[Skip to Content]
[Skip to Content Landing]

Association of Office and Ambulatory Blood Pressure With Mortality and Cardiovascular Outcomes

Educational Objective
To understand the predictive value of blood pressure indexes.
1 Credit CME
Key Points

Question  What is the association of office and ambulatory blood pressure with subsequent risk of mortality and cardiovascular outcomes?

Findings  In a population-based cohort of 11 135 adults, higher 24-hour and nighttime blood pressure readings were significantly associated with greater risks of death and cardiovascular events that included cardiovascular mortality combined with nonfatal coronary events, heart failure, or stroke. This association persisted after adjusting for other blood pressure measurements taken during an office visit or during ambulatory monitoring.

Meaning  Higher 24-hour and nighttime blood pressure readings were significantly associated with greater risks of death and a composite of cardiovascular outcomes, although statistically the incremental model improvement was small.

Abstract

Importance  Blood pressure (BP) is a known risk factor for overall mortality and cardiovascular (CV)-specific fatal and nonfatal outcomes. It is uncertain which BP index is most strongly associated with these outcomes.

Objective  To evaluate the association of BP indexes with death and a composite CV event.

Design, Setting, and Participants  Longitudinal population-based cohort study of 11 135 adults from Europe, Asia, and South America with baseline observations collected from May 1988 to May 2010 (last follow-ups, August 2006-October 2016).

Exposures  Blood pressure measured by an observer or an automated office machine; measured for 24 hours, during the day or the night; and the dipping ratio (nighttime divided by daytime readings).

Main Outcomes and Measures  Multivariable-adjusted hazard ratios (HRs) expressed the risk of death or a CV event associated with BP increments of 20/10 mm Hg. Cardiovascular events included CV mortality combined with nonfatal coronary events, heart failure, and stroke. Improvement in model performance was assessed by the change in the area under the curve (AUC).

Results  Among 11 135 participants (median age, 54.7 years, 49.3% women), 2836 participants died (18.5 per 1000 person-years) and 2049 (13.4 per 1000 person-years) experienced a CV event over a median of 13.8 years of follow-up. Both end points were significantly associated with all single systolic BP indexes (P < .001). For nighttime systolic BP level, the HR for total mortality was 1.23 (95% CI, 1.17-1.28) and for CV events, 1.36 (95% CI, 1.30-1.43). For the 24-hour systolic BP level, the HR for total mortality was 1.22 (95% CI, 1.16-1.28) and for CV events, 1.45 (95% CI, 1.37-1.54). With adjustment for any of the other systolic BP indexes, the associations of nighttime and 24-hour systolic BP with the primary outcomes remained statistically significant (HRs ranging from 1.17 [95% CI, 1.10-1.25] to 1.87 [95% CI, 1.62-2.16]). Base models that included single systolic BP indexes yielded an AUC of 0.83 for mortality and 0.84 for the CV outcomes. Adding 24-hour or nighttime systolic BP to base models that included other BP indexes resulted in incremental improvements in the AUC of 0.0013 to 0.0027 for mortality and 0.0031 to 0.0075 for the composite CV outcome. Adding any systolic BP index to models already including nighttime or 24-hour systolic BP did not significantly improve model performance. These findings were consistent for diastolic BP.

Conclusions and Relevance  In this population-based cohort study, higher 24-hour and nighttime blood pressure measurements were significantly associated with greater risks of death and a composite CV outcome, even after adjusting for other office-based or ambulatory blood pressure measurements. Thus, 24-hour and nighttime blood pressure may be considered optimal measurements for estimating CV risk, although statistically, model improvement compared with other blood pressure indexes was small.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Corresponding Author: Jan A. Staessen, MD, PhD, Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Kapucijnenvoer 35, BE-3000 Leuven, Belgium (jan.staessen@med.kuleuven.be).

Accepted for Publication: June 18, 2019.

Author Contributions: Dr Staessen had full access to the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Yang, Hansen, Jeppesen, Filipovský, Sandoya, O'Brien, Staessen.

