[Skip to Content]
[Skip to Content Landing]

Chronic Kidney Disease Diagnosis and ManagementA Review

Educational Objective
To review the diagnosis and management of chronic kidney disease (CKD).
1 Credit CME
Abstract

Importance  Chronic kidney disease (CKD) is the 16th leading cause of years of life lost worldwide. Appropriate screening, diagnosis, and management by primary care clinicians are necessary to prevent adverse CKD-associated outcomes, including cardiovascular disease, end-stage kidney disease, and death.

Observations  Defined as a persistent abnormality in kidney structure or function (eg, glomerular filtration rate [GFR] <60 mL/min/1.73 m2 or albuminuria ≥30 mg per 24 hours) for more than 3 months, CKD affects 8% to 16% of the population worldwide. In developed countries, CKD is most commonly attributed to diabetes and hypertension. However, less than 5% of patients with early CKD report awareness of their disease. Among individuals diagnosed as having CKD, staging and new risk assessment tools that incorporate GFR and albuminuria can help guide treatment, monitoring, and referral strategies. Optimal management of CKD includes cardiovascular risk reduction (eg, statins and blood pressure management), treatment of albuminuria (eg, angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers), avoidance of potential nephrotoxins (eg, nonsteroidal anti-inflammatory drugs), and adjustments to drug dosing (eg, many antibiotics and oral hypoglycemic agents). Patients also require monitoring for complications of CKD, such as hyperkalemia, metabolic acidosis, hyperphosphatemia, vitamin D deficiency, secondary hyperparathyroidism, and anemia. Those at high risk of CKD progression (eg, estimated GFR <30 mL/min/1.73 m2, albuminuria ≥300 mg per 24 hours, or rapid decline in estimated GFR) should be promptly referred to a nephrologist.

Conclusions and Relevance  Diagnosis, staging, and appropriate referral of CKD by primary care clinicians are important in reducing the burden of CKD worldwide.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Corresponding Author: Morgan E. Grams, MD, PhD, 2024 E Monument St, Baltimore, MD 21287 (mgrams2@jhmi.edu).

Accepted for Publication: September 3, 2019.

Author Contributions: Dr Grams had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: All authors.

Acquisition, analysis, or interpretation of data: Chen, Grams.

Drafting of the manuscript: Chen.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Grams.

Administrative, technical, or material support: Chen, Knicely.

Supervision: Grams.

Conflict of Interest Disclosures: Dr Chen reported receipt of grants from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) and Yale University. Dr Grams reported receipt of grants from the NIDDK and the National Kidney Foundation and travel support from Dialysis Clinics Inc for an invited speakership at a directors’ meeting in May 2019. No other disclosures were reported.

Funding/Support: Dr Chen was supported by a Clinician Scientist Career Development Award from Johns Hopkins University and is supported by a George M. O’Brien Center for Kidney Research Pilot and Feasibility Grant from Yale University and award K08DK117068 from the National Institutes of Health/NIDDK. Dr Grams is supported by NIDDK grants DK1008803, DK100446, and DK115534.

Role of the Funder/Sponsor: The supporting institutions had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; or decision to submit the manuscript for publication.

Additional Contributions: We thank Andrew S. Levey, MD, Tufts Medical Center, and Natalie Daya, MS, Johns Hopkins University, for helpful input on the manuscript (uncompensated).

