[Skip to Content]
[Skip to Content Landing]

Surgical Smoke Exposure in Operating Room PersonnelA Review

Educational Objective To state the potential hazards of surgical smoke.
1 Credit CME
Abstract

Importance  Smoke generated during surgical procedures has long been thought to be hazardous to hospital personnel; however, the degree of danger has yet to be determined.

Observations  The dangers of surgical smoke are associated with the composition of the plume. Small-particulate matter is found in the smoke that is easily inhaled. Particulates deposit in the lungs, circulatory system, and other organs, which may cause numerous health problems. The smoke also contains many gaseous compounds known to cause cancer. The type of tissue and the form of cautery have been shown to alter the composition of the surgical smoke. Well-cited articles have asserted that daily inhaled surgical smoke could be equivalent to smoking dozens of cigarettes. Unsafe levels of cancer-causing compounds have been found in the smoke. However, there is no firm evidence that operating room personnel show increased cancer rates compared with the general population. Data implicating other forms of passively inhaled smoke, such as fumes associated with cooking and wood burning, are likely comparable to the smoke issued during surgical procedures. Most operating rooms do not require smoke evacuation, and the elimination techniques are variable. Most systems rely on dispersion and, possibly, mechanical evacuation and filtration. Newer electric filters show promise but require more development.

Conclusions and Relevance  Surgical smoke is dangerous, but the severity of the risk has yet to be determined. Therefore, no safe level is known at this point. Efforts should be made to reduce and possibly eliminate smoke from the operating room. Research into cost-effective forms of smoke evacuation is necessary. Studies of respiratory and cancer sequelae of exposure to operating room smoke in personnel who have had long-term exposure to surgical smoke is also needed.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Accepted for Publication: May 27, 2019.

Corresponding Author: Kurt A. Melstrom, MD, Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, 1500 E Duarte Rd, Duarte, CA 91010 (kmelstrom@coh.org).

Published Online: August 21, 2019. doi:10.1001/jamasurg.2019.2515

Author Contributions: Dr Melstrom had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Melstrom, Fong.

Acquisition, analysis, or interpretation of data: Limchantra.

Drafting of the manuscript: All authors.

Critical revision of the manuscript for important intellectual content: Melstrom, Limchantra.

Statistical analysis: Limchantra.

Administrative, technical, or material support: Melstrom.

Supervision: Melstrom, Fong.

Conflict of Interest Disclosures: Dr Fong reported serving as a paid scientific advisor to Medtronics, Johnson and Johnson, and Olympus, with no work on smoke evacuation included. No other disclosures were reported.