Acquisition, analysis, or interpretation of data: Yang, Melgarejo, Thijs, Zhang, Boggia, Wei, Asayama, Ohkubo, Dolan, Stolarz-Skrzypek, Malyutina, Casiglia, Lind, Filipovský, Maestre, Li, Wang, Imai, Kawecka-Jaszcz, Sandoya, Narkiewicz, Verhamme, Staessen.

Drafting of the manuscript: Yang, Melgarejo, Sandoya, O'Brien, Staessen.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Yang, Melgarejo, Thijs, Wei, Li, Staessen.

Obtained funding: Asayama, Ohkubo, Jeppesen, Casiglia, Maestre, Li, Wang, Narkiewicz, Verhamme, Staessen.

Administrative, technical, or material support: Wei, Ohkubo, Stolarz-Skrzypek, Malyutina, Casiglia, Lind, Maestre, Li, Imai, Sandoya, Narkiewicz, Staessen.

Supervision: Asayama, Ohkubo, Casiglia, Filipovský, Maestre, Imai, Kawecka-Jaszcz, O'Brien, Verhamme, Staessen.

Conflict of Interest Disclosures: Dr Narkiewicz reported receiving lecture fees from Servier, Krka Pharma, Berlin-Chemie/Menarini, Egis, Sandoz, Idorsia, Medtronic, Mylan, Polpharma, Adamed, and Gedeon Richer. No other disclosures were reported.

Funding/Support:Belgium: grants HEALTH-F7-305507 HOMAGE from the European Union; advanced researcher grant 2011-294713-EPLORE and proof-of-concept grant 713601-uPROPHET from the European Research Council, JTC2017-046-PROACT from the European Research Area Net for Cardiovascular Diseases; and G.0881.13 from the Research Foundation Flanders, Ministry of the Flemish Community, Brussels, Belgium; China: grants 81170245, 81270373, 81470533, and 91639203 from the National Natural Science Foundation of China; 2013CB530700 from the Ministry of Science and Technology; 1012 from the China-European Union Collaboration, Beijing, China; 14ZR1436200 and 15XD1503200 from the Shanghai Commission of Science and Technology; and 20152503 from the Gaofeng Clinical Medicine Education; Czech Republic: LSHM-CT-2006–037093 and HEALTH-F4-2007-201550 from the European Union and P36 from Charles University research fund project; Denmark: 01-2-9-9A-22914 from the Danish Heart Foundation and R32-A2740 from the Lundbeck Fonden; Ireland: the Irish Allied Bank; Italy: LSHM-CT-2006-037093 and HEALTH-F4-2007-201550 from the European Union; Japan: 16H05243, 16H05263, 16K09472, 16K11850, 16K15359, 17H04126, 17H06533, 17K15853, 17K19930, 18K09674, 18K09904, and 18K17396 from the Ministry of Culture, Sports, Science and Technology; grant-in-aid H28-4 for young scientists of Showa Pharmaceutical University, Japan Atherosclerosis Prevention Fund (comprehensive research on cardiovascular and lifestyle related diseases); H26-Junkankitou (Seisaku)-Ippan-001 and H29-Junkankitou-Ippan-003 from the Ministry of Health, Labor, and Welfare; NouEi 2-02 from the Ministry of Agriculture, Forestry and Fisheries; Academic Contributions from Pfizer Japan Inc; and scholarship donations from Chugai Pharmaceutical Company and Daiichi Sankyo Co; Poland (Gdańsk): LSHM-CT-2006-037093 and HEALTH-F4-2007-201550 from the European Union; Poland (Kraków): LSHM-CT-2006-037093 and HEALTH-F4-2007-201550 from the European Union and Foundation for Polish Science; Russian Federation: LSHM-CT-2006–037093 and HEALTH-F4-2007–201550 from the European Union; Uruguay: Asociación Española Primera en Salud; Venezuela: 1-R01AG036469 A1 from the US National Institute of Aging and the Fogarty International Center, 1-R03 AG054186-01 from the US National Institutes of Health and National Institute of Aging; FONACIT, G-97000726 from Caracas; and LOCTI/008-2008 from FundaConCiencia, Maracaibo.

Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

IDACO Investigators: Belgium: B. Mujaj, N. Cauwenberghs, T. Kuznetsova, L. Thijs, J. A. Staessen, F.-F. Wei, W.-Y. Yang, C.-G. Yu, and Z.-Y. Zhang; China: Y. Li, C.-S. Sheng, Q.-F. Huang, and J.-G. Wang; The Czech Republic: J. Filipovský, J. Seidlerová, and M. Tichá; Denmark: T. W. Hansen, H. Ibsen, J. Jeppesen, S. Rasmussen, and C Torp-Pedersen; Ireland: E. Dolan and E. O’Brien; Italy: E. Casiglia, A. Pizzioli, and V. Tikhonoff; Japan: K. Asayama, J. Hashimoto, H. Hoshi, Y. Imai, R. Inoue, M. Kikuya, H. Metoki, T. Obara, T. Ohkubo, H. Satoh, and K. Totsune; Poland (Gdańsk): N. Gilis-Malinowska and K. Narkiewicz; Poland (Kraków): A. Adamkiewicz-Piejko, M. Cwynar, J. Gąsowski, T. Grodzicki, K. Kawecka-Jaszcz, W. Lubaszewski, A. Olszanecka, K. Stolarz-Skrzypek, B. Wizner, W. Wojciechowska, and J. Zyczkowska; The Russian Federation: T. Kuznetsova, S. Malyutina, Y. Nikitin, E. Pello, G. Simonova, and M. Voevoda; Sweden: B. Andrén, L. Berglund, K. Björklund-Bodegård, L. Lind, and B. Zethelius; Uruguay: M. Bianchi, J. Boggia, V. Moreira, E. Sandoya, C. Schettini, E. Schwedt, and H. Senra; Venezuela: G. Maestre and J. D. Melgarejo.

Meeting Presentations: Part of the results was presented at scientific meetings of the European Society of Cardiology, August 25-30, 2018, Munich, Germany, and of the International Society of Hypertension, September 20-23, 2018, Beijing, China.

Additional Contributions: We thank V. De Leebeeck, MSc, and R. Wolfs, BSc, Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium, for clerical assistance. They received a salary from the University of Leuven, but no additional compensation for this work.

Data Sharing Statement: See Supplement 2.