References
1.
Coresh  J, Selvin  E, Stevens  LA,  et al.  Prevalence of chronic kidney disease in the United States.  JAMA. 2007;298(17):2038-2047. doi:10.1001/jama.298.17.2038PubMedGoogle ScholarCrossref
2.
Hsu  CY, Vittinghoff  E, Lin  F, Shlipak  MG.  The incidence of end-stage renal disease is increasing faster than the prevalence of chronic renal insufficiency.  Ann Intern Med. 2004;141(2):95-101. doi:10.7326/0003-4819-141-2-200407200-00007PubMedGoogle ScholarCrossref
3.
Plantinga  LC, Boulware  LE, Coresh  J,  et al.  Patient awareness of chronic kidney disease: trends and predictors.  Arch Intern Med. 2008;168(20):2268-2275. doi:10.1001/archinte.168.20.2268PubMedGoogle ScholarCrossref
4.
Jha  V, Garcia-Garcia  G, Iseki  K,  et al.  Chronic kidney disease: global dimension and perspectives.  Lancet. 2013;382(9888):260-272. doi:10.1016/S0140-6736(13)60687-XPubMedGoogle ScholarCrossref
5.
Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group.  KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease.  Kidney Int Suppl. 2013;3(1):1-150.Google ScholarCrossref
6.
Mills  KT, Xu  Y, Zhang  W,  et al.  A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010.  Kidney Int. 2015;88(5):950-957. doi:10.1038/ki.2015.230PubMedGoogle ScholarCrossref
7.
Genovese  G, Friedman  DJ, Ross  MD,  et al.  Association of trypanolytic ApoL1 variants with kidney disease in African Americans.  Science. 2010;329(5993):841-845. doi:10.1126/science.1193032PubMedGoogle ScholarCrossref
8.
Tzur  S, Rosset  S, Shemer  R,  et al.  Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene.  Hum Genet. 2010;128(3):345-350. doi:10.1007/s00439-010-0861-0PubMedGoogle ScholarCrossref
9.
Naik  RP, Derebail  VK, Grams  ME,  et al.  Association of sickle cell trait with chronic kidney disease and albuminuria in African Americans.  JAMA. 2014;312(20):2115-2125. doi:10.1001/jama.2014.15063PubMedGoogle ScholarCrossref
10.
O’Seaghdha  CM, Parekh  RS, Hwang  SJ,  et al.  The MYH9/APOL1 region and chronic kidney disease in European-Americans.  Hum Mol Genet. 2011;20(12):2450-2456. doi:10.1093/hmg/ddr118PubMedGoogle ScholarCrossref
11.
Grams  ME, Rebholz  CM, Chen  Y,  et al.  Race, APOL1 risk, and eGFR decline in the general population.  J Am Soc Nephrol. 2016;27(9):2842-2850. doi:10.1681/ASN.2015070763PubMedGoogle ScholarCrossref
12.
Peralta  CA, Vittinghoff  E, Bansal  N,  et al.  Trajectories of kidney function decline in young black and white adults with preserved GFR: results from the Coronary Artery Risk Development in Young Adults (CARDIA) study.  Am J Kidney Dis. 2013;62(2):261-266. doi:10.1053/j.ajkd.2013.01.012PubMedGoogle ScholarCrossref
13.
Grams  ME, Chow  EK, Segev  DL, Coresh  J.  Lifetime incidence of CKD stages 3-5 in the United States.  Am J Kidney Dis. 2013;62(2):245-252. doi:10.1053/j.ajkd.2013.03.009PubMedGoogle ScholarCrossref
14.
Matsushita  K, Coresh  J, Sang  Y,  et al; CKD Prognosis Consortium.  Estimated glomerular filtration rate and albuminuria for prediction of cardiovascular outcomes: a collaborative meta-analysis of individual participant data.  Lancet Diabetes Endocrinol. 2015;3(7):514-525. doi:10.1016/S2213-8587(15)00040-6PubMedGoogle ScholarCrossref
15.
Astor  BC, Matsushita  K, Gansevoort  RT,  et al; Chronic Kidney Disease Prognosis Consortium.  Lower estimated glomerular filtration rate and higher albuminuria are associated with mortality and end-stage renal disease: a collaborative meta-analysis of kidney disease population cohorts.  Kidney Int. 2011;79(12):1331-1340. doi:10.1038/ki.2010.550PubMedGoogle ScholarCrossref
16.
Gansevoort  RT, Matsushita  K, van der Velde  M,  et al; Chronic Kidney Disease Prognosis Consortium.  Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes: a collaborative meta-analysis of general and high-risk population cohorts.  Kidney Int. 2011;80(1):93-104. doi:10.1038/ki.2010.531PubMedGoogle ScholarCrossref
17.
van der Velde  M, Matsushita  K, Coresh  J,  et al; Chronic Kidney Disease Prognosis Consortium.  Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality: a collaborative meta-analysis of high-risk population cohorts.  Kidney Int. 2011;79(12):1341-1352. doi:10.1038/ki.2010.536PubMedGoogle ScholarCrossref
