Accepted for Publication: August 29, 2019.
Corresponding Author: Brian C. Baumann, MD, Department of Radiation Oncology, Washington University in St Louis, 4921 Parkview Pl, Lower Level, St Louis, MO 63110 (brian.baumann@wustl.edu).
Published Online: December 26, 2019. doi:10.1001/jamaoncol.2019.4889
Author Contributions: Dr Baumann had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.
Concept and design: Baumann, Gabriel, Bekelman, Metz.
Acquisition, analysis, or interpretation of data: Baumann, Mitra, Harton, Xiao, Wojcieszynski, Gabriel, Zhong, Geng, Doucette, Wei, O’Dwyer, Metz.
Drafting of the manuscript: Baumann, Wojcieszynski, Gabriel, Zhong, Geng, Bekelman, Metz.
Critical revision of the manuscript for important intellectual content: Baumann, Mitra, Harton, Xiao, Wojcieszynski, Gabriel, Doucette, Wei, O’Dwyer, Bekelman, Metz.
Statistical analysis: Mitra, Harton, Wojcieszynski, Zhong, Bekelman.
Obtained funding: Metz.
Administrative, technical, or material support: Baumann, Xiao, Wojcieszynski, Geng, Doucette, O’Dwyer, Metz.
Supervision: Baumann, Mitra, Metz.
Conflict of Interest Disclosures: Dr Bekelman reported receiving personal fees from the Centers for Medicare & Medicaid Services and from CVS Health outside the submitted work. Dr O’Dwyer reported serving as a paid consultant for Boehringer Ingelheim, Genentech, Inc, and Celgene Corporation and has provided expert testimony for Bayer, Inc. Dr Metz reported personal fees from Varian Medical Systems, Ion Beam Applications, and Provision outside the submitted work. No other disclosures were reported.
Funding/Support: This study was supported exclusively by research development funds from the department of Radiation Oncology, University of Pennsylvania.
Role of the Funder/Sponsor: The sponsor had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.
1.Bradley
JD, Paulus
R, Komaki
R,
et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non–small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study.
Lancet Oncol. 2015;16(2):187-199. doi:
10.1016/S1470-2045(14)71207-0PubMedGoogle ScholarCrossref 2.Stupp
R, Mason
WP, van den Bent
MJ,
et al; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma.
N Engl J Med. 2005;352(10):987-996. doi:
10.1056/NEJMoa043330PubMedGoogle ScholarCrossref 3.Pignon
JP, le Maître
A, Maillard
E, Bourhis
J; MACH-NC Collaborative Group. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 93 randomised trials and 17 346 patients.
Radiother Oncol. 2009;92(1):4-14. doi:
10.1016/j.radonc.2009.04.014PubMedGoogle ScholarCrossref 4.Cooper
JS, Guo
MD, Herskovic
A,
et al; Radiation Therapy Oncology Group. Chemoradiotherapy of locally advanced esophageal cancer: long-term follow-up of a prospective randomized trial (RTOG 85-01).
JAMA. 1999;281(17):1623-1627. doi:
10.1001/jama.281.17.1623PubMedGoogle ScholarCrossref 7.Nguyen-Tan
PF, Zhang
Q, Ang
KK,
et al. Randomized phase III trial to test accelerated versus standard fractionation in combination with concurrent cisplatin for head and neck carcinomas in the Radiation Therapy Oncology Group 0129 trial: long-term report of efficacy and toxicity.
J Clin Oncol. 2014;32(34):3858-3866. doi:
10.1200/JCO.2014.55.3925PubMedGoogle ScholarCrossref 12.Baumann
BC, Lustig
RA, Mazzoni
S,
et al. A prospective clinical trial of proton therapy for chordoma and chondrosarcoma: feasibility assessment.
J Surg Oncol. 2019;120(2):200-205. doi:
10.1002/jso.25502PubMedGoogle Scholar 13.Hong
TS, Wo
JY, Yeap
BY,
et al. Multi-institutional phase II study of high-dose hypofractionated proton beam therapy in patients with localized, unresectable hepatocellular carcinoma and intrahepatic cholangiocarcinoma.
J Clin Oncol. 2016;34(5):460-468. doi:
10.1200/JCO.2015.64.2710PubMedGoogle ScholarCrossref 15.Pragmatic randomized trial of proton vs photon therapy for patients with non-metastatic breast cancer receiving comprehensive nodal radiation: a Radiotherapy Comparative Effectiveness (RADCOMP) Consortium trial NCT02603341. Clinicaltrials.gov. identifier: NCT02603341.
https://clinicaltrials.gov/ct2/show/NCT02603341. Updated July 26, 2019. Accessed July 30, 2019.
16.Liao
Z, Lee
JJ, Komaki
R,
et al. Bayesian adaptive randomization trial of passive scattering proton therapy and intensity-modulated photon radiotherapy for locally advanced non–small-cell lung cancer.
J Clin Oncol. 2018;36(18):1813-1822. doi:
10.1200/JCO.2017.74.0720PubMedGoogle ScholarCrossref 19.Michalski
JM, Moughan
J, Purdy
J,
et al. Effect of standard vs dose-escalated radiation therapy for patients with intermediate-risk prostate cancer: the NRG oncology RTOG 0126 randomized clinical trial.
JAMA Oncol. 2018;4(6):e180039. doi:
10.1001/jamaoncol.2018.0039PubMedGoogle Scholar 22.Matuszak
MM, Fuller
CD, Yock
TI,
et al. Performance/outcomes data and physician process challenges for practical big data efforts in radiation oncology.
