[Skip to Content]
[Skip to Content Landing]

New Directions in Right Ventricular Assessment Using 3-Dimensional Echocardiography

Educational Objective
To improve understanding of right ventricular structure and function and the roles of 2-dimensional and 3-dimensional echocardiography approaches to evaluating the right ventricle.
1 Credit CME
Abstract

Importance  Before the introduction of 3-dimensional echocardiography, estimations of right ventricular (RV) size and function by echocardiography were limited to regional approximations of global function. This review describes the novel application of 3-dimensional echocardiography in the assessment of RV size and function, in juxtaposition with what is currently available using 2-dimensional echocardiography.

Observations  Two-dimensional echocardiographic evaluation of RV size and function includes measures of systolic basal longitudinal excursion (tricuspid annular plane systolic excursion and peak systolic velocity), fractional area change, and free-wall strain, all of which are measured from a single tomographic imaging plane: the RV-focused view. Given this limitation, clinical situations in which more accurate assessment of the RV or close patient follow-up were required were resolved with the use of cardiovascular magnetic resonance, computed tomography, and other modalities to obtain global measures of size and function (ie, volume and ejection fraction). With 3-dimensional echocardiography, both volume and ejection fraction assessments of the RV are possible with an accuracy and reproducibility close to that of cardiovascular magnetic resonance imaging. Further, 3-dimensional RV data sets can be cropped, sliced, and rotated to assess device leads, tricuspid valve leaflets, and RV wall–motion abnormalities. The 3-dimensional RV data set opens the horizon to endless possibilities for further exploration of novel parameters, including 3-dimensional RV shape and 3-dimensional RV deformation analysis.

Conclusions and Relevance  The use of 3-dimensional echocardiography overcomes many of the limitations associated with conventional 2-dimensional echocardiography and has the potential to provide the detailed information required for the complex clinical decision-making that requires accurate, quantitative information about the RV.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Accepted for Publication: May 29, 2019.

Corresponding Author: Roberto M. Lang, MD, Section of Cardiology, Department of Medicine, The University of Chicago, 5758 S Maryland Ave, MC 9067, DCAM 5509, Chicago, IL 60637 (rlang@medicine.bsd.uchicago.edu).

Published Online: July 24, 2019. doi:10.1001/jamacardio.2019.2424

Author Contributions: Drs Addetia and Lang had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Addetia, Badano, Lang.

Acquisition, analysis, or interpretation of data: Addetia, Muraru.

Drafting of the manuscript: Addetia, Muraru, Lang.

Critical revision of the manuscript for important intellectual content: Addetia, Badano, Lang.

Administrative, technical, or material support: Addetia, Lang.

Conflict of Interest Disclosures: Dr Muraru reported nonfinancial support from GE Healthcare during the conduct of the study and personal fees from GE Healthcare outside the submitted work. Dr Lang reported grants and other support from Philips Imaging Systems outside the submitted work. Dr Badano has received equipment grants from GE Vingmed and TomTec Imaging Systems and has received speaker honoraria from GE Vingmed outside the submitted work. No other disclosures were reported.