References
1.
Steege  AL, Boiano  JM, Sweeney  MH.  Secondhand smoke in the operating room? precautionary practices lacking for surgical smoke.  Am J Ind Med. 2016;59(11):1020-1031. doi:10.1002/ajim.22614PubMedGoogle ScholarCrossref
2.
Ilce  A, Yuzden  GE, Yavuz van Giersbergen  M.  The examination of problems experienced by nurses and doctors associated with exposure to surgical smoke and the necessary precautions.  J Clin Nurs. 2017;26(11-12):1555-1561. doi:10.1111/jocn.13455PubMedGoogle ScholarCrossref
3.
Occupational Safety and Health Administration.  Regulations (Standards–29 CFR). Washington, DC: US Dept of Labor; 2018.
4.
National Institute for Occupational Safety and Health.  NIOSH Pocket Guide to Chemical Hazards. Pittsburgh, PA: Centers for Disease Control and Prevention; 2007.
5.
Nielsen  D.  Petition File 567: To Add Standards Addressing the Removal of Surgical Smoke. Sacramento, CA: State of California Dept of Industrial Regulations; 2017.
6.
Association of periOperative Registered Nurses. Go Clear Award program. https://www.aorn.org/goclear. Updated 2019. Accessed September 22, 2018.
7.
Headley  A. Surgical smoke nearly killed me.  Outpatient Surg. 2018;XIX(2):32. http://www.outpatientsurgery.net/issues/2018/02/surgical-smoke-nearly-killed-meGoogle Scholar
8.
Butler  D.  Health Risks of Indoor Exposure to Particulate Matter: Workshop Summary. Washington, DC: National Academies Press; 2016. doi:10.17226/23531
9.
Ling  SH, van Eeden  SF.  Particulate matter air pollution exposure: role in the development and exacerbation of chronic obstructive pulmonary disease.  Int J Chron Obstruct Pulmon Dis. 2009;4:233-243. doi:10.2147/COPD.S5098PubMedGoogle ScholarCrossref
10.
Brook  RD, Rajagopalan  S, Pope  CA  III,  et al; American Heart Association Council on Epidemiology and Prevention, Council on the Kidney in Cardiovascular Disease, and Council on Nutrition, Physical Activity and Metabolism.  Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association.  Circulation. 2010;121(21):2331-2378. doi:10.1161/CIR.0b013e3181dbece1PubMedGoogle ScholarCrossref
11.
Pope  CA  III, Burnett  RT, Thun  MJ,  et al.  Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution.  JAMA. 2002;287(9):1132-1141. doi:10.1001/jama.287.9.1132PubMedGoogle ScholarCrossref
12.
Oberdörster  G, Sharp  Z, Atudorei  V,  et al.  Translocation of inhaled ultrafine particles to the brain.  Inhal Toxicol. 2004;16(6-7):437-445. doi:10.1080/08958370490439597PubMedGoogle ScholarCrossref
13.
Brüske-Hohlfeld  I, Preissler  G, Jauch  KW,  et al.  Surgical smoke and ultrafine particles.  J Occup Med Toxicol. 2008;3:31. doi:10.1186/1745-6673-3-31PubMedGoogle ScholarCrossref
14.
Alp  E, Bijl  D, Bleichrodt  RP, Hansson  B, Voss  A.  Surgical smoke and infection control.  J Hosp Infect. 2006;62(1):1-5. doi:10.1016/j.jhin.2005.01.014PubMedGoogle ScholarCrossref
15.
US Food and Drug Administration. Masks and N95 Respirators. https://www.fda.gov/medicaldevices/productsandmedicalprocedures/generalhospitaldevicesandsupplies/personalprotectiveequipment/ucm055977.htm. Published May 15, 2018. Accessed September 22, 2018.
16.
Ulmer  BC.  The hazards of surgical smoke.  AORN J. 2008;87(4):721-734. doi:10.1016/j.aorn.2007.10.012PubMedGoogle ScholarCrossref
17.
Fencl  JL.  Guideline implementation: surgical smoke safety.  AORN J. 2017;105(5):488-497. doi:10.1016/j.aorn.2017.03.006PubMedGoogle ScholarCrossref