Med Phys. 2018;45(10):e811-e819. doi:
10.1002/mp.13136PubMedGoogle ScholarCrossref 25.Kachnic
LA, Winter
K, Myerson
RJ,
et al. RTOG 0529: a phase 2 evaluation of dose-painted intensity modulated radiation therapy in combination with 5-fluorouracil and mitomycin-C for the reduction of acute morbidity in carcinoma of the anal canal.
Int J Radiat Oncol Biol Phys. 2013;86(1):27-33. doi:
10.1016/j.ijrobp.2012.09.023PubMedGoogle ScholarCrossref 27.Bernier
J, Domenge
C, Ozsahin
M,
et al; European Organization for Research and Treatment of Cancer Trial 22931. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer.
N Engl J Med. 2004;350(19):1945-1952. doi:
10.1056/NEJMoa032641PubMedGoogle ScholarCrossref 30.Bekelman
JE, Denicoff
A, Buchsbaum
J. Randomized trials of proton therapy: why they are at risk, proposed solutions, and implications for evaluating advanced technologies to diagnose and treat cancer.
J Clin Oncol. 2018;36(24):2461-2464. doi:
10.1200/JCO.2018.77.7078PubMedGoogle ScholarCrossref 35.Austin
PC, Stuart
EA. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies.
Stat Med. 2015;34(28):3661-3679. doi:
10.1002/sim.6607PubMedGoogle ScholarCrossref 41.Romesser
PB, Cahlon
O, Scher
E,
et al. Proton beam radiation therapy results in significantly reduced toxicity compared with intensity-modulated radiation therapy for head and neck tumors that require ipsilateral radiation.
Radiother Oncol. 2016;118(2):286-292. doi:
10.1016/j.radonc.2015.12.008PubMedGoogle ScholarCrossref 42.Xi
M, Xu
C, Liao
Z,
et al. Comparative outcomes after definitive chemoradiotherapy using proton beam therapy versus intensity modulated radiation therapy for esophageal cancer: a retrospective, single-institutional analysis.
Int J Radiat Oncol Biol Phys. 2017;99(3):667-676. doi:
10.1016/j.ijrobp.2017.06.2450PubMedGoogle ScholarCrossref 44.Chang
JY, Zhang
X, Wang
X,
et al. Significant reduction of normal tissue dose by proton radiotherapy compared with three-dimensional conformal or intensity-modulated radiation therapy in stage I or stage III non–small-cell lung cancer.
Int J Radiat Oncol Biol Phys. 2006;65(4):1087-1096. doi:
10.1016/j.ijrobp.2006.01.052PubMedGoogle ScholarCrossref 45.Apinorasethkul
O, Kirk
M, Teo
K, Swisher-McClure
S, Lukens
JN, Lin
A. Pencil beam scanning proton therapy vs rotational arc radiation therapy: a treatment planning comparison for postoperative oropharyngeal cancer.
Med Dosim. 2017;42(1):7-11. doi:
10.1016/j.meddos.2016.09.004PubMedGoogle ScholarCrossref 46.Blanchard
P, Garden
AS, Gunn
GB,
et al. Intensity-modulated proton beam therapy (IMPT) versus intensity-modulated photon therapy (IMRT) for patients with oropharynx cancer—a case matched analysis.
Radiother Oncol. 2016;120(1):48-55. doi:
10.1016/j.radonc.2016.05.022PubMedGoogle ScholarCrossref 47.McDonald
MW, Liu
Y, Moore
MG, Johnstone
PA. Acute toxicity in comprehensive head and neck radiation for nasopharynx and paranasal sinus cancers: cohort comparison of 3D conformal proton therapy and intensity modulated radiation therapy.
Radiat Oncol. 2016;11:32. doi:
10.1186/s13014-016-0600-3PubMedGoogle ScholarCrossref 49.Giaddui
T, Chen
W, Yu
J,
et al. Establishing the feasibility of the dosimetric compliance criteria of RTOG 1308: phase III randomized trial comparing overall survival after photon versus proton radiochemotherapy for inoperable stage II-IIIB NSCLC.
Radiat Oncol. 2016;11:66. doi:
10.1186/s13014-016-0640-8PubMedGoogle ScholarCrossref 50.Fischer-Valuck
BW, Michalski
JM, Contreras
JA,
et al. A propensity analysis comparing definitive chemo-radiotherapy for muscle-invasive squamous cell carcinoma of the bladder vs urothelial carcinoma of the bladder using the National Cancer Database.
Clin Transl Radiat Oncol. 2018;15:38-41. doi:
10.1016/j.ctro.2018.12.001PubMedGoogle ScholarCrossref 54.Choy
H, Jain
AK, Moughan
J,
et al. RTOG 0017: a phase I trial of concurrent gemcitabine/carboplatin or gemcitabine/paclitaxel and radiation therapy (“Ping-Pong trial”) followed by adjuvant chemotherapy for patients with favorable prognosis inoperable stage IIIA/B non–small cell lung cancer.
J Thorac Oncol. 2009;4(1):80-86. doi:
10.1097/JTO.0b013e318191503fPubMedGoogle ScholarCrossref 56.Langer
CJ, Gadgeel
SM, Borghaei
H,
et al; KEYNOTE-021 Investigators. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non–small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study.
Lancet Oncol. 2016;17(11):1497-1508. doi:
10.1016/S1470-2045(16)30498-3PubMedGoogle ScholarCrossref