[Skip to Content]
[Skip to Content Landing]

Myocardial Injury in the Era of High-Sensitivity Cardiac Troponin AssaysA Practical Approach for Clinicians

Educational Objective
To describe the pathophysiology, utility, and challenges of elevated high-sensitivity cardiac troponin as associated with myocardial injury.
1 Credit CME
Abstract

Importance  Traditionally, elevated troponin concentrations were synonymous with myocardial infarction. But with improvements in troponin assays, elevated concentrations without overt myocardial ischemia are now more common; this is referred to as myocardial injury. Physicians may be falsely reassured by the absence of myocardial ischemia; however, recent evidence suggests that myocardial injury is associated with even more detrimental outcomes. Accordingly, this article reviews the definition, epidemiology, differential diagnosis, diagnostic evaluation, and management of myocardial injury.

Observations  Current epidemiological evidence suggests that myocardial injury without overt ischemia represents about 60% of cases of abnormal troponin concentrations when obtained for clinical indications, and 1 in 8 patients presenting to the hospital will have evidence of myocardial injury. Myocardial injury is a concerning prognosis; the 5-year mortality rate is approximately 70%, with a major adverse cardiovascular event rate of 30% in the same period. The differential diagnosis is broad and can be divided into acute and chronic precipitants. The initial workup involves an assessment for myocardial ischemia. If infarction is ruled out, further evaluation includes a detailed history, physical examination, laboratory testing, a 12-lead electrocardiogram, and (if there is no known history of structural or valvular heart disease) an echocardiogram. Unfortunately, no consensus exists on routine management of patients with myocardial injury. Identifying and treating the underlying precipitant is the most practical approach.

Conclusion and Relevance  Myocardial injury is the most common cause of abnormal troponin results, and its incidence will likely increase with an aging population, increasing prevalence of cardiovascular comorbidities, and greater sensitivity of troponin assays. Myocardial injury represents a challenge to clinicians; however, given its serious prognosis, it warrants a thorough evaluation of its underlying precipitant. Future strategies to prevent and/or manage myocardial injury are needed.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Accepted for Publication: June 14, 2019.

Corresponding Author: James L. Januzzi Jr, MD, Massachusetts General Hospital, 32 Fruit St, Yawkey 5B, Boston, MA 02114 (jjanuzzi@mgh.harvard.edu).

Published Online: August 7, 2019. doi:10.1001/jamacardio.2019.2724

Author Contributions: Drs McCarthy and Januzzi had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: All authors.

Acquisition, analysis, or interpretation of data: McCarthy, Sandoval.

Drafting of the manuscript: McCarthy, Raber, Chapman, Januzzi.

Critical revision of the manuscript for important intellectual content: Chapman, Sandoval, Apple, Mills, Januzzi.

Administrative, technical, or material support: Mills.

Supervision: Sandoval, Januzzi.

Conflict of Interest Disclosures: Dr Chapman reports having received honoraria from Abbott Diagnostics and AstraZeneca. Dr Apple has acted as a consultant for LumiraDx and Banyon Biomarkers; is on the board of directors at HyTest Ltd; has received advisory honoraria from Instrumentation Laboratory and Siemens Healthineers; has been a research principal investigator through the Hennepin Healthcare Research Institute (formerly Minneapolis Medical Research Foundation); has had nonsalaried grant relationships with Abbott Diagnostics, Abbott POC, Roche Diagnostics, Siemens Healthcare, Quidel/Alere, Ortho-Clinical Diagnostics, Qurvo, Becton Dickinson, Beckman Coulter, Amgen, and Singulex; and has received personal fees from Clinical Chemistry during the conduct of the study. Dr Mills has acted as a consultant for Abbott Diagnostics, Beckman-Coulter, Roche, and Singulex; has received grants from Abbott Diagnostics; has received grants and personal fees from Siemens Healthineers outside the submitted work; and is supported by a Butler Senior Clinical Research Fellowship (grant FS/16/14/32023) and Research Excellence Award (grant RE/18/5/34216) from the British Heart Foundation. Dr Januzzi has received grant support from Roche Diagnostics, Abbott Diagnostics, Singulex, Prevencio, and Cleveland Heart Labs; has received consulting income from Roche Diagnostics, MyoKardia, Abbott, and Critical Diagnostics; and has participated in clinical end point committees and/or data safety monitoring boards for Boehringer-Ingelheim, Amgen, AbbVie, Janssen, Abbott, and Siemens Diagnostics. Dr Sandoval reports present participation in an advisory board for Abbott Diagnostics and past, nonsalaried advisory board participation for Roche Diagnostics. No other disclosures were reported.