References
1.
Ling  LF, Obuchowski  NA, Rodriguez  L, Popovic  Z, Kwon  D, Marwick  TH.  Accuracy and interobserver concordance of echocardiographic assessment of right ventricular size and systolic function: a quality control exercise.  J Am Soc Echocardiogr. 2012;25(7):709-713. doi:10.1016/j.echo.2012.03.018PubMedGoogle ScholarCrossref
2.
Focardi  M, Cameli  M, Carbone  SF,  et al.  Traditional and innovative echocardiographic parameters for the analysis of right ventricular performance in comparison with cardiac magnetic resonance.  Eur Heart J Cardiovasc Imaging. 2015;16(1):47-52. doi:10.1093/ehjci/jeu156PubMedGoogle ScholarCrossref
3.
Anavekar  NS, Gerson  D, Skali  H, Kwong  RY, Yucel  EK, Solomon  SD.  Two-dimensional assessment of right ventricular function: an echocardiographic-MRI correlative study.  Echocardiography. 2007;24(5):452-456. doi:10.1111/j.1540-8175.2007.00424.xPubMedGoogle ScholarCrossref
4.
Turner  KR.  Right ventricular failure after left ventricular assist device placement-the beginning of the end or just another challenge?  J Cardiothorac Vasc Anesth. 2019;33(4):1105-1121. PubMedGoogle ScholarCrossref
5.
Addetia  K, Maffessanti  F, Yamat  M,  et al.  Three-dimensional echocardiography-based analysis of right ventricular shape in pulmonary arterial hypertension.  Eur Heart J Cardiovasc Imaging. 2016;17(5):564-575. doi:10.1093/ehjci/jev171PubMedGoogle ScholarCrossref
6.
Lang  RM, Addetia  K, Narang  A, Mor-Avi  V.  3-Dimensional echocardiography: latest developments and future directions.  JACC Cardiovasc Imaging. 2018;11(12):1854-1878. doi:10.1016/j.jcmg.2018.06.024PubMedGoogle ScholarCrossref
7.
Wu  VC, Takeuchi  M.  Echocardiographic assessment of right ventricular systolic function.  Cardiovasc Diagn Ther. 2018;8(1):70-79. doi:10.21037/cdt.2017.06.05PubMedGoogle ScholarCrossref
8.
Badano  LP, Ginghina  C, Easaw  J,  et al.  Right ventricle in pulmonary arterial hypertension: haemodynamics, structural changes, imaging, and proposal of a study protocol aimed to assess remodelling and treatment effects.  Eur J Echocardiogr. 2010;11(1):27-37. doi:10.1093/ejechocard/jep152PubMedGoogle ScholarCrossref
9.
Haddad  F, Hunt  SA, Rosenthal  DN, Murphy  DJ.  Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle.  Circulation. 2008;117(11):1436-1448. doi:10.1161/CIRCULATIONAHA.107.653576PubMedGoogle ScholarCrossref
10.
Mertens  LL, Friedberg  MK.  Imaging the right ventricle—current state of the art.  Nat Rev Cardiol. 2010;7(10):551-563. doi:10.1038/nrcardio.2010.118PubMedGoogle ScholarCrossref
11.
Dell’Italia  LJ.  The right ventricle: anatomy, physiology, and clinical importance.  Curr Probl Cardiol. 1991;16(10):653-720. doi:10.1016/0146-2806(91)90009-YPubMedGoogle Scholar
12.
Sanz  J, Sánchez-Quintana  D, Bossone  E, Bogaard  HJ, Naeije  R.  Anatomy, function, and dysfunction of the right ventricle: JACC state-of-the-art review.  J Am Coll Cardiol. 2019;73(12):1463-1482. doi:10.1016/j.jacc.2018.12.076PubMedGoogle ScholarCrossref
13.
Elstad  M.  Respiratory variations in pulmonary and systemic blood flow in healthy humans.  Acta Physiol (Oxf). 2012;205(3):341-348. doi:10.1111/j.1748-1716.2012.02419.xPubMedGoogle ScholarCrossref
14.
Vitarelli  A, Terzano  C.  Do we have two hearts? new insights in right ventricular function supported by myocardial imaging echocardiography.  Heart Fail Rev. 2010;15(1):39-61. doi:10.1007/s10741-009-9154-xPubMedGoogle ScholarCrossref
15.
Pettersen  E, Helle-Valle  T, Edvardsen  T,  et al.  Contraction pattern of the systemic right ventricle shift from longitudinal to circumferential shortening and absent global ventricular torsion.  J Am Coll Cardiol. 2007;49(25):2450-2456. doi:10.1016/j.jacc.2007.02.062PubMedGoogle ScholarCrossref