18.
Inker  LA, Astor  BC, Fox  CH,  et al.  KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD.  Am J Kidney Dis. 2014;63(5):713-735. doi:10.1053/j.ajkd.2014.01.416PubMedGoogle ScholarCrossref
19.
Bilo  H, Coentrão  L, Couchoud  C,  et al; Guideline Development Group.  Clinical practice guideline on management of patients with diabetes and chronic kidney disease stage 3b or higher (eGFR <45 mL/min).  Nephrol Dial Transplant. 2015;30(suppl 2):ii1-ii142. doi:10.1093/ndt/gfv100PubMedGoogle ScholarCrossref
20.
Farrington  K, Covic  A, Aucella  F,  et al; ERBP Guideline Development Group.  Clinical practice guideline on management of older patients with chronic kidney disease stage 3b or higher (eGFR <45 mL/min/1.73 m2).  Nephrol Dial Transplant. 2016;31(suppl 2):ii1-ii66. doi:10.1093/ndt/gfw356PubMedGoogle ScholarCrossref
21.
Skorecki  K, Chertow  GM, Marsden  PA, Taal  MW, Yu  ASL.  Brenner & Rector’s the Kidney. 10th ed. Philadelphia, PA: Elsevier; 2016.
22.
Yang  B, Xie  Y, Guo  M, Rosner  MH, Yang  H, Ronco  C.  Nephrotoxicity and Chinese herbal medicine.  Clin J Am Soc Nephrol. 2018;13(10):1605-1611.PubMedGoogle Scholar
23.
Rocuts  AK, Waikar  SS, Alexander  MP, Rennke  HG, Singh  AK.  Acute phosphate nephropathy.  Kidney Int. 2009;75(9):987-991. doi:10.1038/ki.2008.293PubMedGoogle ScholarCrossref
24.
Markowitz  GS, Perazella  MA.  Acute phosphate nephropathy.  Kidney Int. 2009;76(10):1027-1034. doi:10.1038/ki.2009.308PubMedGoogle ScholarCrossref
25.
Levey  AS, Becker  C, Inker  LA.  Glomerular filtration rate and albuminuria for detection and staging of acute and chronic kidney disease in adults: a systematic review.  JAMA. 2015;313(8):837-846. doi:10.1001/jama.2015.0602PubMedGoogle ScholarCrossref
26.
Brown  SC, O’Reilly  PH.  Iohexol clearance for the determination of glomerular filtration rate in clinical practice: evidence for a new gold standard.  J Urol. 1991;146(3):675-679. doi:10.1016/S0022-5347(17)37891-6PubMedGoogle ScholarCrossref
27.
Elwood  CM, Sigman  EM, Treger  C.  The measurement of glomerular filtration rate with 125I-sodium iothalamate (Conray).  Br J Radiol. 1967;40(476):581-583. doi:10.1259/0007-1285-40-476-581PubMedGoogle ScholarCrossref
28.
Sigman  EM, Elwood  CM, Knox  F.  The measurement of glomerular filtration rate in man with sodium iothalamate 131-I (Conray).  J Nucl Med. 1966;7(1):60-68.PubMedGoogle Scholar
29.
Levey  AS, Stevens  LA, Schmid  CH,  et al; CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration).  A new equation to estimate glomerular filtration rate.  Ann Intern Med. 2009;150(9):604-612. doi:10.7326/0003-4819-150-9-200905050-00006PubMedGoogle ScholarCrossref
30.
Levey  AS, Bosch  JP, Lewis  JB, Greene  T, Rogers  N, Roth  D; Modification of Diet in Renal Disease Study Group.  A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation.  Ann Intern Med. 1999;130(6):461-470. doi:10.7326/0003-4819-130-6-199903160-00002PubMedGoogle ScholarCrossref
31.
Inker  LA, Schmid  CH, Tighiouart  H,  et al; CKD-EPI Investigators.  Estimating glomerular filtration rate from serum creatinine and cystatin C.  N Engl J Med. 2012;367(1):20-29. doi:10.1056/NEJMoa1114248PubMedGoogle ScholarCrossref
32.
Myers  GL, Miller  WG, Coresh  J,  et al; National Kidney Disease Education Program Laboratory Working Group.  Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program.  Clin Chem. 2006;52(1):5-18. doi:10.1373/clinchem.2005.0525144PubMedGoogle ScholarCrossref
33.
Lieske  JC, Bondar  O, Miller  WG,  et al; National Kidney Disease Education Program–IFCC Working Group on Standardization of Albumin in Urine.  A reference system for urinary albumin: current status.  Clin Chem Lab Med. 2013;51(5):981-989. doi:10.1515/cclm-2012-0768PubMedGoogle ScholarCrossref
34.
Miller  WG, Bruns  DE.  Laboratory issues in measuring and reporting urine albumin.  Nephrol Dial Transplant. 2009;24(3):717-718. doi:10.1093/ndt/gfp022PubMedGoogle ScholarCrossref
35.
