Asymptomatic Degenerative Mitral Regurgitation | Valvular Heart Disease | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

Asymptomatic Degenerative Mitral RegurgitationA Review

Educational Objective To review the pathophysiology and management of severe degenerative mitral regurgitation.
1 Credit CME
Abstract

Importance  Most patients with severe degenerative mitral regurgitation (DMR) are likely to require surgery, but years can pass until there is a clear indication for it. The timing of mitral valve surgery for asymptomatic patients with severe DMR is controversial, and current guidelines are limited because they are based on nonrandomized studies and expert opinion.

Observations  In this narrative review, a decrease in left ventricular ejection fraction and an increase in left ventricular end-systolic diameter are adverse signs in the context of mitral regurgitation. Consequently, serial echocardiography is essential. However, measurements may be imprecise, and the evidence regarding the association with outcome in asymptomatic patients is inconsistent. Mitral valve repair is the preferred surgical approach; however, repair rate, durability, and outcomes vary between centers, rendering decision-making in an asymptomatic patient with DMR even more challenging. The use of natriuretic peptides, stress testing, cardiac magnetic resonance imaging, and myocardial strain imaging can aid in risk stratification and optimization of the timing of mitral valve surgery in an asymptomatic patient.

Conclusions and Relevance  Management of asymptomatic patients with DMR requires a comprehensive approach that goes beyond the guidelines. Close follow-up and the use of multiple modalities are recommended. Knowledge of surgical options, experience, and outcomes is important when an intervention is considered.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Accepted for Publication: November 13, 2019.

Corresponding Author: Robert J. Siegel, MD, Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, Room A3600, Los Angeles, CA 90048 (robert.siegel@cshs.org).

Published Online: January 29, 2020. doi:10.1001/jamacardio.2019.5466

Author Contributions: Drs Flint and Siegel had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Flint, Raschpichler, Rader, Siegel.

Acquisition, analysis, or interpretation of data: Flint, Shmueli.

Drafting of the manuscript: Flint, Raschpichler, Siegel.

Critical revision of the manuscript for important intellectual content: Flint, Raschpichler, Rader, Shmueli.

Administrative, technical, or material support: Flint, Shmueli.

Supervision: Rader, Siegel.

Conflict of Interest Disclosures: Dr Rader reported receiving personal fees from ReCor Medical. No other disclosures were reported.