18.
Tramontini  CC, Galvão  CM, Claudio  CV, Ribeiro  RP, Martins  JT.  Composition of the electrocautery smoke: integrative literature review  [in Portuguese].  Rev Esc Enferm USP. 2016;50(1):148-157. doi:10.1590/S0080-623420160000100019PubMedGoogle ScholarCrossref
19.
Gianella  M, Hahnloser  D, Rey  JM, Sigrist  MW.  Quantitative chemical analysis of surgical smoke generated during laparoscopic surgery with a vessel-sealing device.  Surg Innov. 2014;21(2):170-179. doi:10.1177/1553350613492025PubMedGoogle ScholarCrossref
20.
National Center for Biotechnology Information. PubChem. Sevoflurane. https://pubchem.ncbi.nlm.nih.gov/compound/5206. Accessed September 22, 2018.
21.
Calero  L, Brusis  T.  Laryngeal papillomatosis—first recognition in Germany as an occupational disease in an operating room nurse [in German].  Laryngorhinootologie. 2003;82(11):790-793.PubMedGoogle ScholarCrossref
22.
Ferenczy  A, Bergeron  C, Richart  RM.  Human papillomavirus DNA in CO2 laser–generated plume of smoke and its consequences to the surgeon.  Obstet Gynecol. 1990;75(1):114-118.PubMedGoogle Scholar
23.
Ba  MC, Long  H, Zhang  XL,  et al.  Port-site metastases and chimney effect of B-ultrasound-guided and laparoscopically-assisted hyperthermic intraperitoneal perfusion chemotherapy.  Yonsei Med J. 2017;58(3):497-504. doi:10.3349/ymj.2017.58.3.497PubMedGoogle ScholarCrossref
24.
Al Sahaf  OS, Vega-Carrascal  I, Cunningham  FO, McGrath  JP, Bloomfield  FJ.  Chemical composition of smoke produced by high-frequency electrosurgery.  Ir J Med Sci. 2007;176(3):229-232. doi:10.1007/s11845-007-0068-0PubMedGoogle ScholarCrossref
25.
Petrus  M, Bratu  A, Patachia  M, Dumitras  DC.  Spectroscopic analysis of surgical smoke produced in vitro by laser vaporization of animal tissues in a closed gaseous environment.  Rom Rep Phys. 2015;67(3):954-965.Google Scholar
26.
Ott  DE, Moss  E, Martinez  K.  Aerosol exposure from an ultrasonically activated (Harmonic) device.  J Am Assoc Gynecol Laparosc. 1998;5(1):29-32. doi:10.1016/S1074-3804(98)80007-8PubMedGoogle ScholarCrossref
27.
Karjalainen  M, Kontunen  A, Saari  S,  et al.  The characterization of surgical smoke from various tissues and its implications for occupational safety.  PLoS One. 2018;13(4):e0195274. doi:10.1371/journal.pone.0195274PubMedGoogle ScholarCrossref
28.
Barrett  WL, Garber  SM.  Surgical smoke: a review of the literature—is this just a lot of hot air?  Surg Endosc. 2003;17(6):979-987. doi:10.1007/s00464-002-8584-5PubMedGoogle ScholarCrossref
29.
Okoshi  K, Kobayashi  K, Kinoshita  K, Tomizawa  Y, Hasegawa  S, Sakai  Y.  Health risks associated with exposure to surgical smoke for surgeons and operation room personnel.  Surg Today. 2015;45(8):957-965. doi:10.1007/s00595-014-1085-zPubMedGoogle ScholarCrossref
30.
In  SM, Park  DY, Sohn  IK,  et al.  Experimental study of the potential hazards of surgical smoke from powered instruments.  Br J Surg. 2015;102(12):1581-1586. doi:10.1002/bjs.9910PubMedGoogle ScholarCrossref
31.
Weld  KJ, Dryer  S, Ames  CD,  et al.  Analysis of surgical smoke produced by various energy-based instruments and effect on laparoscopic visibility.  J Endourol. 2007;21(3):347-351. doi:10.1089/end.2006.9994PubMedGoogle ScholarCrossref
32.