References
1.
Leung  AA, Nerenberg  K, Daskalopoulou  SS,  et al; CHEP Guidelines Task Force.  Hypertension Canada’s 2016 Canadian Hypertension Education Program guidelines for blood pressure measurement, diagnosis, assessment of risk, prevention, and treatment of hypertension.  Can J Cardiol. 2016;32(5):569-588. doi:10.1016/j.cjca.2016.02.066PubMedGoogle ScholarCrossref
2.
Whelton  PK, Carey  RM, Aronow  WS,  et al.  2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.  J Am Coll Cardiol. 2018;71(19):e127-e248. doi:10.1016/j.jacc.2017.11.006PubMedGoogle ScholarCrossref
3.
National Institute for Health and Clinical Excellence (NICE). Hypertension in adults: diagnosis and management. http://www.nice.org.uk/guidance/CG127. Published August 2011. Updated November 2016. Accessed June 3, 2019.
4.
Williams  B, Mancia  G, Spiering  W,  et al; ESC Scientific Document Group.  2018 ESC/ESH Guidelines for the management of arterial hypertension.  Eur Heart J. 2018;39(33):3021-3104. doi:10.1093/eurheartj/ehy339PubMedGoogle ScholarCrossref
5.
Shimamoto  K, Ando  K, Fujita  T,  et al; Japanese Society of Hypertension Committee for Guidelines for the Management of Hypertension.  The Japanese Society of Hypertension guidelines for the management of hypertension (JSH 2014).  Hypertens Res. 2014;37(4):253-390. doi:10.1038/hr.2014.20PubMedGoogle ScholarCrossref
6.
Liu  LS.  Writing Group of 2010 Chinese guidelines for the management of hypertension. 2010 Chinese guidelines for the management of hypertension  [in Chinese].  Chin J Hypertens. 2011;19(8):701-742.Google Scholar
7.
Staessen  JA, Thijs  L, Fagard  R,  et al; Systolic Hypertension in Europe Trial Investigators.  Predicting cardiovascular risk using conventional vs ambulatory blood pressure in older patients with systolic hypertension.  JAMA. 1999;282(6):539-546. doi:10.1001/jama.282.6.539PubMedGoogle ScholarCrossref
8.
Dolan  E, Stanton  A, Thijs  L,  et al.  Superiority of ambulatory over clinic blood pressure measurement in predicting mortality: the Dublin outcome study.  Hypertension. 2005;46(1):156-161. doi:10.1161/01.HYP.0000170138.56903.7aPubMedGoogle ScholarCrossref
9.
Ben-Dov  IZ, Kark  JD, Ben-Ishay  D, Mekler  J, Ben-Arie  L, Bursztyn  M.  Predictors of all-cause mortality in clinical ambulatory monitoring: unique aspects of blood pressure during sleep.  Hypertension. 2007;49(6):1235-1241. doi:10.1161/HYPERTENSIONAHA.107.087262PubMedGoogle ScholarCrossref
10.
Myers  MG, Valdivieso  M, Kiss  A.  Use of automated office blood pressure measurement to reduce the white coat response.  J Hypertens. 2009;27(2):280-286. doi:10.1097/HJH.0b013e32831b9e6bPubMedGoogle ScholarCrossref
11.
O’Brien  E, Sheridan  J, O’Malley  K.  Dippers and non-dippers.  Lancet. 1988;2(8607):397. doi:10.1016/S0140-6736(88)92867-XPubMedGoogle ScholarCrossref
12.
Hernández-del Rey  R, Martin-Baranera  M, Sobrino  J,  et al; Spanish Society of Hypertension Ambulatory Blood Pressure Monitoring Registry Investigators.  Reproducibility of the circadian blood pressure pattern in 24-h versus 48-h recordings: the Spanish Ambulatory Blood Pressure Monitoring Registry.  J Hypertens. 2007;25(12):2406-2412. doi:10.1097/HJH.0b013e3282effed1PubMedGoogle ScholarCrossref
13.
McGowan  NJ, Gough  K, Padfield  PL.  Nocturnal dipping is reproducible in the long term.  Blood Press Monit. 2009;14(5):185-189. doi:10.1097/MBP.0b013e32832ff4e1PubMedGoogle ScholarCrossref
14.
Thijs  L, Hansen  TW, Kikuya  M,  et al; IDACO Investigators.  The International Database of Ambulatory Blood Pressure in relation to Cardiovascular Outcome (IDACO): protocol and research perspectives.  Blood Press Monit. 2007;12(4):255-262. doi:10.1097/MBP.0b013e3280f813bcPubMedGoogle ScholarCrossref
15.
World Medical Association.  World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects.  JAMA. 2013;310(20):2191-2194. doi:10.1001/jama.2013.281053PubMedGoogle ScholarCrossref
16.
