389(10088):2492-2502. doi:10.1016/S0140-6736(17)31046-2PubMedGoogle ScholarCrossref
50.
Kaufman  HL, Russell  J, Hamid  O,  et al.  Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial.  Lancet Oncol. 2016;17(10):1374-1385. doi:10.1016/S1470-2045(16)30364-3PubMedGoogle ScholarCrossref
51.
Chung  HC, Schellens  JHM, Delord  J-P,  et al.  Pembrolizumab treatment of advanced cervical cancer: updated results from the phase 2 KEYNOTE-158 study.  J Clin Oncol. 2018;36(15)(suppl):5522-5522. doi:10.1200/JCO.2018.36.15_suppl.5522Google ScholarCrossref
52.
Rizvi  H, Sanchez-Vega  F, La  K,  et al.  Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing.  J Clin Oncol. 2018;36(7):633-641. doi:10.1200/JCO.2017.75.3384PubMedGoogle ScholarCrossref
53.
Galsky  M, Saci  A, Szabo  P,  et al.  Impact of tumor mutation burden on nivolumab efficacy in second-line urothelial carcinoma patients: exploratory analysis of the phase II CheckMate 275 study.  Ann Oncol. 2017;28(suppl 5):v295-v329. doi:10.1093/annonc/mdx371.003Google Scholar
54.
Hugo  W, Zaretsky  JM, Sun  L,  et al.  Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma.  Cell. 2016;165(1):35-44. doi:10.1016/j.cell.2016.02.065PubMedGoogle ScholarCrossref
55.
Riaz  N, Havel  JJ, Makarov  V,  et al.  Tumor and microenvironment evolution during immunotherapy with nivolumab.  Cell. 2017;171(4):934-949.e16. doi:10.1016/j.cell.2017.09.028PubMedGoogle ScholarCrossref
56.
Johnson  DB, Frampton  GM, Rioth  MJ,  et al.  Targeted next generation sequencing identifies markers of response to PD-1 blockade.  Cancer Immunol Res. 2016;4(11):959-967.Google ScholarCrossref
57.
Ribas  A, Robert  C, Hodi  FS,  et al.  Association of response to programmed death receptor 1 (PD-1) blockade with pembrolizumab (MK-3475) with an interferon-inflammatory immune gene signature.  J Clin Oncol. 2015;33(15)(suppl):3001-3001. doi:10.1200/jco.2015.33.15_suppl.3001Google ScholarCrossref
58.
Karachaliou  N, Crespo  G, Aldeguer  E,  et al.  Interferon-gamma (INFG), an important marker of response to immune checkpoint blockade (ICB) in non-small cell lung cancer (NSCLC) and melanoma patients.  J Clin Oncol. 2017;35(15)(suppl):11504. doi:10.1200/JCO.2017.35.15_suppl.11504Google ScholarCrossref
59.
Wang  L, Saci  A, Szabo  PM,  et al.  EMT- and stroma-related gene expression and resistance to PD-1 blockade in urothelial cancer.  Nat Commun. 2018;9(1):3503. doi:10.1038/s41467-018-05992-xPubMedGoogle ScholarCrossref
60.
Althammer  S, Tan  TH, Spitzmüller  A,  et al.  Automated image analysis of NSCLC biopsies to predict response to anti-PD-L1 therapy.  J Immunother Cancer. 2019;7(1):121. doi:10.1186/s40425-019-0589-xPubMedGoogle ScholarCrossref
61.
Mazzaschi  G, Madeddu  D, Falco  A,  et al.  Low PD-1 expression in cytotoxic CD8+ tumor-infiltrating lymphocytes confers an immune-privileged tissue microenvironment in NSCLC with a prognostic and predictive value.  Clin Cancer Res. 2018;24(2):407-419. doi:10.1158/1078-0432.CCR-17-2156PubMedGoogle ScholarCrossref
62.
Danilova  L, Wang  H, Sunshine  J,  et al.  Association of PD-1/PD-L axis expression with cytolytic activity, mutational load, and prognosis in melanoma and other solid tumors.  Proc Natl Acad Sci U S A. 2016;113(48):E7769-E7777. doi:10.1073/pnas.1607836113PubMedGoogle ScholarCrossref
63.
Le  DT, Uram  JN, Wang  H,  et al.  PD-1 blockade in tumors with mismatch-repair deficiency.  N Engl J Med. 2015;372(26):2509-2520. doi:10.1056/NEJMoa1500596PubMedGoogle ScholarCrossref
64.
Charoentong  P, Finotello  F, Angelova  M,  et al.  Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade.  Cell Rep. 2017;18(1):248-262. doi:10.1016/j.celrep.2016.12.019PubMedGoogle ScholarCrossref
65.