Brace  MD, Stevens  E, Taylor  SM,  et al.  “The air that we breathe”: assessment of laser and electrosurgical dissection devices on operating theater air quality.  J Otolaryngol Head Neck Surg. 2014;43(1)39.Google Scholar
33.
Shah  NR.  Commentary On: “Surgical smoke—a health hazard in the operating theatre: a study to quantify exposure and a survey of the use of smoke extractor systems in UK plastic surgery units”.  Ann Med Surg (Lond). 2012;1:23-24. doi:10.1016/S2049-0801(12)70008-0PubMedGoogle ScholarCrossref
34.
Dobrogowski  M, Wesolowski  W, Kucharska  M,  et al.  Health risk to medical personnel of surgical smoke produced during laparoscopic surgery.  Int J Occup Med Environ Health. 2015;28(5):831-840. doi:10.13075/ijomeh.1896.00374PubMedGoogle ScholarCrossref
35.
Tomita  Y, Mihashi  S, Nagata  K,  et al.  Mutagenicity of smoke condensates induced by CO2-laser irradiation and electrocauterization.  Mutat Res. 1981;89(2):145-149. doi:10.1016/0165-1218(81)90120-8PubMedGoogle ScholarCrossref
36.
Hill  DSK, O’Neill  JK, Powell  RJ, Oliver  DW.  Surgical smoke—a health hazard in the operating theatre: a study to quantify exposure and a survey of the use of smoke extractor systems in UK plastic surgery units.  J Plast Reconstr Aesthet Surg. 2012;65(7):911-916. doi:10.1016/j.bjps.2012.02.012PubMedGoogle ScholarCrossref
37.
Tseng  H-S, Liu  S-P, Uang  S-N,  et al.  Cancer risk of incremental exposure to polycyclic aromatic hydrocarbons in electrocautery smoke for mastectomy personnel.  World J Surg Oncol. 2014;12:31. doi:10.1186/1477-7819-12-31PubMedGoogle ScholarCrossref
38.
Choi  SH, Kwon  TG, Chung  SK, Kim  TH.  Surgical smoke may be a biohazard to surgeons performing laparoscopic surgery.  Surg Endosc. 2014;28(8):2374-2380. doi:10.1007/s00464-014-3472-3PubMedGoogle ScholarCrossref
39.
Gates  MA, Feskanich  D, Speizer  FE, Hankinson  SE.  Operating room nursing and lung cancer risk in a cohort of female registered nurses.  Scand J Work Environ Health. 2007;33(2):140-147. doi:10.5271/sjweh.1117PubMedGoogle ScholarCrossref
40.
Weston  R, Stephenson  RN, Kutarski  PW, Parr  NJ.  Chemical composition of gases surgeons are exposed to during endoscopic urological resections.  Urology. 2009;74(5):1152-1154. doi:10.1016/j.urology.2009.04.100PubMedGoogle ScholarCrossref
41.
Fitzgerald  JE, Malik  M, Ahmed  I.  A single-blind controlled study of electrocautery and ultrasonic scalpel smoke plumes in laparoscopic surgery.  Surg Endosc. 2012;26(2):337-342. doi:10.1007/s00464-011-1872-1PubMedGoogle ScholarCrossref
42.
Zeise  L.  Monograph 10: Health Effects of Exposure to Environmental Tobacco Smoke. Bethesda, MD: National Cancer Institute; 1999.
43.
Sugimura  T, Wakabayashi  K, Nakagama  H, Nagao  M.  Heterocyclic amines: mutagens/carcinogens produced during cooking of meat and fish.  Cancer Sci. 2004;95(4):290-299. doi:10.1111/j.1349-7006.2004.tb03205.xPubMedGoogle ScholarCrossref
44.
Seow  A, Poh  WT, Teh  M,  et al.  Fumes from meat cooking and lung cancer risk in Chinese women.  Cancer Epidemiol Biomarkers Prev. 2000;9(11):1215-1221.PubMedGoogle Scholar
45.
Koo  LC, Ho  JH.  Diet as a confounder of the association between air pollution and female lung cancer: Hong Kong studies on exposures to environmental tobacco smoke, incense, and cooking fumes as examples.  Lung Cancer. 1996;14(suppl 1):S47-S61. doi:10.1016/S0169-5002(96)90210-XPubMedGoogle ScholarCrossref
46.