Witte  EC, Lambers Heerspink  HJ, de Zeeuw  D, Bakker  SJ, de Jong  PE, Gansevoort  R.  First morning voids are more reliable than spot urine samples to assess microalbuminuria.  J Am Soc Nephrol. 2009;20(2):436-443. doi:10.1681/ASN.2008030292PubMedGoogle ScholarCrossref
36.
Rampoldi  L, Scolari  F, Amoroso  A, Ghiggeri  G, Devuyst  O.  The rediscovery of uromodulin (Tamm-Horsfall protein): from tubulointerstitial nephropathy to chronic kidney disease.  Kidney Int. 2011;80(4):338-347. doi:10.1038/ki.2011.134PubMedGoogle ScholarCrossref
37.
El-Achkar  TM, Wu  XR.  Uromodulin in kidney injury: an instigator, bystander, or protector?  Am J Kidney Dis. 2012;59(3):452-461. doi:10.1053/j.ajkd.2011.10.054PubMedGoogle ScholarCrossref
38.
Garimella  PS, Biggs  ML, Katz  R,  et al.  Urinary uromodulin, kidney function, and cardiovascular disease in elderly adults.  Kidney Int. 2015;88(5):1126-1134. doi:10.1038/ki.2015.192PubMedGoogle ScholarCrossref
39.
Bergmann  C, Guay-Woodford  LM, Harris  PC, Horie  S, Peters  DJM, Torres  VE.  Polycystic kidney disease.  Nat Rev Dis Primers. 2018;4(1):50. doi:10.1038/s41572-018-0047-yPubMedGoogle ScholarCrossref
40.
Torres  VE, Chapman  AB, Devuyst  O,  et al; REPRISE Trial Investigators.  Tolvaptan in later-stage autosomal dominant polycystic kidney disease.  N Engl J Med. 2017;377(20):1930-1942. doi:10.1056/NEJMoa1710030PubMedGoogle ScholarCrossref
41.
National Kidney Foundation. National Kidney Foundation, American Society for Clinical Pathology, leading laboratories and clinical laboratory societies unite to diagnose chronic kidney disease. https://www.kidney.org/news/national-kidney-foundation-american-society-clinical-pathology-leading-laboratories-and. Published February 21, 2018. Accessed August 13, 2019.
42.
Chang  AR, Grams  ME, Ballew  SH,  et al; CKD Prognosis Consortium.  Adiposity and risk of decline in glomerular filtration rate: meta-analysis of individual participant data in a global consortium.  BMJ. 2019;364:k5301. doi:10.1136/bmj.k5301PubMedGoogle ScholarCrossref
43.
Kazancioğlu  R.  Risk factors for chronic kidney disease: an update.  Kidney Int Suppl (2011). 2013;3(4):368-371. doi:10.1038/kisup.2013.79PubMedGoogle ScholarCrossref
44.
Peralta  CA, Bibbins-Domingo  K, Vittinghoff  E,  et al.  APOL1 genotype and race differences in incident albuminuria and renal function decline.  J Am Soc Nephrol. 2016;27(3):887-893. doi:10.1681/ASN.2015020124PubMedGoogle ScholarCrossref
45.
Foster  MC, Coresh  J, Fornage  M,  et al.  APOL1 variants associate with increased risk of CKD among African Americans.  J Am Soc Nephrol. 2013;24(9):1484-1491. doi:10.1681/ASN.2013010113PubMedGoogle ScholarCrossref
46.
Banerjee  T, Crews  DC, Wesson  DE,  et al; CDC CKD Surveillance Team.  Food insecurity, CKD, and subsequent ESRD in US adults.  Am J Kidney Dis. 2017;70(1):38-47. doi:10.1053/j.ajkd.2016.10.035PubMedGoogle ScholarCrossref
47.
US Renal Data System.  2018 USRDS Annual Data Report: Epidemiology of Kidney Disease in the United States. Bethesda, MD: National Institute of Diabetes and Digestive and Kidney Diseases; 2018.
48.
Kopp  JB, Nelson  GW, Sampath  K,  et al.  APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy.  J Am Soc Nephrol. 2011;22(11):2129-2137. doi:10.1681/ASN.2011040388PubMedGoogle ScholarCrossref
49.
Parsa  A, Kao  WH, Xie  D,  et al; AASK Study Investigators; CRIC Study Investigators.  APOL1 risk variants, race, and progression of chronic kidney disease.  N Engl J Med. 2013;369(23):2183-2196. doi:10.1056/NEJMoa1310345PubMedGoogle ScholarCrossref
50.
Kidney Disease: Improving Global Outcomes (KDIGO) Lipid Work Group.  KDIGO clinical practice guideline for lipid management in chronic kidney disease.  Kidney Int Suppl. 2013;3(3):259-305.Google ScholarCrossref
51.
Tonelli  M, Wanner  C; Kidney Disease: Improving Global Outcomes Lipid Guideline Development Work Group Members.  Lipid management in chronic kidney disease: synopsis of the Kidney Disease: Improving Global Outcomes 2013 clinical practice guideline.  Ann Intern Med. 2014;160(3):182. doi:10.7326/M13-2453PubMedGoogle ScholarCrossref
52.
Anderson  TJ, Grégoire  J, Pearson  GJ,  et al.  2016 Canadian Cardiovascular Society Guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult.  Can J Cardiol. 2016;32(11):1263-1282. doi:10.1016/j.cjca.2016.07.510PubMedGoogle ScholarCrossref