References
1.
Ebashi  S.  Third component participating in the superprecipitation of ‘natural actomyosin’.  Nature. 1963;200:1010. doi:10.1038/2001010a0PubMedGoogle ScholarCrossref
2.
Wu  AH, Feng  YJ, Contois  JH, Pervaiz  S.  Comparison of myoglobin, creatine kinase-MB, and cardiac troponin I for diagnosis of acute myocardial infarction.  Ann Clin Lab Sci. 1996;26(4):291-300.PubMedGoogle Scholar
3.
Katus  HA, Remppis  A, Scheffold  T, Diederich  KW, Kuebler  W.  Intracellular compartmentation of cardiac troponin T and its release kinetics in patients with reperfused and nonreperfused myocardial infarction.  Am J Cardiol. 1991;67(16):1360-1367. doi:10.1016/0002-9149(91)90466-XPubMedGoogle ScholarCrossref
4.
Apple  FS, Sandoval  Y, Jaffe  AS, Ordonez-Llanos  J; IFCC Task Force on Clinical Applications of Cardiac Bio-Markers.  Cardiac troponin assays: guide to understanding analytical characteristics and their impact on clinical care.  Clin Chem. 2017;63(1):73-81. doi:10.1373/clinchem.2016.255109PubMedGoogle ScholarCrossref
5.
Bergmann  O, Bhardwaj  RD, Bernard  S,  et al.  Evidence for cardiomyocyte renewal in humans.  Science. 2009;324(5923):98-102. doi:10.1126/science.1164680PubMedGoogle ScholarCrossref
6.
Keller  T, Zeller  T, Ojeda  F,  et al.  Serial changes in highly sensitive troponin I assay and early diagnosis of myocardial infarction.  JAMA. 2011;306(24):2684-2693. doi:10.1001/jama.2011.1896PubMedGoogle ScholarCrossref
7.
Sandoval  Y, Thygesen  K.  Myocardial infarction type 2 and myocardial injury.  Clin Chem. 2017;63(1):101-107. doi:10.1373/clinchem.2016.255521PubMedGoogle ScholarCrossref
8.
Thygesen  K, Alpert  JS, Jaffe  AS,  et al; Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction.  Fourth universal definition of myocardial infarction (2018).  J Am Coll Cardiol. 2018;72(18):2231-2264. doi:10.1016/j.jacc.2018.08.1038PubMedGoogle ScholarCrossref
9.
Sandoval  Y, Smith  SW, Sexter  A,  et al.  Type 1 and 2 myocardial infarction and myocardial injury: clinical transition to high-sensitivity cardiac troponin I.  Am J Med. 2017;130(12):1431-1439.e4. doi:10.1016/j.amjmed.2017.05.049PubMedGoogle ScholarCrossref
10.
McFalls  EO, Larsen  G, Johnson  GR,  et al.  Outcomes of hospitalized patients with non-acute coronary syndrome and elevated cardiac troponin level.  Am J Med. 2011;124(7):630-635. doi:10.1016/j.amjmed.2011.02.024PubMedGoogle ScholarCrossref
11.
Chapman  AR, Shah  ASV, Lee  KK,  et al.  Long-term outcomes in patients with type 2 myocardial infarction and myocardial injury.  Circulation. 2018;137(12):1236-1245. doi:10.1161/CIRCULATIONAHA.117.031806PubMedGoogle ScholarCrossref
12.
Everett  BM, Brooks  MM, Vlachos  HEA, Chaitman  BR, Frye  RL, Bhatt  DL; BARI 2D Study Group.  Troponin and cardiac events in stable ischemic heart disease and diabetes.  N Engl J Med. 2015;373(7):610-620. doi:10.1056/NEJMoa1415921PubMedGoogle ScholarCrossref
13.
Omland  T, Pfeffer  MA, Solomon  SD,  et al; PEACE Investigators.  Prognostic value of cardiac troponin I measured with a highly sensitive assay in patients with stable coronary artery disease.  J Am Coll Cardiol. 2013;61(12):1240-1249. doi:10.1016/j.jacc.2012.12.026PubMedGoogle ScholarCrossref