Sivertsen  I, Sjaastad  AK, Svendsen  K, Krøkje  A.  Alveolar macrophages as biomarkers of pulmonary irritation in kitchen workers.  Ann Occup Hyg. 2002;46(8):713-717.PubMedGoogle Scholar
47.
Wang  XR, Chiu  YL, Qiu  H, Au  JSK, Yu  ITS.  The roles of smoking and cooking emissions in lung cancer risk among Chinese women in Hong Kong.  Ann Oncol. 2009;20(4):746-751. doi:10.1093/annonc/mdn699PubMedGoogle ScholarCrossref
48.
Ko  YC, Lee  CH, Chen  MJ,  et al.  Risk factors for primary lung cancer among non-smoking women in Taiwan.  Int J Epidemiol. 1997;26(1):24-31. doi:10.1093/ije/26.1.24PubMedGoogle ScholarCrossref
49.
Siddiqui  AR, Lee  K, Bennett  D,  et al.  Indoor carbon monoxide and PM2.5 concentrations by cooking fuels in Pakistan.  Indoor Air. 2009;19(1):75-82. doi:10.1111/j.1600-0668.2008.00563.xPubMedGoogle ScholarCrossref
50.
Heinzerling  AP, Guarnieri  MJ, Mann  JK,  et al.  Lung function in woodsmoke-exposed Guatemalan children following a chimney stove intervention.  Thorax. 2016;71(5):421-428. doi:10.1136/thoraxjnl-2015-207783PubMedGoogle ScholarCrossref
51.
Thompson  LM, Bruce  N, Eskenazi  B, Diaz  A, Pope  D, Smith  KR.  Impact of reduced maternal exposures to wood smoke from an introduced chimney stove on newborn birth weight in rural Guatemala.  Environ Health Perspect. 2011;119(10):1489-1494. doi:10.1289/ehp.1002928PubMedGoogle ScholarCrossref
52.
Siddiqui  AR, Gold  EB, Yang  X, Lee  K, Brown  KH, Bhutta  ZA.  Prenatal exposure to wood fuel smoke and low birth weight.  Environ Health Perspect. 2008;116(4):543-549. doi:10.1289/ehp.10782PubMedGoogle ScholarCrossref
53.
Sanderson  C.  Surgical smoke.  J Perioper Pract. 2012;22(4):122-128. doi:10.1177/175045891202200405PubMedGoogle ScholarCrossref
54.
Li  X, Kong  H, Zhang  X,  et al.  Characterization of particle size distribution of mainstream cigarette smoke generated by smoking machine with an electrical low pressure impactor.  J Environ Sci (China). 2014;26(4):827-833. doi:10.1016/S1001-0742(13)60472-6PubMedGoogle ScholarCrossref
55.
Buonanno  G, Johnson  G, Morawska  L, Stabile  L.  Volatility characterization of cooking-generated aerosol particles.  Aerosol Sci Technol. 2011;45(9):1069-1077. doi:10.1080/02786826.2011.580797Google ScholarCrossref
56.
Salthammer  T, Schripp  T, Wientzek  S, Wensing  M.  Impact of operating wood-burning fireplace ovens on indoor air quality.  Chemosphere. 2014;103:205-211. doi:10.1016/j.chemosphere.2013.11.067PubMedGoogle ScholarCrossref
57.
Niu  X, Guinot  B, Cao  J, Xu  H, Sun  J.  Particle size distribution and air pollution patterns in three urban environments in Xi’an, China.  Environ Geochem Health. 2015;37(5):801-812. doi:10.1007/s10653-014-9661-0PubMedGoogle ScholarCrossref
58.
Cao  J, Xu  H, Xu  Q, Chen  B, Kan  H.  Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted Chinese city.  Environ Health Perspect. 2012;120(3):373-378. doi:10.1289/ehp.1103671PubMedGoogle ScholarCrossref
59.
National Institute for Occupational Safety and Health.  Control of smoke from laser/electric surgical procedures.  Appl Occup Environ Hyg. 1999;14(2):71. doi:10.1080/104732299303205PubMedGoogle ScholarCrossref
60.
Choi  SH, Choi  DH, Kang  DH,  et al.  Activated carbon fiber filters could reduce the risk of surgical smoke exposure during laparoscopic surgery: application of volatile organic compounds.  Surg Endosc. 2018;32(10):4290-4298. doi:10.1007/s00464-018-6222-0PubMedGoogle ScholarCrossref