53.
Ricardo  AC, Anderson  CA, Yang  W,  et al; CRIC Study Investigators.  Healthy lifestyle and risk of kidney disease progression, atherosclerotic events, and death in CKD: findings from the Chronic Renal Insufficiency Cohort (CRIC) study.  Am J Kidney Dis. 2015;65(3):412-424. doi:10.1053/j.ajkd.2014.09.016PubMedGoogle ScholarCrossref
54.
James  PA, Oparil  S, Carter  BL,  et al.  2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8).  JAMA. 2014;311(5):507-520. doi:10.1001/jama.2013.284427PubMedGoogle ScholarCrossref
55.
Wright  JT  Jr, Williamson  JD, Whelton  PK,  et al; SPRINT Research Group.  A randomized trial of intensive versus standard blood-pressure control.  N Engl J Med. 2015;373(22):2103-2116. doi:10.1056/NEJMoa1511939PubMedGoogle ScholarCrossref
56.
Zhang  WR, Craven  TE, Malhotra  R,  et al; SPRINT Research Group.  Kidney damage biomarkers and incident chronic kidney disease during blood pressure reduction: a case-control study.  Ann Intern Med. 2018;169(9):610-618. doi:10.7326/M18-1037PubMedGoogle ScholarCrossref
57.
Cheung  AK, Rahman  M, Reboussin  DM,  et al; SPRINT Research Group.  Effects of intensive BP control in CKD.  J Am Soc Nephrol. 2017;28(9):2812-2823. doi:10.1681/ASN.2017020148PubMedGoogle ScholarCrossref
58.
Whelton  PK, Carey  RM, Aronow  WS,  et al.  2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.  J Am Coll Cardiol. 2018;71(19):e127-e248. doi:10.1016/j.jacc.2017.11.006PubMedGoogle ScholarCrossref
59.
Fried  LF, Emanuele  N, Zhang  JH,  et al; VA NEPHRON-D Investigators.  Combined angiotensin inhibition for the treatment of diabetic nephropathy.  N Engl J Med. 2013;369(20):1892-1903. doi:10.1056/NEJMoa1303154PubMedGoogle ScholarCrossref
60.
Williams  B, MacDonald  TM, Morant  S,  et al; British Hypertension Society’s PATHWAY Studies Group.  Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial.  Lancet. 2015;386(10008):2059-2068. doi:10.1016/S0140-6736(15)00257-3PubMedGoogle ScholarCrossref
61.
Pitt  B, Zannad  F, Remme  WJ,  et al; Randomized Aldactone Evaluation Study Investigators.  The effect of spironolactone on morbidity and mortality in patients with severe heart failure.  N Engl J Med. 1999;341(10):709-717. doi:10.1056/NEJM199909023411001PubMedGoogle ScholarCrossref
62.
Zannad  F, McMurray  JJ, Krum  H,  et al; EMPHASIS-HF Study Group.  Eplerenone in patients with systolic heart failure and mild symptoms.  N Engl J Med. 2011;364(1):11-21. doi:10.1056/NEJMoa1009492PubMedGoogle ScholarCrossref
63.
Ando  K, Ohtsu  H, Uchida  S, Kaname  S, Arakawa  Y, Fujita  T; EVALUATE Study Group.  Anti-albuminuric effect of the aldosterone blocker eplerenone in non-diabetic hypertensive patients with albuminuria: a double-blind, randomised, placebo-controlled trial.  Lancet Diabetes Endocrinol. 2014;2(12):944-953. doi:10.1016/S2213-8587(14)70194-9PubMedGoogle ScholarCrossref
64.
Bakris  GL, Agarwal  R, Chan  JC,  et al; Mineralocorticoid Receptor Antagonist Tolerability Study–Diabetic Nephropathy Study Group.  Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial.  JAMA. 2015;314(9):884-894. doi:10.1001/jama.2015.10081PubMedGoogle ScholarCrossref
65.
Shurraw  S, Hemmelgarn  B, Lin  M,  et al; Alberta Kidney Disease Network.  Association between glycemic control and adverse outcomes in people with diabetes mellitus and chronic kidney disease: a population-based cohort study.  Arch Intern Med. 2011;171(21):1920-1927. doi:10.1001/archinternmed.2011.537PubMedGoogle ScholarCrossref
66.
Nathan  DM, Zinman  B, Cleary  PA,  et al; Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group.  Modern-day clinical course of type 1 diabetes mellitus after 30 years’ duration: the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications and Pittsburgh Epidemiology of Diabetes Complications experience (1983-2005).  Arch Intern Med. 2009;169(14):1307-1316. doi:10.1001/archinternmed.2009.193PubMedGoogle ScholarCrossref
67.
UK Prospective Diabetes Study (UKPDS) Group.  Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33).  Lancet. 1998;352(9131):837-853. doi:10.1016/S0140-6736(98)07019-6PubMedGoogle ScholarCrossref