Fagard  R, Brguljan  J, Thijs  L, Staessen  J.  Prediction of the actual awake and asleep blood pressures by various methods of 24 h pressure analysis.  J Hypertens. 1996;14(5):557-563. doi:10.1097/00004872-199605000-00003PubMedGoogle ScholarCrossref
17.
Yang  WY, Thijs  L, Zhang  ZY,  et al; International Database; on Ambulatory blood pressure in relation to Cardiovascular Outcomes (IDACO) Investigators.  Evidence-based proposal for the number of ambulatory readings required for assessing blood pressure level in research settings: an analysis of the IDACO database.  Blood Press. 2018;27(6):341-350. doi:10.1080/08037051.2018.1476057PubMedGoogle ScholarCrossref
18.
Franklin  SS, Larson  MG, Khan  SA,  et al.  Does the relation of blood pressure to coronary heart disease risk change with aging? the Framingham Heart Study.  Circulation. 2001;103(9):1245-1249. doi:10.1161/01.CIR.103.9.1245PubMedGoogle ScholarCrossref
19.
O’Brien  E, Parati  G, Stergiou  G,  et al; European Society of Hypertension Working Group on Blood Pressure Monitoring.  European Society of Hypertension position paper on ambulatory blood pressure monitoring.  J Hypertens. 2013;31(9):1731-1768. doi:10.1097/HJH.0b013e328363e964PubMedGoogle ScholarCrossref
20.
Hansen  TW, Jeppesen  J, Rasmussen  S, Ibsen  H, Torp-Pedersen  C.  Ambulatory blood pressure monitoring and risk of cardiovascular disease: a population based study.  Am J Hypertens. 2006;19(3):243-250. doi:10.1016/j.amjhyper.2005.09.018PubMedGoogle ScholarCrossref
21.
Ingelsson  E, Björklund-Bodegård  K, Lind  L, Arnlöv  J, Sundström  J.  Diurnal blood pressure pattern and risk of congestive heart failure.  JAMA. 2006;295(24):2859-2866. doi:10.1001/jama.295.24.2859PubMedGoogle ScholarCrossref
22.
Pencina  MJ, D’Agostino  RB, Zdrojewski  T,  et al.  Apolipoprotein B improves risk assessment of future coronary heart disease in the Framingham Heart Study beyond LDL-C and non-HDL-C.  Eur J Prev Cardiol. 2015;22(10):1321-1327. doi:10.1177/2047487315569411PubMedGoogle ScholarCrossref
23.
Kuznetsova  T, Staessen  JA, Kawecka-Jaszcz  K,  et al.  Quality control of the blood pressure phenotype in the European Project on Genes in Hypertension.  Blood Press Monit. 2002;7(4):215-224. doi:10.1097/00126097-200208000-00003PubMedGoogle ScholarCrossref
24.
Hosmer  DW  Jr, Lemeshow  S.  Applied Logistic Regression. New York, NY: John Wiley & Sons; 1989:47-56.
25.
Nyholt  DR.  Genetic case-control association studies—correcting for multiple testing.  Hum Genet. 2001;109(5):564-567. doi:10.1007/s00439-001-0611-4PubMedGoogle ScholarCrossref
26.
Hansen  TW, Li  Y, Boggia  J, Thijs  L, Richart  T, Staessen  JA.  Predictive role of the nighttime blood pressure.  Hypertension. 2011;57(1):3-10. doi:10.1161/HYPERTENSIONAHA.109.133900PubMedGoogle ScholarCrossref
27.
Smirk  FH.  Observations on mortality of 270 treated and 199 untreated retinal grade I and II hypertensive patients followed in all instances for 5 years.  N Z Med J. 1964;63:413-443.Google Scholar
28.
Cook  NR.  Use and misuse of the receiver operating characteristic curve in risk prediction.  Circulation. 2007;115(7):928-935. doi:10.1161/CIRCULATIONAHA.106.672402PubMedGoogle ScholarCrossref
29.
Murray  CJL, Ezzati  M, Flaxman  AD,  et al.  GBD 2010: design, definitions, and metrics.  Lancet. 2012;380(9859):2063-2066. doi:10.1016/S0140-6736(12)61899-6PubMedGoogle ScholarCrossref
30.
Baker  SG, Schuit  E, Steyerberg  EW,  et al.  How to interpret a small increase in AUC with an additional risk prediction marker: decision analysis comes through.  Stat Med. 2014;33(22):3946-3959. doi:10.1002/sim.6195PubMedGoogle ScholarCrossref
31.
Mieno  MN, Tanaka  N, Arai  T,  et al.  Accuracy of death certificates and assessment of factors for misclassification of underlying cause of death.  J Epidemiol. 2016;26(4):191-198. doi:10.2188/jea.JE20150010PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Topics
State Requirements