Proton vs Photon Therapy as Part of Concurrent Chemoradiotherapy for Locally Advanced Cancer | Oncology | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

Comparative Effectiveness of Proton vs Photon Therapy as Part of Concurrent Chemoradiotherapy for Locally Advanced Cancer

Educational Objective
To learn the comparative effectiveness of proton versus photon treatment as part of chemoradiation for locally advanced cancer.
1 Credit CME
Key Points

Question  Can proton therapy reduce the risk of severe adverse events associated with unplanned hospitalizations compared with photon therapy for patients undergoing concurrent chemoradiotherapy?

Findings  In this comparative effectiveness study of 1483 adults with nonmetastatic cancer and treated with curative intent, proton therapy was associated with a two-thirds reduction in adverse events associated with unplanned hospitalizations, with no difference in disease-free or overall survival.

Meaning  These findings suggest that, in adults with locally advanced cancer, proton therapy with concurrent chemoradiotherapy may significantly reduce severe adverse events compared with photon therapy, with comparable oncologic outcomes.


Importance  Concurrent chemoradiotherapy is the standard-of-care curative treatment for many cancers but is associated with substantial morbidity. Concurrent chemoradiotherapy administered with proton therapy might reduce toxicity and achieve comparable cancer control outcomes compared with conventional photon radiotherapy by reducing the radiation dose to normal tissues.

Objective  To assess whether proton therapy in the setting of concurrent chemoradiotherapy is associated with fewer 90-day unplanned hospitalizations (Common Terminology Criteria for Adverse Events, version 4 [CTCAEv4], grade ≥3) or other adverse events and similar disease-free and overall survival compared with concurrent photon therapy and chemoradiotherapy.

Design, Setting, and Participants  This retrospective, nonrandomized comparative effectiveness study included 1483 adult patients with nonmetastatic, locally advanced cancer treated with concurrent chemoradiotherapy with curative intent from January 1, 2011, through December 31, 2016, at a large academic health system. Three hundred ninety-one patients received proton therapy and 1092, photon therapy. Data were analyzed from October 15, 2018, through February 1, 2019.

Interventions  Proton vs photon chemoradiotherapy.

Main Outcomes and Measures  The primary end point was 90-day adverse events associated with unplanned hospitalizations (CTCAEv4 grade ≥3). Secondary end points included Eastern Cooperative Oncology Group (ECOG) performance status decline during treatment, 90-day adverse events of at least CTCAEv4 grade 2 that limit instrumental activities of daily living, and disease-free and overall survival. Data on adverse events and survival were gathered prospectively. Modified Poisson regression models with inverse propensity score weighting were used to model adverse event outcomes, and Cox proportional hazards regression models with weighting were used for survival outcomes. Propensity scores were estimated using an ensemble machine-learning approach.

Results  Among the 1483 patients included in the analysis (935 men [63.0%]; median age, 62 [range, 18-93] years), those receiving proton therapy were significantly older (median age, 66 [range, 18-93] vs 61 [range, 19-91] years; P < .01), had less favorable Charlson-Deyo comorbidity scores (median, 3.0 vs 2.0; P < .01), and had lower integral radiation dose to tissues outside the target (mean [SD] volume, 14.1 [6.4] vs 19.1 [10.6] cGy/cc × 107; P < .01). Baseline grade ≥2 toxicity (22% vs 24%; P = .37) and ECOG performance status (mean [SD], 0.62 [0.74] vs 0.68 [0.80]; P = .16) were similar between the 2 cohorts. In propensity score weighted–analyses, proton chemoradiotherapy was associated with a significantly lower relative risk of 90-day adverse events of at least grade 3 (0.31; 95% CI, 0.15-0.66; P = .002), 90-day adverse events of at least grade 2 (0.78; 95% CI, 0.65-0.93; P = .006), and decline in performance status during treatment (0.51; 95% CI, 0.37-0.71; P < .001). There was no difference in disease-free or overall survival.

Conclusions and Relevance  In this analysis, proton chemoradiotherapy was associated with significantly reduced acute adverse events that caused unplanned hospitalizations, with similar disease-free and overall survival. Prospective trials are warranted to validate these results.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Accepted for Publication: August 29, 2019.