16.
Berlin  DA, Bakker  J.  Understanding venous return.  Intensive Care Med. 2014;40(10):1564-1566. doi:10.1007/s00134-014-3379-4PubMedGoogle ScholarCrossref
17.
Haber  I, Metaxas  DN, Geva  T, Axel  L.  Three-dimensional systolic kinematics of the right ventricle.  Am J Physiol Heart Circ Physiol. 2005;289(5):H1826-H1833. doi:10.1152/ajpheart.00442.2005PubMedGoogle ScholarCrossref
18.
Naeije  R, Brimioulle  S, Dewachter  L.  Biomechanics of the right ventricle in health and disease (2013 Grover conference series).  Pulm Circ. 2014;4(3):395-406. doi:10.1086/677354PubMedGoogle ScholarCrossref
19.
Aguero  J, Ishikawa  K, Hadri  L,  et al.  Characterization of right ventricular remodeling and failure in a chronic pulmonary hypertension model.  Am J Physiol Heart Circ Physiol. 2014;307(8):H1204-H1215. doi:10.1152/ajpheart.00246.2014PubMedGoogle ScholarCrossref
20.
Chaui-Berlinck  JG, Monteiro  LHA.  Frank-Starling mechanism and short-term adjustment of cardiac flow.  J Exp Biol. 2017;220(Pt 23):4391-4398. doi:10.1242/jeb.167106PubMedGoogle ScholarCrossref
21.
Cingolani  HE, Pérez  NG, Cingolani  OH, Ennis  IL.  The Anrep effect: 100 years later.  Am J Physiol Heart Circ Physiol. 2013;304(2):H175-H182. doi:10.1152/ajpheart.00508.2012PubMedGoogle ScholarCrossref
22.
Lang  RM, Badano  LP, Mor-Avi  V,  et al.  Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging.  J Am Soc Echocardiogr. 2015;28(1):1-39.e14. doi:10.1016/j.echo.2014.10.003PubMedGoogle ScholarCrossref
23.
Genovese  D, Mor-Avi  V, Palermo  C,  et al.  Comparison between four-chamber and right ventricular-focused views for the quantitative evaluation of right ventricular size and function.  J Am Soc Echocardiogr. 2019;32(4):484-494. doi:10.1016/j.echo.2018.11.014PubMedGoogle ScholarCrossref
24.
Kind  T, Mauritz  GJ, Marcus  JT, van de Veerdonk  M, Westerhof  N, Vonk-Noordegraaf  A.  Right ventricular ejection fraction is better reflected by transverse rather than longitudinal wall motion in pulmonary hypertension.  J Cardiovasc Magn Reson. 2010;12:35. doi:10.1186/1532-429X-12-35PubMedGoogle ScholarCrossref
25.
Tamborini  G, Muratori  M, Brusoni  D,  et al.  Is right ventricular systolic function reduced after cardiac surgery? a two- and three-dimensional echocardiographic study.  Eur J Echocardiogr. 2009;10(5):630-634. doi:10.1093/ejechocard/jep015PubMedGoogle ScholarCrossref
26.
Rudski  LG, Lai  WW, Afilalo  J,  et al.  Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography.  J Am Soc Echocardiogr. 2010;23(7):685-713. doi:10.1016/j.echo.2010.05.010PubMedGoogle ScholarCrossref
27.
Aune  E, Baekkevar  M, Rodevand  O, Otterstad  JE.  The limited usefulness of real-time 3-dimensional echocardiography in obtaining normal reference ranges for right ventricular volumes.  Cardiovasc Ultrasound. 2009;7:35. doi:10.1186/1476-7120-7-35PubMedGoogle ScholarCrossref
28.
Nesser  HJ, Tkalec  W, Patel  AR,  et al.  Quantitation of right ventricular volumes and ejection fraction by three-dimensional echocardiography in patients: comparison with magnetic resonance imaging and radionuclide ventriculography.  Echocardiography. 2006;23(8):666-680. doi:10.1111/j.1540-8175.2006.00286.xPubMedGoogle ScholarCrossref
29.
Giusca  S, Dambrauskaite  V, Scheurwegs  C,  et al.  Deformation imaging describes right ventricular function better than longitudinal displacement of the tricuspid ring.  Heart. 2010;96(4):281-288. doi:10.1136/hrt.2009.171728PubMedGoogle ScholarCrossref
30.
Eidem  BW, O’Leary  PW, Tei  C, Seward  JB.  Usefulness of the myocardial performance index for assessing right ventricular function in congenital heart disease.  Am J Cardiol. 2000;86(6):654-658. doi:10.1016/S0002-9149(00)01047-XPubMedGoogle ScholarCrossref