14.
Wu  AHB, Christenson  RH, Greene  DN,  et al.  Clinical laboratory practice recommendations for the use of cardiac troponin in acute coronary syndrome: expert opinion from the Academy of the American Association for Clinical Chemistry and the Task Force on Clinical Applications of Cardiac Bio-Markers of the International Federation of Clinical Chemistry and Laboratory Medicine.  Clin Chem. 2018;64(4):645-655. doi:10.1373/clinchem.2017.277186PubMedGoogle ScholarCrossref
15.
Twerenbold  R, Jaffe  A, Reichlin  T, Reiter  M, Mueller  C.  High-sensitive troponin T measurements: what do we gain and what are the challenges?  Eur Heart J. 2012;33(5):579-586. doi:10.1093/eurheartj/ehr492PubMedGoogle ScholarCrossref
16.
Weil  BR, Suzuki  G, Young  RF, Iyer  V, Canty  JM  Jr.  Troponin release and reversible left ventricular dysfunction after transient pressure overload.  J Am Coll Cardiol. 2018;71(25):2906-2916. doi:10.1016/j.jacc.2018.04.029PubMedGoogle ScholarCrossref
17.
Lauer  B, Niederau  C, Kühl  U,  et al.  Cardiac troponin T in patients with clinically suspected myocarditis.  J Am Coll Cardiol. 1997;30(5):1354-1359. doi:10.1016/S0735-1097(97)00317-3PubMedGoogle ScholarCrossref
18.
Kitayama  H, Kondo  T, Sugiyama  J,  et al.  High-sensitive troponin T assay can predict anthracycline- and trastuzumab-induced cardiotoxicity in breast cancer patients.  Breast Cancer. 2017;24(6):774-782. doi:10.1007/s12282-017-0778-8PubMedGoogle ScholarCrossref
19.
deFilippi  C, Seliger  SL, Kelley  W,  et al.  Interpreting cardiac troponin results from high-sensitivity assays in chronic kidney disease without acute coronary syndrome.  Clin Chem. 2012;58(9):1342-1351. doi:10.1373/clinchem.2012.185322PubMedGoogle ScholarCrossref
20.
Lee  KK, Noaman  A, Vaswani  A,  et al.  Prevalence, determinants, and clinical associations of high-sensitivity cardiac troponin in patients attending emergency departments.  Am J Med. 2019;132(1):110.e8-110.e21. doi:10.1016/j.amjmed.2018.10.002PubMedGoogle ScholarCrossref
21.
Shah  ASV, Anand  A, Strachan  FE,  et al; High-STEACS Investigators.  High-sensitivity troponin in the evaluation of patients with suspected acute coronary syndrome: a stepped-wedge, cluster-randomised controlled trial.  Lancet. 2018;392(10151):919-928. doi:10.1016/S0140-6736(18)31923-8PubMedGoogle ScholarCrossref
22.
Kadesjo  E, Roos  A, Siddiqui  AJ, Desta  L, Lundback  M, Holzmann  M.  Acute versus chronic myocardial injury and outcomes.  J Am Coll Cardiol. 2019;73(9)(suppl 1):105. doi:10.1016/S0735-1097(19)30713-2Google ScholarCrossref
23.
Sarkisian  L, Saaby  L, Poulsen  TS,  et al.  Clinical characteristics and outcomes of patients with myocardial infarction, myocardial injury, and nonelevated troponins.  Am J Med. 2016;129(4):446.e5-446.e21. doi:10.1016/j.amjmed.2015.11.006PubMedGoogle ScholarCrossref
24.
Dolci  A, Braga  F, Valente  C, Guzzetti  S, Panteghini  M.  Impact of implementation of the high-sensitivity cardiac troponin T assay in a university hospital setting.  Clin Chem. 2011;57(8):1211-1212. doi:10.1373/clinchem.2011.164426PubMedGoogle ScholarCrossref