Corresponding Author: Brian C. Baumann, MD, Department of Radiation Oncology, Washington University in St Louis, 4921 Parkview Pl, Lower Level, St Louis, MO 63110 (

Published Online: December 26, 2019. doi:10.1001/jamaoncol.2019.4889

Author Contributions: Dr Baumann had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Baumann, Gabriel, Bekelman, Metz.

Acquisition, analysis, or interpretation of data: Baumann, Mitra, Harton, Xiao, Wojcieszynski, Gabriel, Zhong, Geng, Doucette, Wei, O’Dwyer, Metz.

Drafting of the manuscript: Baumann, Wojcieszynski, Gabriel, Zhong, Geng, Bekelman, Metz.

Critical revision of the manuscript for important intellectual content: Baumann, Mitra, Harton, Xiao, Wojcieszynski, Gabriel, Doucette, Wei, O’Dwyer, Bekelman, Metz.

Statistical analysis: Mitra, Harton, Wojcieszynski, Zhong, Bekelman.

Obtained funding: Metz.

Administrative, technical, or material support: Baumann, Xiao, Wojcieszynski, Geng, Doucette, O’Dwyer, Metz.

Supervision: Baumann, Mitra, Metz.

Conflict of Interest Disclosures: Dr Bekelman reported receiving personal fees from the Centers for Medicare & Medicaid Services and from CVS Health outside the submitted work. Dr O’Dwyer reported serving as a paid consultant for Boehringer Ingelheim, Genentech, Inc, and Celgene Corporation and has provided expert testimony for Bayer, Inc. Dr Metz reported personal fees from Varian Medical Systems, Ion Beam Applications, and Provision outside the submitted work. No other disclosures were reported.

Funding/Support: This study was supported exclusively by research development funds from the department of Radiation Oncology, University of Pennsylvania.