31.
Sebbag  I, Rudski  LG, Therrien  J, Hirsch  A, Langleben  D.  Effect of chronic infusion of epoprostenol on echocardiographic right ventricular myocardial performance index and its relation to clinical outcome in patients with primary pulmonary hypertension.  Am J Cardiol. 2001;88(9):1060-1063. doi:10.1016/S0002-9149(01)01995-6PubMedGoogle ScholarCrossref
32.
Muraru  D, Onciul  S, Peluso  D,  et al.  Sex- and method-specific reference values for right ventricular strain by 2-dimensional speckle-tracking echocardiography.  Circ Cardiovasc Imaging. 2016;9(2):e003866. doi:10.1161/CIRCIMAGING.115.003866PubMedGoogle ScholarCrossref
33.
Addetia  K, Maffessanti  F, Muraru  D,  et al.  Morphologic analysis of the normal right ventricle using three-dimensional echocardiography-derived curvature indices.  J Am Soc Echocardiogr. 2018;31(5):614-623. doi:10.1016/j.echo.2017.12.009PubMedGoogle ScholarCrossref
34.
Addetia  K, Muraru  D, Veronesi  F,  et al.  3-Dimensional echocardiographic analysis of the tricuspid annulus provides new insights into tricuspid valve geometry and dynamics.  JACC Cardiovasc Imaging. 2019;12(3):401-412. PubMedGoogle ScholarCrossref
35.
Lakatos  B, Tősér  Z, Tokodi  M,  et al.  Quantification of the relative contribution of the different right ventricular wall motion components to right ventricular ejection fraction: the ReVISION method.  Cardiovasc Ultrasound. 2017;15(1):8. doi:10.1186/s12947-017-0100-0PubMedGoogle ScholarCrossref
36.
Smith  BC, Dobson  G, Dawson  D, Charalampopoulos  A, Grapsa  J, Nihoyannopoulos  P.  Three-dimensional speckle tracking of the right ventricle: toward optimal quantification of right ventricular dysfunction in pulmonary hypertension.  J Am Coll Cardiol. 2014;64(1):41-51. doi:10.1016/j.jacc.2014.01.084PubMedGoogle ScholarCrossref
37.
Surkova  E, Muraru  D, Iliceto  S, Badano  LP.  The use of multimodality cardiovascular imaging to assess right ventricular size and function.  Int J Cardiol. 2016;214:54-69. doi:10.1016/j.ijcard.2016.03.074PubMedGoogle ScholarCrossref
38.
Nagata  Y, Wu  VC, Kado  Y,  et al.  Prognostic value of right ventricular ejection fraction assessed by transthoracic 3D echocardiography.  Circ Cardiovasc Imaging. 2017;10(2):e005384. doi:10.1161/CIRCIMAGING.116.005384PubMedGoogle ScholarCrossref
39.
Vitarelli  A, Barillà  F, Capotosto  L,  et al.  Right ventricular function in acute pulmonary embolism: a combined assessment by three-dimensional and speckle-tracking echocardiography.  J Am Soc Echocardiogr. 2014;27(3):329-338. doi:10.1016/j.echo.2013.11.013PubMedGoogle ScholarCrossref
40.
Fusini  L, Tamborini  G, Gripari  P,  et al.  Feasibility of intraoperative three-dimensional transesophageal echocardiography in the evaluation of right ventricular volumes and function in patients undergoing cardiac surgery.  J Am Soc Echocardiogr. 2011;24(8):868-877. doi:10.1016/j.echo.2011.05.002PubMedGoogle ScholarCrossref
41.
Shimada  YJ, Shiota  M, Siegel  RJ, Shiota  T.  Accuracy of right ventricular volumes and function determined by three-dimensional echocardiography in comparison with magnetic resonance imaging: a meta-analysis study.  J Am Soc Echocardiogr. 2010;23(9):943-953. doi:10.1016/j.echo.2010.06.029PubMedGoogle ScholarCrossref
42.
Handke  M, Heinrichs  G, Magosaki  E, Lutter  G, Bode  C, Geibel  A.  Three-dimensional echocardiographic determination of cardiac output at rest and under dobutamine stress: comparison with thermodilution measurements in the ischemic pig model.  Echocardiography. 2003;20(1):47-55. doi:10.1046/j.1540-8175.2003.00006.xPubMedGoogle ScholarCrossref
43.