Schwanhäusser  B, Busse  D, Li  N,  et al.  Global quantification of mammalian gene expression control.  Nature. 2011;473(7347):337-342. doi:10.1038/nature10098PubMedGoogle ScholarCrossref
66.
Borenstein  M, Hedges  LV, Higgins  JPT, Rothstein  HR. Publication bias. In: Borenstein  M, Hedges  LV, Higgins  JPT, Rothstein  HR, eds.  Introduction to Meta-Analysis. Chichester, West Sussex, United Kingdom: John Wiley & Sons; 2009. doi:10.1002/9780470743386.ch30
67.
Frati  A, Chereau  E, Coutant  C,  et al.  Comparison of two nomograms to predict pathologic complete responses to neoadjuvant chemotherapy for breast cancer: evidence that HER2-positive tumors need specific predictors.  Breast Cancer Res Treat. 2012;132(2):601-607. doi:10.1007/s10549-011-1897-0PubMedGoogle ScholarCrossref
68.
English  PA, Williams  JA, Martini  JF, Motzer  RJ, Valota  O, Buller  RE.  A case for the use of receiver operating characteristic analysis of potential clinical efficacy biomarkers in advanced renal cell carcinoma.  Future Oncol. 2016;12(2):175-182. doi:10.2217/fon.15.290PubMedGoogle ScholarCrossref
69.
Šimundić  AM.  Measures of diagnostic accuracy: basic definitions.  EJIFCC. 2009;19(4):203-211.PubMedGoogle Scholar
70.
Berry  S, Giraldo  N, Nguyen  P,  et al.  33rd annual meeting & pre-conference programs of the Society for Immunotherapy of Cancer (SITC 2018): P128 multiplexed immunofluorescent assay development for study of the PD-1/PD-L1 checkpoint in the tumor immune microenvironment (TIME).  J Immunother Cancer. 2018;6(1):114.PubMedGoogle Scholar
71.
Feng  Z, Bethmann  D, Kappler  M,  et al.  Multiparametric immune profiling in HPV-oral squamous cell cancer.  JCI Insight. 2017;2(14):93652. doi:10.1172/jci.insight.93652PubMedGoogle ScholarCrossref
72.
Tsujikawa  T, Kumar  S, Borkar  RN,  et al.  Quantitative multiplex immunohistochemistry reveals myeloid-inflamed tumor-immune complexity associated with poor prognosis.  Cell Rep. 2017;19(1):203-217. doi:10.1016/j.celrep.2017.03.037PubMedGoogle ScholarCrossref
73.
Remark  R, Merghoub  T, Grabe  N,  et al.  In-depth tissue profiling using multiplexed immunohistochemical consecutive staining on single slide.  Sci Immunol. 2016;1(1):aaf6925. doi:10.1126/sciimmunol.aaf6925PubMedGoogle ScholarCrossref
74.
Giesen  C, Wang  HA, Schapiro  D,  et al.  Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry.  Nat Methods. 2014;11(4):417-422. doi:10.1038/nmeth.2869PubMedGoogle ScholarCrossref
75.
Schulz  D, Zanotelli  VRT, Fischer  JR,  et al.  Simultaneous multiplexed imaging of mRNA and proteins with subcellular resolution in breast cancer tissue samples by mass cytometry.  Cell Syst. 2018;6(4):531. doi:10.1016/j.cels.2018.04.004PubMedGoogle ScholarCrossref
76.
Keren  L, Bosse  M, Marquez  D,  et al.  A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging.  Cell. 2018;174(6):1373-1387.e19. doi:10.1016/j.cell.2018.08.039PubMedGoogle ScholarCrossref
77.
Angelo  M, Bendall  SC, Finck  R,  et al.  Multiplexed ion beam imaging of human breast tumors.  Nat Med. 2014;20(4):436-442. doi:10.1038/nm.3488PubMedGoogle ScholarCrossref
78.
Velcheti  V, Schalper  KA, Carvajal  DE,  et al.  Programmed death ligand-1 expression in non-small cell lung cancer.  Lab Invest. 2014;94(1):107-116. doi:10.1038/labinvest.2013.130PubMedGoogle ScholarCrossref
79.
Spranger  S, Luke  JJ, Bao  R,  et al.  Density of immunogenic antigens does not explain the presence or absence of the T-cell-inflamed tumor microenvironment in melanoma.  Proc Natl Acad Sci U S A. 2016;113(48):E7759-E7768. doi:10.1073/pnas.1609376113PubMedGoogle ScholarCrossref
80.
Jain  RK, Lee  JJ, Ng  C,  et al.  Change in tumor size by RECIST correlates linearly with overall survival in phase I oncology studies.  J Clin Oncol. 2012;30(21):2684-2690. doi:10.1200/JCO.2011.36.4752PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close