Role of the Funder/Sponsor: The sponsor had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Bradley  JD, Paulus  R, Komaki  R,  et al.  Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non–small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study.  Lancet Oncol. 2015;16(2):187-199. doi:10.1016/S1470-2045(14)71207-0PubMedGoogle ScholarCrossref
Stupp  R, Mason  WP, van den Bent  MJ,  et al; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma.  N Engl J Med. 2005;352(10):987-996. doi:10.1056/NEJMoa043330PubMedGoogle ScholarCrossref
Pignon  JP, le Maître  A, Maillard  E, Bourhis  J; MACH-NC Collaborative Group.  Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 93 randomised trials and 17 346 patients.  Radiother Oncol. 2009;92(1):4-14. doi:10.1016/j.radonc.2009.04.014PubMedGoogle ScholarCrossref
Cooper  JS, Guo  MD, Herskovic  A,  et al; Radiation Therapy Oncology Group.  Chemoradiotherapy of locally advanced esophageal cancer: long-term follow-up of a prospective randomized trial (RTOG 85-01).  JAMA. 1999;281(17):1623-1627. doi:10.1001/jama.281.17.1623PubMedGoogle ScholarCrossref
van Hagen  P, Hulshof  MC, van Lanschot  JJ,  et al; CROSS Group.  Preoperative chemoradiotherapy for esophageal or junctional cancer.  N Engl J Med. 2012;366(22):2074-2084. doi:10.1056/NEJMoa1112088PubMedGoogle ScholarCrossref
Bonner  JA, Harari  PM, Giralt  J,  et al.  Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck.  N Engl J Med. 2006;354(6):567-578. doi:10.1056/NEJMoa053422PubMedGoogle ScholarCrossref
Nguyen-Tan  PF, Zhang  Q, Ang  KK,  et al.  Randomized phase III trial to test accelerated versus standard fractionation in combination with concurrent cisplatin for head and neck carcinomas in the Radiation Therapy Oncology Group 0129 trial: long-term report of efficacy and toxicity.  J Clin Oncol. 2014;32(34):3858-3866. doi:10.1200/JCO.2014.55.3925PubMedGoogle ScholarCrossref
Ollendorf  DA, Colby  J. Proton beam therapy: ICER final evidence report. Washington State Health Technology Assessment Program. Published March 28, 2014. Accessed November 12, 2015.
Kong  FS.  What happens when proton meets randomization: is there a future for proton therapy?  J Clin Oncol. 2018;36(18):1777-1779. doi:10.1200/JCO.2017.76.5479PubMedGoogle ScholarCrossref
Indelicato  DJ, Merchant  T, Laperriere  N,  et al.  Consensus report from the Stockholm Pediatric Proton Therapy Conference.  Int J Radiat Oncol Biol Phys. 2016;96(2):387-392. doi:10.1016/j.ijrobp.2016.06.2446PubMedGoogle ScholarCrossref
Leeman  JE, Romesser  PB, Zhou  Y,  et al.  Proton therapy for head and neck cancer: expanding the therapeutic window.  Lancet Oncol. 2017;18(5):e254-e265. doi:10.1016/S1470-2045(17)30179-1PubMedGoogle ScholarCrossref
Baumann  BC, Lustig  RA, Mazzoni  S,  et al.  A prospective clinical trial of proton therapy for chordoma and chondrosarcoma: feasibility assessment.  J Surg Oncol. 2019;120(2):200-205. doi:10.1002/jso.25502PubMedGoogle Scholar
Hong  TS, Wo  JY, Yeap  BY,  et al.  Multi-institutional phase II study of high-dose hypofractionated proton beam therapy in patients with localized, unresectable hepatocellular carcinoma and intrahepatic cholangiocarcinoma.  J Clin Oncol. 2016;34(5):460-468. doi:10.1200/JCO.2015.64.2710PubMedGoogle ScholarCrossref
Thomas  CR  Jr.  Potential of prospective particle therapy trials to increase the therapeutic ratio for locally advanced lung cancer.  JAMA Oncol. 2017;3(8):e172165. doi:10.1001/jamaoncol.2017.2165PubMedGoogle Scholar
Pragmatic randomized trial of proton vs photon therapy for patients with non-metastatic breast cancer receiving comprehensive nodal radiation: a Radiotherapy Comparative Effectiveness (RADCOMP) Consortium trial NCT02603341. identifier: NCT02603341. Updated July 26, 2019. Accessed July 30, 2019.