25.
Douketis  JD, Crowther  MA, Stanton  EB, Ginsberg  JS.  Elevated cardiac troponin levels in patients with submassive pulmonary embolism.  Arch Intern Med. 2002;162(1):79-81. doi:10.1001/archinte.162.1.79PubMedGoogle ScholarCrossref
26.
Kobayashi  D, Aggarwal  S, Kheiwa  A, Shah  N.  Myopericarditis in children: elevated troponin I level does not predict outcome.  Pediatr Cardiol. 2012;33(7):1040-1045. doi:10.1007/s00246-012-0222-yPubMedGoogle ScholarCrossref
27.
Vagnarelli  F, Corsini  A, Bugani  G,  et al.  Troponin T elevation in acute aortic syndromes: Frequency and impact on diagnostic delay and misdiagnosis.  Eur Heart J Acute Cardiovasc Care. 2016;5(7):61-71. doi:10.1177/2048872615590146PubMedGoogle ScholarCrossref
28.
Januzzi  JL, Lewandrowski  K, MacGillivray  TE,  et al.  A comparison of cardiac troponin T and creatine kinase-MB for patient evaluation after cardiac surgery.  J Am Coll Cardiol. 2002;39(9):1518-1523. doi:10.1016/S0735-1097(02)01789-8PubMedGoogle ScholarCrossref
29.
Yoshida  K, Yui  Y, Kimata  A,  et al.  Troponin elevation after radiofrequency catheter ablation of atrial fibrillation: relevance to AF substrate, procedural outcomes, and reverse structural remodeling.  Heart Rhythm. 2014;11(8):1336-1342. doi:10.1016/j.hrthm.2014.04.015PubMedGoogle ScholarCrossref
30.
Thelin  J, Melander  O.  Dynamic high-sensitivity troponin elevations in atrial fibrillation patients might not be associated with significant coronary artery disease.  BMC Cardiovasc Disord. 2017;17(1):169. doi:10.1186/s12872-017-0601-7PubMedGoogle ScholarCrossref
31.
Peacock  WF  IV, De Marco  T, Fonarow  GC,  et al; ADHERE Investigators.  Cardiac troponin and outcome in acute heart failure.  N Engl J Med. 2008;358(20):2117-2126. doi:10.1056/NEJMoa0706824PubMedGoogle ScholarCrossref
32.
Olaf  S, Debora  B, Ricarda  B,  et al.  Exercise tolerance in asymptomatic patients with moderate-severe valvular heart disease and preserved ejection fraction.  Arch Med Sci. 2012;8(6):1018-1026. doi:10.5114/aoms.2012.32409PubMedGoogle ScholarCrossref
33.
Madhavan  M, Borlaug  BA, Lerman  A, Rihal  CS, Prasad  A.  Stress hormone and circulating biomarker profile of apical ballooning syndrome (takotsubo cardiomyopathy): insights into the clinical significance of B-type natriuretic peptide and troponin levels.  Heart. 2009;95(17):1436-1441. doi:10.1136/hrt.2009.170399PubMedGoogle ScholarCrossref
34.
Müllner  M, Oschatz  E, Sterz  F,  et al.  The influence of chest compressions and external defibrillation on the release of creatine kinase-MB and cardiac troponin T in patients resuscitated from out-of-hospital cardiac arrest.  Resuscitation. 1998;38(2):99-105. doi:10.1016/S0300-9572(98)00087-2PubMedGoogle ScholarCrossref
35.
Song  D, de Zoysa  JR, Ng  A, Chiu  W.  Troponins in acute kidney injury.  Ren Fail. 2012;34(1):35-39. doi:10.3109/0886022X.2011.623440PubMedGoogle ScholarCrossref
36.