Laser  KT, Karabiyik  A, Körperich  H,  et al.  Validation and reference values for three-dimensional echocardiographic right ventricular volumetry in children: a multicenter study.  J Am Soc Echocardiogr. 2018;31(9):1050-1063. doi:10.1016/j.echo.2018.03.010PubMedGoogle ScholarCrossref
44.
Muraru  D, Spadotto  V, Cecchetto  A,  et al.  New speckle-tracking algorithm for right ventricular volume analysis from three-dimensional echocardiographic data sets: validation with cardiac magnetic resonance and comparison with the previous analysis tool.  Eur Heart J Cardiovasc Imaging. 2016;17(11):1279-1289. doi:10.1093/ehjci/jev309PubMedGoogle ScholarCrossref
45.
van der Zwaan  HB, Helbing  WA, McGhie  JS,  et al.  Clinical value of real-time three-dimensional echocardiography for right ventricular quantification in congenital heart disease: validation with cardiac magnetic resonance imaging.  J Am Soc Echocardiogr. 2010;23(2):134-140. doi:10.1016/j.echo.2009.12.001PubMedGoogle ScholarCrossref
46.
Khoo  NS, Young  A, Occleshaw  C, Cowan  B, Zeng  IS, Gentles  TL.  Assessments of right ventricular volume and function using three-dimensional echocardiography in older children and adults with congenital heart disease: comparison with cardiac magnetic resonance imaging.  J Am Soc Echocardiogr. 2009;22(11):1279-1288. doi:10.1016/j.echo.2009.08.011PubMedGoogle ScholarCrossref
47.
Maffessanti  F, Muraru  D, Esposito  R,  et al.  Age-, body size-, and sex-specific reference values for right ventricular volumes and ejection fraction by three-dimensional echocardiography: a multicenter echocardiographic study in 507 healthy volunteers.  Circ Cardiovasc Imaging. 2013;6(5):700-710. doi:10.1161/CIRCIMAGING.113.000706PubMedGoogle ScholarCrossref
48.
Addetia  K, Uriel  N, Maffessanti  F,  et al.  3D morphological changes in LV and RV during LVAD ramp studies.  JACC Cardiovasc Imaging. 2018;11(2 Pt 1):159-169. doi:10.1016/j.jcmg.2016.12.019PubMedGoogle ScholarCrossref
49.
Medvedofsky  D, Mor-Avi  V, Kruse  E,  et al.  Quantification of right ventricular size and function from contrast-enhanced three-dimensional echocardiographic images.  J Am Soc Echocardiogr. 2017;30(12):1193-1202. doi:10.1016/j.echo.2017.08.003PubMedGoogle ScholarCrossref
50.
Gopal  AS, Chukwu  EO, Iwuchukwu  CJ,  et al.  Normal values of right ventricular size and function by real-time 3-dimensional echocardiography: comparison with cardiac magnetic resonance imaging.  J Am Soc Echocardiogr. 2007;20(5):445-455. doi:10.1016/j.echo.2006.10.027PubMedGoogle ScholarCrossref
51.
Schindera  ST, Mehwald  PS, Sahn  DJ, Kececioglu  D.  Accuracy of real-time three-dimensional echocardiography for quantifying right ventricular volume: static and pulsatile flow studies in an anatomic in vitro model.  J Ultrasound Med. 2002;21(10):1069-1075. doi:10.7863/jum.2002.21.10.1069PubMedGoogle ScholarCrossref
52.
Sugeng  L, Mor-Avi  V, Weinert  L,  et al.  Multimodality comparison of quantitative volumetric analysis of the right ventricle.  JACC Cardiovasc Imaging. 2010;3(1):10-18. doi:10.1016/j.jcmg.2009.09.017PubMedGoogle ScholarCrossref
53.
Jenkins  C, Chan  J, Bricknell  K, Strudwick  M, Marwick  TH.  Reproducibility of right ventricular volumes and ejection fraction using real-time three-dimensional echocardiography: comparison with cardiac MRI.  Chest. 2007;131(6):1844-1851. doi:10.1378/chest.06-2143PubMedGoogle ScholarCrossref
54.
Medvedofsky  D, Addetia  K, Patel  AR,  et al.  Novel approach to three-dimensional echocardiographic quantification of right ventricular volumes and function from focused views.  J Am Soc Echocardiogr. 2015;28(10):1222-1231. doi:10.1016/j.echo.2015.06.013PubMedGoogle ScholarCrossref
55.