Liao  Z, Lee  JJ, Komaki  R,  et al.  Bayesian adaptive randomization trial of passive scattering proton therapy and intensity-modulated photon radiotherapy for locally advanced non–small-cell lung cancer.  J Clin Oncol. 2018;36(18):1813-1822. doi:10.1200/JCO.2017.74.0720PubMedGoogle ScholarCrossref
Higgins  KA, O’Connell  K, Liu  Y,  et al.  National Cancer Database analysis of proton versus photon radiation therapy in non–small cell lung cancer.  Int J Radiat Oncol Biol Phys. 2017;97(1):128-137. doi:10.1016/j.ijrobp.2016.10.001PubMedGoogle ScholarCrossref
Mitin  T, Zietman  AL.  Promise and pitfalls of heavy-particle therapy.  J Clin Oncol. 2014;32(26):2855-2863. doi:10.1200/JCO.2014.55.1945PubMedGoogle ScholarCrossref
Michalski  JM, Moughan  J, Purdy  J,  et al.  Effect of standard vs dose-escalated radiation therapy for patients with intermediate-risk prostate cancer: the NRG oncology RTOG 0126 randomized clinical trial.  JAMA Oncol. 2018;4(6):e180039. doi:10.1001/jamaoncol.2018.0039PubMedGoogle Scholar
Whelan  TJ, Olivotto  IA, Parulekar  WR,  et al; MA.20 Study Investigators.  Regional nodal irradiation in early-stage breast cancer.  N Engl J Med. 2015;373(4):307-316. doi:10.1056/NEJMoa1415340PubMedGoogle ScholarCrossref
Ryan  CJ, Smith  MR, de Bono  JS,  et al; COU-AA-302 Investigators.  Abiraterone in metastatic prostate cancer without previous chemotherapy.  N Engl J Med. 2013;368(2):138-148. doi:10.1056/NEJMoa1209096PubMedGoogle ScholarCrossref
Matuszak  MM, Fuller  CD, Yock  TI,  et al.  Performance/outcomes data and physician process challenges for practical big data efforts in radiation oncology.  Med Phys. 2018;45(10):e811-e819. doi:10.1002/mp.13136PubMedGoogle ScholarCrossref
Quan  H, Sundararajan  V, Halfon  P,  et al.  Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data.  Med Care. 2005;43(11):1130-1139. doi:10.1097/01.mlr.0000182534.19832.83PubMedGoogle ScholarCrossref
Oken  MM, Creech  RH, Tormey  DC,  et al.  Toxicity and response criteria of the Eastern Cooperative Oncology Group.  Am J Clin Oncol. 1982;5(6):649-655. doi:10.1097/00000421-198212000-00014PubMedGoogle ScholarCrossref
Kachnic  LA, Winter  K, Myerson  RJ,  et al.  RTOG 0529: a phase 2 evaluation of dose-painted intensity modulated radiation therapy in combination with 5-fluorouracil and mitomycin-C for the reduction of acute morbidity in carcinoma of the anal canal.  Int J Radiat Oncol Biol Phys. 2013;86(1):27-33. doi:10.1016/j.ijrobp.2012.09.023PubMedGoogle ScholarCrossref
James  ND, Hussain  SA, Hall  E,  et al; BC2001 Investigators.  Radiotherapy with or without chemotherapy in muscle-invasive bladder cancer.  N Engl J Med. 2012;366(16):1477-1488. doi:10.1056/NEJMoa1106106PubMedGoogle ScholarCrossref
Bernier  J, Domenge  C, Ozsahin  M,  et al; European Organization for Research and Treatment of Cancer Trial 22931.  Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer.  N Engl J Med. 2004;350(19):1945-1952. doi:10.1056/NEJMoa032641PubMedGoogle ScholarCrossref
Stitzenberg  KB, Chang  Y, Smith  AB, Nielsen  ME.  Exploring the burden of inpatient readmissions after major cancer surgery.  J Clin Oncol. 2015;33(5):455-464. doi:10.1200/JCO.2014.55.5938PubMedGoogle ScholarCrossref
Jeong  IG, Khandwala  YS, Kim  JH,  et al.  Association of robotic-assisted vs laparoscopic radical nephrectomy with perioperative outcomes and health care costs, 2003 to 2015.  JAMA. 2017;318(16):1561-1568. doi:10.1001/jama.2017.14586PubMedGoogle ScholarCrossref
Bekelman  JE, Denicoff  A, Buchsbaum  J.  Randomized trials of proton therapy: why they are at risk, proposed solutions, and implications for evaluating advanced technologies to diagnose and treat cancer.  J Clin Oncol. 2018;36(24):2461-2464. doi:10.1200/JCO.2018.77.7078PubMedGoogle ScholarCrossref
Pirracchio  R, Petersen  ML, van der Laan  M.  Improving propensity score estimators’ robustness to model misspecification using Super Learner.  Am J Epidemiol. 2015;181(2):108-119. doi:10.1093/aje/kwu253PubMedGoogle ScholarCrossref