Ammann  P, Fehr  T, Minder  EI, Günter  C, Bertel  O.  Elevation of troponin I in sepsis and septic shock.  Intensive Care Med. 2001;27(6):965-969. doi:10.1007/s001340100920PubMedGoogle ScholarCrossref
37.
Bellotto  F, Fagiuoli  S, Pavei  A,  et al.  Anemia and ischemia: myocardial injury in patients with gastrointestinal bleeding.  Am J Med. 2005;118(5):548-551. doi:10.1016/j.amjmed.2005.01.026PubMedGoogle ScholarCrossref
38.
Klein Gunnewiek  JMT, van de Leur  JJJPM.  Elevated troponin T concentrations in critically ill patients.  Intensive Care Med. 2003;29(12):2317-2322. doi:10.1007/s00134-003-1953-2PubMedGoogle ScholarCrossref
39.
Brekke  PH, Omland  T, Holmedal  SH, Smith  P, Søyseth  V.  Troponin T elevation and long-term mortality after chronic obstructive pulmonary disease exacerbation.  Eur Respir J. 2008;31(3):563-570. doi:10.1183/09031936.00015807PubMedGoogle ScholarCrossref
40.
Puelacher  C, Lurati Buse  G, Seeberger  D,  et al; BASEL-PMI Investigators.  Perioperative myocardial injury after noncardiac surgery: incidence, mortality, and characterization.  Circulation. 2018;137(12):1221-1232. doi:10.1161/CIRCULATIONAHA.117.030114PubMedGoogle ScholarCrossref
41.
Lim  W, Qushmaq  I, Devereaux  PJ,  et al.  Elevated cardiac troponin measurements in critically ill patients.  Arch Intern Med. 2006;166(22):2446-2454. doi:10.1001/archinte.166.22.2446PubMedGoogle ScholarCrossref
42.
Punukollu  G, Gowda  RM, Khan  IA,  et al.  Elevated serum cardiac troponin I in rhabdomyolysis.  Int J Cardiol. 2004;96(1):35-40. doi:10.1016/j.ijcard.2003.04.053PubMedGoogle ScholarCrossref
43.
Sandhu  R, Aronow  WS, Rajdev  A,  et al.  Relation of cardiac troponin I levels with in-hospital mortality in patients with ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage.  Am J Cardiol. 2008;102(5):632-634. doi:10.1016/j.amjcard.2008.04.036PubMedGoogle ScholarCrossref
44.
Fortescue  EB, Shin  AY, Greenes  DS,  et al.  Cardiac troponin increases among runners in the Boston Marathon.  Ann Emerg Med. 2007;49(2):137-143, 143.e1. doi:10.1016/j.annemergmed.2006.09.024PubMedGoogle ScholarCrossref
45.
deFilippi  C, Wasserman  S, Rosanio  S,  et al.  Cardiac troponin T and C-reactive protein for predicting prognosis, coronary atherosclerosis, and cardiomyopathy in patients undergoing long-term hemodialysis.  JAMA. 2003;290(3):353-359. doi:10.1001/jama.290.3.353PubMedGoogle ScholarCrossref
46.
Aimo  A, Januzzi  JL  Jr, Vergaro  G,  et al.  Prognostic value of high-sensitivity troponin t in chronic heart failure: an individual patient data meta-analysis.  Circulation. 2018;137(3):286-297. doi:10.1161/CIRCULATIONAHA.117.031560PubMedGoogle ScholarCrossref
47.
Qian  G, Wu  C, Zhang  Y, Chen  YD, Dong  W, Ren  YH.  Prognostic value of high-sensitivity cardiac troponin T in patients with endomyocardial-biopsy proven cardiac amyloidosis.  J Geriatr Cardiol. 2014;11(2):136-140.PubMedGoogle Scholar
48.
Kubo  T, Kitaoka  H, Yamanaka  S,  et al.  Significance of high-sensitivity cardiac troponin T in hypertrophic cardiomyopathy.  J Am Coll Cardiol. 2013;62(14):1252-1259. doi:10.1016/j.jacc.2013.03.055PubMedGoogle ScholarCrossref