68.
Perkovic  V, Jardine  MJ, Neal  B,  et al; CREDENCE Trial Investigators.  Canagliflozin and renal outcomes in type 2 diabetes and nephropathy.  N Engl J Med. 2019;380(24):2295-2306. doi:10.1056/NEJMoa1811744PubMedGoogle ScholarCrossref
69.
Neal  B, Perkovic  V, Mahaffey  KW,  et al; CANVAS Program Collaborative Group.  Canagliflozin and cardiovascular and renal events in type 2 diabetes.  N Engl J Med. 2017;377(7):644-657. doi:10.1056/NEJMoa1611925PubMedGoogle ScholarCrossref
70.
Zinman  B, Wanner  C, Lachin  JM,  et al; EMPA-REG OUTCOME Investigators.  Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes.  N Engl J Med. 2015;373(22):2117-2128. doi:10.1056/NEJMoa1504720PubMedGoogle ScholarCrossref
71.
Lazarus  B, Chen  Y, Wilson  FP,  et al.  Proton pump inhibitor use and the risk of chronic kidney disease.  JAMA Intern Med. 2016;176(2):238-246. doi:10.1001/jamainternmed.2015.7193PubMedGoogle ScholarCrossref
72.
Muriithi  AK, Leung  N, Valeri  AM,  et al.  Biopsy-proven acute interstitial nephritis, 1993-2011: a case series.  Am J Kidney Dis. 2014;64(4):558-566. doi:10.1053/j.ajkd.2014.04.027PubMedGoogle ScholarCrossref
73.
Blank  ML, Parkin  L, Paul  C, Herbison  P.  A nationwide nested case-control study indicates an increased risk of acute interstitial nephritis with proton pump inhibitor use.  Kidney Int. 2014;86(4):837-844. doi:10.1038/ki.2014.74PubMedGoogle ScholarCrossref
74.
Palacio-Lacambra  ME, Comas-Reixach  I, Blanco-Grau  A, Suñé-Negre  JM, Segarra-Medrano  A, Montoro-Ronsano  JB.  Comparison of the Cockcroft-Gault, MDRD and CKD-EPI equations for estimating ganciclovir clearance.  Br J Clin Pharmacol. 2018;84(9):2120-2128. doi:10.1111/bcp.13647PubMedGoogle ScholarCrossref
75.
Okparavero  AA, Tighiouart  H, Krishnasami  Z,  et al.  Use of glomerular filtration rate estimating equations for drug dosing in HIV-positive patients.  Antivir Ther. 2013;18(6):793-802. doi:10.3851/IMP2676PubMedGoogle ScholarCrossref
76.
Chan  KE, Giugliano  RP, Patel  MR,  et al.  Nonvitamin K anticoagulant agents in patients with advanced chronic kidney disease or on dialysis with AF.  J Am Coll Cardiol. 2016;67(24):2888-2899. doi:10.1016/j.jacc.2016.02.082PubMedGoogle ScholarCrossref
77.
Chapin  E, Zhan  M, Hsu  VD, Seliger  SL, Walker  LD, Fink  JC.  Adverse safety events in chronic kidney disease: the frequency of “multiple hits”.  Clin J Am Soc Nephrol. 2010;5(1):95-101. doi:10.2215/CJN.06210909PubMedGoogle ScholarCrossref
78.
Dreisbach  AW, Lertora  JJ.  The effect of chronic renal failure on drug metabolism and transport.  Expert Opin Drug Metab Toxicol. 2008;4(8):1065-1074. doi:10.1517/17425255.4.8.1065PubMedGoogle ScholarCrossref
79.
Fink  JC, Brown  J, Hsu  VD, Seliger  SL, Walker  L, Zhan  M.  CKD as an underrecognized threat to patient safety.  Am J Kidney Dis. 2009;53(4):681-688. doi:10.1053/j.ajkd.2008.12.016PubMedGoogle ScholarCrossref
80.
Bahrainwala  JZ, Leonberg-Yoo  AK, Rudnick  MR.  Use of radiocontrast agents in CKD and ESRD.  Semin Dial. 2017;30(4):290-304. doi:10.1111/sdi.12593PubMedGoogle ScholarCrossref
81.
Abu-Alfa  AK.  Nephrogenic systemic fibrosis and gadolinium-based contrast agents.  Adv Chronic Kidney Dis. 2011;18(3):188-198. doi:10.1053/j.ackd.2011.03.001PubMedGoogle ScholarCrossref
82.
Perazella  MA.  Advanced kidney disease, gadolinium and nephrogenic systemic fibrosis: the perfect storm.  Curr Opin Nephrol Hypertens. 2009;18(6):519-525. doi:10.1097/MNH.0b013e3283309660PubMedGoogle ScholarCrossref
83.
Klahr  S, Levey  AS, Beck  GJ,  et al; Modification of Diet in Renal Disease Study Group.  The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease.  N Engl J Med. 1994;330(13):877-884. doi:10.1056/NEJM199403313301301PubMedGoogle ScholarCrossref
84.
Menon  V, Kopple  JD, Wang  X,  et al.  Effect of a very low-protein diet on outcomes: long-term follow-up of the Modification of Diet in Renal Disease (MDRD) study.  Am J Kidney Dis. 2009;53(2):208-217. doi:10.1053/j.ajkd.2008.08.009PubMedGoogle ScholarCrossref
85.