Austin  PC.  Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples.  Stat Med. 2009;28(25):3083-3107. doi:10.1002/sim.3697PubMedGoogle ScholarCrossref
Wan  F, Mitra  N.  An evaluation of bias in propensity score-adjusted non-linear regression models.  Stat Methods Med Res. 2018;27(3):846-862. doi:10.1177/0962280216643739PubMedGoogle ScholarCrossref
Zou  G.  A modified Poisson regression approach to prospective studies with binary data.  Am J Epidemiol. 2004;159(7):702-706. doi:10.1093/aje/kwh090PubMedGoogle ScholarCrossref
Austin  PC, Stuart  EA.  Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies.  Stat Med. 2015;34(28):3661-3679. doi:10.1002/sim.6607PubMedGoogle ScholarCrossref
Kalbasi  A, Li  J, Berman  A,  et al.  Dose-escalated irradiation and overall survival in men with nonmetastatic prostate cancer.  JAMA Oncol. 2015;1(7):897-906. doi:10.1001/jamaoncol.2015.2316PubMedGoogle ScholarCrossref
Mitra  N, Heitjan  DF.  Sensitivity of the hazard ratio to nonignorable treatment assignment in an observational study.  Stat Med. 2007;26(6):1398-1414. doi:10.1002/sim.2606PubMedGoogle ScholarCrossref
Jairam  V, Lee  V, Park  HS,  et al.  Treatment-related complications of systemic therapy and radiotherapy.  JAMA Oncol. 2019;5(7):1028-1035. doi:10.1001/jamaoncol.2019.0086PubMedGoogle ScholarCrossref
Marar  M, Gabriel  P, Hwang  WT,  et al.  Acute hospital encounters in cancer patients treated with definitive radiation therapy.  Int J Radiat Oncol Biol Phys. 2018;101(4):935-944. doi:10.1016/j.ijrobp.2018.04.025PubMedGoogle ScholarCrossref
Torres  VB, Vassalo  J, Silva  UV,  et al.  Outcomes in critically ill patients with cancer-related complications.  PLoS One. 2016;11(10):e0164537. doi:10.1371/journal.pone.0164537PubMedGoogle Scholar
Romesser  PB, Cahlon  O, Scher  E,  et al.  Proton beam radiation therapy results in significantly reduced toxicity compared with intensity-modulated radiation therapy for head and neck tumors that require ipsilateral radiation.  Radiother Oncol. 2016;118(2):286-292. doi:10.1016/j.radonc.2015.12.008PubMedGoogle ScholarCrossref
Xi  M, Xu  C, Liao  Z,  et al.  Comparative outcomes after definitive chemoradiotherapy using proton beam therapy versus intensity modulated radiation therapy for esophageal cancer: a retrospective, single-institutional analysis.  Int J Radiat Oncol Biol Phys. 2017;99(3):667-676. doi:10.1016/j.ijrobp.2017.06.2450PubMedGoogle ScholarCrossref
Warren  S, Hurt  CN, Crosby  T, Partridge  M, Hawkins  MA.  Potential of proton therapy to reduce acute hematologic toxicity in concurrent chemoradiation therapy for esophageal cancer.  Int J Radiat Oncol Biol Phys. 2017;99(3):729-737. doi:10.1016/j.ijrobp.2017.07.025PubMedGoogle ScholarCrossref
Chang  JY, Zhang  X, Wang  X,  et al.  Significant reduction of normal tissue dose by proton radiotherapy compared with three-dimensional conformal or intensity-modulated radiation therapy in stage I or stage III non–small-cell lung cancer.  Int J Radiat Oncol Biol Phys. 2006;65(4):1087-1096. doi:10.1016/j.ijrobp.2006.01.052PubMedGoogle ScholarCrossref
Apinorasethkul  O, Kirk  M, Teo  K, Swisher-McClure  S, Lukens  JN, Lin  A.  Pencil beam scanning proton therapy vs rotational arc radiation therapy: a treatment planning comparison for postoperative oropharyngeal cancer.  Med Dosim. 2017;42(1):7-11. doi:10.1016/j.meddos.2016.09.004PubMedGoogle ScholarCrossref
Blanchard  P, Garden  AS, Gunn  GB,  et al.  Intensity-modulated proton beam therapy (IMPT) versus intensity-modulated photon therapy (IMRT) for patients with oropharynx cancer—a case matched analysis.  Radiother Oncol. 2016;120(1):48-55. doi:10.1016/j.radonc.2016.05.022PubMedGoogle ScholarCrossref
McDonald  MW, Liu  Y, Moore  MG, Johnstone  PA.  Acute toxicity in comprehensive head and neck radiation for nasopharynx and paranasal sinus cancers: cohort comparison of 3D conformal proton therapy and intensity modulated radiation therapy.  Radiat Oncol. 2016;11:32. doi:10.1186/s13014-016-0600-3PubMedGoogle ScholarCrossref