49.
Januzzi  JL  Jr, Suchindran  S, Coles  A,  et al.  High-sensitivity troponin I and coronary computed tomography in symptomatic outpatients with suspected coronary artery disease: insights from the PROMISE trial.  JACC Cardiovasc Imaging. 2019;12(6):1047-1055. doi:10.1016/j.jcmg.2018.01.021PubMedGoogle ScholarCrossref
50.
Aeschbacher  S, Schoen  T, Bossard  M,  et al.  Relationship between high-sensitivity cardiac troponin I and blood pressure among young and healthy adults.  Am J Hypertens. 2015;28(6):789-796. doi:10.1093/ajh/hpu226PubMedGoogle ScholarCrossref
51.
Røsjø  H, Andreassen  J, Edvardsen  T, Omland  T.  Prognostic usefulness of circulating high-sensitivity troponin T in aortic stenosis and relation to echocardiographic indexes of cardiac function and anatomy.  Am J Cardiol. 2011;108(1):88-91. doi:10.1016/j.amjcard.2011.02.346PubMedGoogle ScholarCrossref
52.
van den Bos  EJ, Constantinescu  AA, van Domburg  RT, Akin  S, Jordaens  LJ, Kofflard  MJ.  Minor elevations in troponin I are associated with mortality and adverse cardiac events in patients with atrial fibrillation.  Eur Heart J. 2011;32(5):611-617. doi:10.1093/eurheartj/ehq491PubMedGoogle ScholarCrossref
53.
Apple  FS, Murakami  MM, Pearce  LA, Herzog  CA.  Predictive value of cardiac troponin I and T for subsequent death in end-stage renal disease.  Circulation. 2002;106(23):2941-2945. doi:10.1161/01.CIR.0000041254.30637.34PubMedGoogle ScholarCrossref
54.
Heresi  GA, Tang  WH, Aytekin  M, Hammel  J, Hazen  SL, Dweik  RA.  Sensitive cardiac troponin I predicts poor outcomes in pulmonary arterial hypertension.  Eur Respir J. 2012;39(4):939-944. doi:10.1183/09031936.00067011PubMedGoogle ScholarCrossref
55.
Riley  ED, Hsue  PY, Vittinghoff  E,  et al.  Higher prevalence of detectable troponin I among cocaine-users without known cardiovascular disease.  Drug Alcohol Depend. 2017;172:88-93. doi:10.1016/j.drugalcdep.2016.11.039PubMedGoogle ScholarCrossref
56.
Segre  CAW, Hueb  W, Garcia  RM,  et al.  Troponin in diabetic patients with and without chronic coronary artery disease.  BMC Cardiovasc Disord. 2015;15:72. doi:10.1186/s12872-015-0051-zPubMedGoogle ScholarCrossref
57.
Ilva  TJ, Eskola  MJ, Nikus  KC,  et al.  The etiology and prognostic significance of cardiac troponin I elevation in unselected emergency department patients.  J Emerg Med. 2010;38(1):1-5. doi:10.1016/j.jemermed.2007.09.060PubMedGoogle ScholarCrossref
58.
Eggers  KM, Jernberg  T, Lindahl  B.  Cardiac troponin elevation in patients without a specific diagnosis.  J Am Coll Cardiol. 2019;73(1):1-9. doi:10.1016/j.jacc.2018.09.082PubMedGoogle ScholarCrossref
59.
Sarkisian  L, Saaby  L, Poulsen  TS,  et al.  Prognostic impact of myocardial injury related to various cardiac and noncardiac conditions.  Am J Med. 2016;129(5):506-514.e1. doi:10.1016/j.amjmed.2015.12.009PubMedGoogle ScholarCrossref
60.
Cardinale  D, Sandri  MT, Martinoni  A,  et al.  Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy.  J Am Coll Cardiol. 2000;36(2):517-522. doi:10.1016/S0735-1097(00)00748-8PubMedGoogle ScholarCrossref
61.