Kawut  SM, Lima  JA, Barr  RG,  et al.  Sex and race differences in right ventricular structure and function: the multi-ethnic study of atherosclerosis-right ventricle study.  Circulation. 2011;123(22):2542-2551. doi:10.1161/CIRCULATIONAHA.110.985515PubMedGoogle ScholarCrossref
56.
Douglas  PS, Morrow  R, Ioli  A, Reichek  N.  Left ventricular shape, afterload and survival in idiopathic dilated cardiomyopathy.  J Am Coll Cardiol. 1989;13(2):311-315. doi:10.1016/0735-1097(89)90504-4PubMedGoogle ScholarCrossref
57.
Nakamori  S, Ismail  H, Ngo  LH, Manning  WJ, Nezafat  R.  Left ventricular geometry predicts ventricular tachyarrhythmia in patients with left ventricular systolic dysfunction: a comprehensive cardiovascular magnetic resonance study.  J Cardiovasc Magn Reson. 2017;19(1):79. doi:10.1186/s12968-017-0396-9PubMedGoogle ScholarCrossref
58.
Maffessanti  F, Caiani  EG, Tamborini  G,  et al.  Serial changes in left ventricular shape following early mitral valve repair.  Am J Cardiol. 2010;106(6):836-842. doi:10.1016/j.amjcard.2010.04.044PubMedGoogle ScholarCrossref
59.
Medvedofsky  D, Maffessanti  F, Weinert  L,  et al.  2D and 3D echocardiography-derived indices of left ventricular function and shape: relationship with mortality.  JACC Cardiovasc Imaging. 2018;11(11):1569-1579. doi:10.1016/j.jcmg.2017.08.023PubMedGoogle ScholarCrossref
60.
Ryan  T, Petrovic  O, Dillon  JC, Feigenbaum  H, Conley  MJ, Armstrong  WF.  An echocardiographic index for separation of right ventricular volume and pressure overload.  J Am Coll Cardiol. 1985;5(4):918-927. doi:10.1016/S0735-1097(85)80433-2PubMedGoogle ScholarCrossref
61.
López-Candales  A, Dohi  K, Iliescu  A, Peterson  RC, Edelman  K, Bazaz  R.  An abnormal right ventricular apical angle is indicative of global right ventricular impairment.  Echocardiography. 2006;23(5):361-368. doi:10.1111/j.1540-8175.2006.00237.xPubMedGoogle ScholarCrossref
62.
Ryo  K, Goda  A, Onishi  T,  et al.  Characterization of right ventricular remodeling in pulmonary hypertension associated with patient outcomes by 3-dimensional wall motion tracking echocardiography.  Circ Cardiovasc Imaging. 2015;8(6):e003176. doi:10.1161/CIRCIMAGING.114.003176PubMedGoogle ScholarCrossref
63.
Kiernan  MS, French  AL, DeNofrio  D,  et al.  Preoperative three-dimensional echocardiography to assess risk of right ventricular failure after left ventricular assist device surgery.  J Card Fail. 2015;21(3):189-197. doi:10.1016/j.cardfail.2014.12.009PubMedGoogle ScholarCrossref
64.
Pedrizzetti  G, Sengupta  S, Caracciolo  G,  et al.  Three-dimensional principal strain analysis for characterizing subclinical changes in left ventricular function.  J Am Soc Echocardiogr. 2014;27(10):1041-1050.e1. doi:10.1016/j.echo.2014.05.014PubMedGoogle ScholarCrossref
65.
Satriano  A, Pournazari  P, Hirani  N,  et al.  Characterization of right ventricular deformation in pulmonary arterial hypertension using three-dimensional principal strain analysis.  J Am Soc Echocardiogr. 2019;32(3):385-393.PubMedGoogle ScholarCrossref
66.
Anwar  S, Singh  GK, Miller  J,  et al.  3D printing is a transformative technology in congenital heart disease.  JACC Basic Transl Sci. 2018;3(2):294-312. doi:10.1016/j.jacbts.2017.10.003PubMedGoogle ScholarCrossref
67.
Vukicevic  M, Mosadegh  B, Min  JK, Little  SH.  Cardiac 3D printing and its future directions.  JACC Cardiovasc Imaging. 2017;10(2):171-184. doi:10.1016/j.jcmg.2016.12.001PubMedGoogle ScholarCrossref
68.
Kato  A, Sandoval  JP, Mroczek  D,  et al.  Automated 3-dimensional single-beat real-time volume colour flow doppler echocardiography in children: a validation study of right and left heart flows.  Can J Cardiol. 2018;34(6):726-735. doi:10.1016/j.cjca.2018.03.001PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Topics
State Requirements