Hirano  Y, Onozawa  M, Hojo  H,  et al.  Dosimetric comparison between proton beam therapy and photon radiation therapy for locally advanced esophageal squamous cell carcinoma.  Radiat Oncol. 2018;13(1):23. doi:10.1186/s13014-018-0966-5PubMedGoogle ScholarCrossref
Giaddui  T, Chen  W, Yu  J,  et al.  Establishing the feasibility of the dosimetric compliance criteria of RTOG 1308: phase III randomized trial comparing overall survival after photon versus proton radiochemotherapy for inoperable stage II-IIIB NSCLC.  Radiat Oncol. 2016;11:66. doi:10.1186/s13014-016-0640-8PubMedGoogle ScholarCrossref
Fischer-Valuck  BW, Michalski  JM, Contreras  JA,  et al.  A propensity analysis comparing definitive chemo-radiotherapy for muscle-invasive squamous cell carcinoma of the bladder vs urothelial carcinoma of the bladder using the National Cancer Database.  Clin Transl Radiat Oncol. 2018;15:38-41. doi:10.1016/j.ctro.2018.12.001PubMedGoogle ScholarCrossref
Bekelman  JE, Asch  DA, Tochner  Z,  et al.  Principles and reality of proton therapy treatment allocation.  Int J Radiat Oncol Biol Phys. 2014;89(3):499-508. doi:10.1016/j.ijrobp.2014.03.023PubMedGoogle ScholarCrossref
Wong  W, Yim  YM, Kim  A,  et al.  Assessment of costs associated with adverse events in patients with cancer.  PLoS One. 2018;13(4):e0196007. doi:10.1371/journal.pone.0196007PubMedGoogle Scholar
Bradley  CJ, Yabroff  KR, Dahman  B, Feuer  EJ, Mariotto  A, Brown  ML.  Productivity costs of cancer mortality in the United States: 2000-2020.  J Natl Cancer Inst. 2008;100(24):1763-1770. doi:10.1093/jnci/djn384PubMedGoogle ScholarCrossref
Choy  H, Jain  AK, Moughan  J,  et al.  RTOG 0017: a phase I trial of concurrent gemcitabine/carboplatin or gemcitabine/paclitaxel and radiation therapy (“Ping-Pong trial”) followed by adjuvant chemotherapy for patients with favorable prognosis inoperable stage IIIA/B non–small cell lung cancer.  J Thorac Oncol. 2009;4(1):80-86. doi:10.1097/JTO.0b013e318191503fPubMedGoogle ScholarCrossref
Deutsch  E, Le Péchoux  C, Faivre  L,  et al.  Phase I trial of everolimus in combination with thoracic radiotherapy in non-small-cell lung cancer.  Ann Oncol. 2015;26(6):1223-1229. doi:10.1093/annonc/mdv105PubMedGoogle ScholarCrossref
Langer  CJ, Gadgeel  SM, Borghaei  H,  et al; KEYNOTE-021 Investigators.  Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non–small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study.  Lancet Oncol. 2016;17(11):1497-1508. doi:10.1016/S1470-2045(16)30498-3PubMedGoogle ScholarCrossref
Sacher  AG, Le  LW, Leighl  NB, Coate  LE.  Elderly patients with advanced NSCLC in phase III clinical trials: are the elderly excluded from practice-changing trials in advanced NSCLC?  J Thorac Oncol. 2013;8(3):366-368. doi:10.1097/JTO.0b013e31827e2145PubMedGoogle ScholarCrossref
Rutter  CE, Park  HS, Corso  CD,  et al.  Comparison of survival outcomes among standard radiotherapy regimens in limited-stage small cell lung cancer patients receiving concurrent chemoradiation.  Lung Cancer. 2015;90(2):243-248. doi:10.1016/j.lungcan.2015.08.002PubMedGoogle ScholarCrossref
Rusthoven  CG, Koshy  M, Sher  DJ,  et al.  Combined-modality therapy with radiation and chemotherapy for elderly patients with glioblastoma in the temozolomide era: a National Cancer Database analysis.  JAMA Neurol. 2016;73(7):821-828. doi:10.1001/jamaneurol.2016.0839PubMedGoogle ScholarCrossref
Lee  SJ, Clark  MA, Cox  JV, Needles  BM, Seigel  C, Balasubramanian  BA.  Achieving coordinated care for patients with complex cases of cancer: a multiteam system approach.  J Oncol Pract. 2016;12(11):1029-1038. doi:10.1200/JOP.2016.013664PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience

Lookup An Activity



My Saved Searches

You currently have no searches saved.

With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right