Robertson  L, Waugh  N, Robertson  A.  Protein restriction for diabetic renal disease.  Cochrane Database Syst Rev. 2007;(4):CD002181.PubMedGoogle Scholar
86.
Rosman  JB, ter Wee  PM, Meijer  S, Piers-Becht  TP, Sluiter  WJ, Donker  AJ.  Prospective randomised trial of early dietary protein restriction in chronic renal failure.  Lancet. 1984;2(8415):1291-1296. doi:10.1016/S0140-6736(84)90818-3PubMedGoogle ScholarCrossref
87.
Hansen  HP, Christensen  PK, Tauber-Lassen  E, Klausen  A, Jensen  BR, Parving  HH.  Low-protein diet and kidney function in insulin-dependent diabetic patients with diabetic nephropathy.  Kidney Int. 1999;55(2):621-628. doi:10.1046/j.1523-1755.1999.00274.xPubMedGoogle ScholarCrossref
88.
Hansen  HP, Tauber-Lassen  E, Jensen  BR, Parving  HH.  Effect of dietary protein restriction on prognosis in patients with diabetic nephropathy.  Kidney Int. 2002;62(1):220-228. doi:10.1046/j.1523-1755.2002.00421.xPubMedGoogle ScholarCrossref
89.
Knight  EL, Stampfer  MJ, Hankinson  SE, Spiegelman  D, Curhan  GC.  The impact of protein intake on renal function decline in women with normal renal function or mild renal insufficiency.  Ann Intern Med. 2003;138(6):460-467. doi:10.7326/0003-4819-138-6-200303180-00009PubMedGoogle ScholarCrossref
90.
Goraya  N, Simoni  J, Jo  C, Wesson  DE.  Dietary acid reduction with fruits and vegetables or bicarbonate attenuates kidney injury in patients with a moderately reduced glomerular filtration rate due to hypertensive nephropathy.  Kidney Int. 2012;81(1):86-93. doi:10.1038/ki.2011.313PubMedGoogle ScholarCrossref
91.
Banerjee  T, Crews  DC, Wesson  DE,  et al; Centers for Disease Control and Prevention Chronic Kidney Disease Surveillance Team.  High dietary acid load predicts ESRD among adults with CKD.  J Am Soc Nephrol. 2015;26(7):1693-1700. doi:10.1681/ASN.2014040332PubMedGoogle ScholarCrossref
92.
Inker  LA, Grams  ME, Levey  AS,  et al; CKD Prognosis Consortium.  Relationship of estimated GFR and albuminuria to concurrent laboratory abnormalities: an individual participant data meta-analysis in a global consortium.  Am J Kidney Dis. 2019;73(2):206-217. doi:10.1053/j.ajkd.2018.08.013PubMedGoogle ScholarCrossref
93.
Kidney Disease: Improving Global Outcomes (KDIGO) Anemia Work Group.  KDIGO clinical practice guideline for anemia in chronic kidney disease.  Kidney Int Suppl. 2012;2(4):279-335.Google ScholarCrossref
94.
Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group.  KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder (CKD-MBD).  Kidney Int Suppl (2011). 2017;7(1):1-59. doi:10.1016/j.kisu.2017.04.001PubMedGoogle ScholarCrossref
95.
Isakova  T, Nickolas  TL, Denburg  M,  et al.  KDOQI US commentary on the 2017 KDIGO clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder (CKD-MBD).  Am J Kidney Dis. 2017;70(6):737-751. doi:10.1053/j.ajkd.2017.07.019PubMedGoogle ScholarCrossref
96.
de Brito-Ashurst  I, Varagunam  M, Raftery  MJ, Yaqoob  MM.  Bicarbonate supplementation slows progression of CKD and improves nutritional status.  J Am Soc Nephrol. 2009;20(9):2075-2084. doi:10.1681/ASN.2008111205PubMedGoogle ScholarCrossref
97.
Dobre  M, Yang  W, Chen  J,  et al; CRIC Investigators.  Association of serum bicarbonate with risk of renal and cardiovascular outcomes in CKD: a report from the Chronic Renal Insufficiency Cohort (CRIC) study.  Am J Kidney Dis. 2013;62(4):670-678. doi:10.1053/j.ajkd.2013.01.017PubMedGoogle ScholarCrossref
98.
Driver  TH, Shlipak  MG, Katz  R,  et al.  Low serum bicarbonate and kidney function decline: the Multi-Ethnic Study of Atherosclerosis (MESA).  Am J Kidney Dis. 2014;64(4):534-541. doi:10.1053/j.ajkd.2014.05.008PubMedGoogle ScholarCrossref
99.
Mahajan  A, Simoni  J, Sheather  SJ, Broglio  KR, Rajab  MH, Wesson  DE.  Daily oral sodium bicarbonate preserves glomerular filtration rate by slowing its decline in early hypertensive nephropathy.  Kidney Int. 2010;78(3):303-309. doi:10.1038/ki.2010.129PubMedGoogle ScholarCrossref
100.
Tangri  N, Grams  ME, Levey  AS,  et al; CKD Prognosis Consortium.  Multinational assessment of accuracy of equations for predicting risk of kidney failure: a meta-analysis.  JAMA. 2016;315(2):164-174. doi:10.1001/jama.2015.18202PubMedGoogle ScholarCrossref