Michos  ED, Wilson  LM, Yeh  HC,  et al.  Prognostic value of cardiac troponin in patients with chronic kidney disease without suspected acute coronary syndrome: a systematic review and meta-analysis.  Ann Intern Med. 2014;161(7):491-501. doi:10.7326/M14-0743PubMedGoogle ScholarCrossref
62.
Sandoval  Y, Herzog  CA, Love  SA,  et al.  Prognostic value of serial changes in high-sensitivity cardiac troponin I and T over 3 months using reference change values in hemodialysis patients.  Clin Chem. 2016;62(4):631-638. doi:10.1373/clinchem.2015.251835PubMedGoogle ScholarCrossref
63.
La Vecchia  L, Ottani  F, Favero  L,  et al.  Increased cardiac troponin I on admission predicts in-hospital mortality in acute pulmonary embolism.  Heart. 2004;90(6):633-637. doi:10.1136/hrt.2003.019745PubMedGoogle ScholarCrossref
64.
Cediel  G, Sandoval  Y, Sexter  A,  et al.  Risk estimation in type 2 myocardial infarction and myocardial injury: the TARRACO risk score.  Am J Med. 2019;132(2):217-226. doi:10.1016/j.amjmed.2018.10.022PubMedGoogle ScholarCrossref
65.
Bjurman  C, Larsson  M, Johanson  P,  et al.  Small changes in troponin T levels are common in patients with non-ST-segment elevation myocardial infarction and are linked to higher mortality.  J Am Coll Cardiol. 2013;62(14):1231-1238. doi:10.1016/j.jacc.2013.06.050PubMedGoogle ScholarCrossref
66.
O’Gara  PT, Kushner  FG, Ascheim  DD,  et al.  2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines.  J Am Coll Cardiol. 2013;61(4):e78-e140. doi:10.1016/j.jacc.2012.11.019PubMedGoogle ScholarCrossref
67.
Amsterdam  EA, Wenger  NK, Brindis  RG,  et al; ACC/AHA Task Force Members.  2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines.  Circulation. 2014;130(25):e344-e426.PubMedGoogle Scholar
68.
Lambrakis  K, French  JK, Scott  IA,  et al.  The appropriateness of coronary investigation in myocardial injury and type 2 myocardial infarction (ACT-2): A randomized trial design.  Am Heart J. 2019;208:11-20. doi:10.1016/j.ahj.2018.09.016PubMedGoogle ScholarCrossref
69.
Ford  I, Shah  ASV, Zhang  R,  et al.  High-sensitivity cardiac troponin, statin therapy, and risk of coronary heart disease.  J Am Coll Cardiol. 2016;68(25):2719-2728. doi:10.1016/j.jacc.2016.10.020PubMedGoogle ScholarCrossref
70.
Devereaux  PJ, Duceppe  E, Guyatt  G,  et al; MANAGE Investigators.  Dabigatran in patients with myocardial injury after non-cardiac surgery (MANAGE): an international, randomised, placebo-controlled trial.  Lancet. 2018;391(10137):2325-2334. doi:10.1016/S0140-6736(18)30832-8PubMedGoogle ScholarCrossref
71.
Santos-Gallego  CG, Requena-Ibanez  JA, San Antonio  R,  et al.  Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics.  J Am Coll Cardiol. 2019;73(15):1931-1944. doi:10.1016/j.jacc.2019.01.056PubMedGoogle ScholarCrossref
72.
Januzzi  JL  Jr, Butler  J, Jarolim  P,  et al.  Effects of canagliflozin on cardiovascular biomarkers in older adults with type 2 diabetes.  J Am Coll Cardiol. 2017;70(6):704-712. doi:10.1016/j.jacc.2017.06.016PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Topics
State Requirements