61.
Tsai  CSJ, Echevarría-Vega  ME, Sotiriou  GA,  et al.  Evaluation of environmental filtration control of engineered nanoparticles using the Harvard Versatile Engineered Nanomaterial Generation System (VENGES).  J Nanopart Res. 2012;14(5):812. doi:10.1007/s11051-012-0812-xPubMedGoogle ScholarCrossref
62.
Maroto  M.  Filtration Efficiency of Intermediate Ventilation Air Filters on Ultrafine and Submicron Particles. Goteborg, Sweden: Chalmers University of Technology; 2011.
63.
Perrin  M, Fletcher  A.  Laparoscopic abdominal surgery.  Contin Educ Anaesth Crit Care Pain. 2004;4(4):107-110. doi:10.1093/bjaceaccp/mkh032Google ScholarCrossref
64.
van Turnhout  J, Hoeneveld  WJ, Adamse  J-WC, van Rossen  LM.  Electret filters for high-efficiency and high-flow air cleaning.  IEEE Trans Ind Appl. 1981;17(2):240-248. doi:10.1109/TIA.1981.4503932Google ScholarCrossref
65.
Kawada  Y, Shimizu  H.  Reduction of suspended particles in closed space with electrostatic precipitator.  Electron Commun Jpn. 2017;100(9):32-40. doi:10.1002/ecj.11979Google ScholarCrossref
66.
Sung  B-J, Aly  A, Lee  S-H, Takashima  K, Kastura  S, Mizuno  A.  Fine-particle collection using an electrostatic precipitator equipped with an electrostatic flocking filter as the collecting electrode.  Plasma Process Polym. 2006;3(9):661-667. doi:10.1002/ppap.200600035Google ScholarCrossref
67.
Alesi Surgical. Ultravision: the technology. http://alesi-surgical.com/ultravision/technology/. Accessed September 22, 2018.
68.
Rim  DPD, Wallace  L, Persily  A.  Effectiveness of an In-Duct Electrostatic Precipitator in Nanoparticle Removal With Consideration of Ozone Emissions. Gaithersburg, MD: National Institute of Standards and Technology; 2014.
69.
Poppendieck  DG, Rim  D, Persily  AK.  Ultrafine particle removal and ozone generation by in-duct electrostatic precipitators.  Environ Sci Technol. 2014;48(3):2067-2074. doi:10.1021/es404884pPubMedGoogle ScholarCrossref
70.
Bratu  AM, Petrus  M, Patachia  M,  et al.  Quantitative analysis of laser surgical smoke: targeted study on six toxic compounds.  Rom J Phys. 2015;60(1):215-227.Google Scholar
71.
Office of Environmental Health Hazard Assessment. OEHHA acute, 8-hour and chronic reference exposure level (REL) summary. https://oehha.ca.gov/air/general-info/oehha-acute-8-hour-and-chronic-reference-exposure-level-rel-summary. Published June 28, 2016. Accessed September 23, 2018.
72.
Chou  CHSJ, Holler  J, De Rosa  CT.  Minimal risk levels (MRLs) for hazardous substances.  J Clean Technol Environ Technol Occup Med. 1998;7(1):1-24.Google Scholar
73.
She  SLG, Yang  W, Hong  M, Zhu  L. Health risk assessment of VOCs from surgical smoke. Preprints: 2017070042. doi:10.20944/preprints201707.0042.v1
74.
Gianella  M, Sigrist  MW.  Infrared spectroscopy on smoke produced by cauterization of animal tissue.  Sensors (Basel). 2010;10(4):2694-2708. doi:10.3390/s100402694PubMedGoogle ScholarCrossref
75.
Hahn  KY, Kang  DW, Azman  ZAM, Kim  S-Y, Kim  S-H.  Removal of hazardous surgical smoke using a built-in-filter trocar: a study in laparoscopic rectal resection.  Surg Laparosc Endosc Percutan Tech. 2017;27(5):341-345. doi:10.1097/SLE.0000000000000459PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
Close
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close