101.
Keith  DS, Nichols  GA, Gullion  CM, Brown  JB, Smith  DH.  Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization.  Arch Intern Med. 2004;164(6):659-663. doi:10.1001/archinte.164.6.659PubMedGoogle ScholarCrossref
102.
Tangri  N, Stevens  LA, Griffith  J,  et al.  A predictive model for progression of chronic kidney disease to kidney failure.  JAMA. 2011;305(15):1553-1559. doi:10.1001/jama.2011.451PubMedGoogle ScholarCrossref
103.
Hingwala  J, Wojciechowski  P, Hiebert  B,  et al.  Risk-based triage for nephrology referrals using the kidney failure risk equation.  Can J Kidney Health Dis. 2017;4:2054358117722782. doi:10.1177/2054358117722782PubMedGoogle Scholar
104.
Smekal  MD, Tam-Tham  H, Finlay  J,  et al.  Patient and provider experience and perspectives of a risk-based approach to multidisciplinary chronic kidney disease care: a mixed methods study.  BMC Nephrol. 2019;20(1):110. doi:10.1186/s12882-019-1269-2PubMedGoogle ScholarCrossref
105.
Harasemiw  O, Drummond  N, Singer  A,  et al.  Integrating risk-based care for patients with chronic kidney disease in the community: study protocol for a cluster randomized trial.  Can J Kidney Health Dis. 2019;6:2054358119841611. doi:10.1177/2054358119841611PubMedGoogle Scholar
106.
Grams  ME, Sang  Y, Ballew  SH,  et al.  Predicting timing of clinical outcomes in patients with chronic kidney disease and severely decreased glomerular filtration rate.  Kidney Int. 2018;93(6):1442-1451. doi:10.1016/j.kint.2018.01.009PubMedGoogle ScholarCrossref
107.
Eckardt  KU, Bansal  N, Coresh  J,  et al; Conference Participants.  Improving the prognosis of patients with severely decreased glomerular filtration rate (CKD G4+): conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference.  Kidney Int. 2018;93(6):1281-1292. doi:10.1016/j.kint.2018.02.006PubMedGoogle ScholarCrossref
108.
Cooper  BA, Branley  P, Bulfone  L,  et al; IDEAL Study.  A randomized, controlled trial of early versus late initiation of dialysis.  N Engl J Med. 2010;363(7):609-619. doi:10.1056/NEJMoa1000552PubMedGoogle ScholarCrossref
109.
Daugirdas  JT, Blake  BG, Ing  TS, eds.  Handbook of Dialysis. 4th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2007.
110.
Mange  KC, Joffe  MM, Feldman  HI.  Effect of the use or nonuse of long-term dialysis on the subsequent survival of renal transplants from living donors.  N Engl J Med. 2001;344(10):726-731. doi:10.1056/NEJM200103083441004PubMedGoogle ScholarCrossref
111.
Terasaki  PI, Cecka  JM, Gjertson  DW, Takemoto  S.  High survival rates of kidney transplants from spousal and living unrelated donors.  N Engl J Med. 1995;333(6):333-336. doi:10.1056/NEJM199508103330601PubMedGoogle ScholarCrossref
112.
United Network for Organ Sharing. Frequently asked questions about kidney transplant evaluation and listing. https://unos.org/wp-content/uploads/unos/Kidney_Eval_Brochure.pdf. Published 2018. Accessed August 6, 2019.
113.
Organ Procurement and Transplantation Network. Educational guidance on patient referral to kidney transplantation. https://optn.transplant.hrsa.gov/resources/guidance/educational-guidance-on-patient-referral-to-kidney-transplantation/. Published September 2015. Accessed August 6, 2019.
114.
National Kidney Foundation. KDOQI Clinical Practice Guideline For Vascular Access: 2018. https://www.kidney.org/sites/default/files/kdoqi_vasc-access-review2019_v2.pdf. Published April 2019. Accessed August 13, 2019.
115.
Couchoud  CG, Beuscart  JB, Aldigier  JC, Brunet  PJ, Moranne  OP; REIN Registry.  Development of a risk stratification algorithm to improve patient-centered care and decision making for incident elderly patients with end-stage renal disease.  Kidney Int. 2015;88(5):1178-1186. doi:10.1038/ki.2015.245PubMedGoogle ScholarCrossref
116.
Kurella Tamura  M, Covinsky  KE, Chertow  GM, Yaffe  K, Landefeld  CS, McCulloch  CE.  Functional status of elderly adults before and after initiation of dialysis.  N Engl J Med. 2009;361(16):1539-1547. doi:10.1056/NEJMoa0904655PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Topics
State Requirements