References
1.
Mozaffarian  D , Benjamin  EJ , Go  AS ,  et al; Writing Group Members; American Heart Association Statistics Committee; Stroke Statistics Subcommittee.  Heart disease and stroke statistics—2016 update: a report from the American Heart Association [published correction appears in Circulation. 2016;133(15):e599].   Circulation. 2016;133(4):e38-e360. PubMedGoogle Scholar
2.
Nkomo  VT , Gardin  JM , Skelton  TN , Gottdiener  JS , Scott  CG , Enriquez-Sarano  M .  Burden of valvular heart diseases: a population-based study.   Lancet. 2006;368(9540):1005-1011. doi:10.1016/S0140-6736(06)69208-8 PubMedGoogle Scholar
3.
d’Arcy  JL , Prendergast  BD , Chambers  JB , Ray  SG , Bridgewater  B .  Valvular heart disease: the next cardiac epidemic [published correction appears in Heart. 2011;97(13):1112].   Heart. 2011;97(2):91-93. doi:10.1136/hrt.2010.205096 PubMedGoogle Scholar
4.
Nishimura  RA , Otto  CM , Bonow  RO ,  et al.  2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.   Circulation. 2017;135(25):e1159-e1195. doi:10.1161/CIR.0000000000000503 PubMedGoogle Scholar
5.
Baumgartner  H , Falk  V , Bax  JJ ,  et al; ESC Scientific Document Group.  2017 ESC/EACTS guidelines for the management of valvular heart disease.   Eur Heart J. 2017;38(36):2739-2791. doi:10.1093/eurheartj/ehx391 PubMedGoogle Scholar
6.
Rosenhek  R , Rader  F , Klaar  U ,  et al.  Outcome of watchful waiting in asymptomatic severe mitral regurgitation.   Circulation. 2006;113(18):2238-2244. doi:10.1161/CIRCULATIONAHA.105.599175 PubMedGoogle Scholar
7.
Kang  DH , Kim  JH , Rim  JH ,  et al.  Comparison of early surgery versus conventional treatment in asymptomatic severe mitral regurgitation.   Circulation. 2009;119(6):797-804. doi:10.1161/CIRCULATIONAHA.108.802314 PubMedGoogle Scholar
8.
Gillam  LD , Marcoff  L , Shames  S .  Timing of surgery in valvular heart disease: prophylactic surgery vs watchful waiting in the asymptomatic patient.   Can J Cardiol. 2014;30(9):1035-1045. doi:10.1016/j.cjca.2014.06.019 PubMedGoogle Scholar
9.
Zilberszac  R , Heinze  G , Binder  T , Laufer  G , Gabriel  H , Rosenhek  R .  Long-term outcome of active surveillance in severe but asymptomatic primary mitral regurgitation.   JACC Cardiovasc Imaging. 2018;11(9):1213-1221. doi:10.1016/j.jcmg.2018.05.014 PubMedGoogle Scholar
10.
Suri  RM , Schaff  HV , Enriquez-Sarano  M .  Mitral valve repair in asymptomatic patients with severe mitral regurgitation: pushing past the tipping point.   Semin Thorac Cardiovasc Surg. 2014;26(2):95-101. doi:10.1053/j.semtcvs.2014.07.004 PubMedGoogle Scholar
11.
Enriquez-Sarano  M , Avierinos  JF , Messika-Zeitoun  D ,  et al.  Quantitative determinants of the outcome of asymptomatic mitral regurgitation.   N Engl J Med. 2005;352(9):875-883. doi:10.1056/NEJMoa041451 PubMedGoogle Scholar
12.
Suri  RM , Vanoverschelde  JL , Grigioni  F ,  et al.  Association between early surgical intervention vs watchful waiting and outcomes for mitral regurgitation due to flail mitral valve leaflets.   JAMA. 2013;310(6):609-616. doi:10.1001/jama.2013.8643 PubMedGoogle Scholar
13.
Carabello  BA .  Timing of surgery for primary MR: we’re not there yet but we’re getting closer  [published online July 11, 2019].  JACC Cardiovasc Imaging. 2019;S1936-878X(19)30427-9.PubMedGoogle Scholar
14.
El-Tallawi  KC , Messika-Zeitoun  D , Zoghbi  WA .  Assessment of the severity of native mitral valve regurgitation.   Prog Cardiovasc Dis. 2017;60(3):322-333. doi:10.1016/j.pcad.2017.11.005 PubMedGoogle Scholar
15.
Topilsky  Y , Michelena  H , Bichara  V , Maalouf  J , Mahoney  DW , Enriquez-Sarano  M .  Mitral valve prolapse with mid-late systolic mitral regurgitation: pitfalls of evaluation and clinical outcome compared with holosystolic regurgitation.   Circulation. 2012;125(13):1643-1651. doi:10.1161/CIRCULATIONAHA.111.055111 PubMedGoogle Scholar
16.
Wunderlich  NC , Beigel  R , Rader  F , Franke  J , Siegel  RJ .  Degenerative mitral regurgitation: assessment, physical examination, and imaging.   Curr Cardiol Rep. 2019;21(8):85. doi:10.1007/s11886-019-1163-3 PubMedGoogle Scholar
17.
Wunderlich  NC , Beigel  R , Ho  SY ,  et al.  Imaging for mitral interventions: methods and efficacy.   JACC Cardiovasc Imaging. 2018;11(6):872-901. doi:10.1016/j.jcmg.2018.02.024 PubMedGoogle Scholar
18.
Biner  S , Rafique  A , Rafii  F ,  et al.  Reproducibility of proximal isovelocity surface area, vena contracta, and regurgitant jet area for assessment of mitral regurgitation severity.   JACC Cardiovasc Imaging. 2010;3(3):235-243. doi:10.1016/j.jcmg.2009.09.029 PubMedGoogle Scholar
19.
Wunderlich  NC , Siegel  RJ .  Peri-interventional echo assessment for the MitraClip procedure.   Eur Heart J Cardiovasc Imaging. 2013;14(10):935-949. doi:10.1093/ehjci/jet060 PubMedGoogle Scholar
20.
Zoghbi  WA , Adams  D , Bonow  RO ,  et al.  Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance.   J Am Soc Echocardiogr. 2017;30(4):303-371. doi:10.1016/j.echo.2017.01.007 PubMedGoogle Scholar
21.
Antoine  C , Benfari  G , Michelena  HI ,  et al.  Clinical outcome of degenerative mitral regurgitation.   Circulation. 2018;138(13):1317-1326. doi:10.1161/CIRCULATIONAHA.117.033173 PubMedGoogle Scholar
22.
Bartko  PE , Arfsten  H , Heitzinger  G ,  et al.  A unifying concept for the quantitative assessment of secondary mitral regurgitation.   J Am Coll Cardiol. 2019;73(20):2506-2517. doi:10.1016/j.jacc.2019.02.075 PubMedGoogle Scholar
23.
Goebel  B , Heck  R , Hamadanchi  A ,  et al.  Vena contracta area for severity grading in functional and degenerative mitral regurgitation: a transoesophageal 3D colour Doppler analysis in 500 patients.   Eur Heart J Cardiovasc Imaging. 2018;19(6):639-646. doi:10.1093/ehjci/jex056 PubMedGoogle Scholar
24.
de Agustín  JA , Marcos-Alberca  P , Fernandez-Golfin  C ,  et al.  Direct measurement of proximal isovelocity surface area by single-beat three-dimensional color Doppler echocardiography in mitral regurgitation: a validation study.   J Am Soc Echocardiogr. 2012;25(8):815-823. doi:10.1016/j.echo.2012.05.021 PubMedGoogle Scholar
25.
Levy  F , Marechaux  S , Iacuzio  L ,  et al.  Quantitative assessment of primary mitral regurgitation using left ventricular volumes obtained with new automated three-dimensional transthoracic echocardiographic software: a comparison with 3-Tesla cardiac magnetic resonance.   Arch Cardiovasc Dis. 2018;111(8-9):507-517. doi:10.1016/j.acvd.2017.10.008 PubMedGoogle Scholar
26.
Myerson  SG , d’Arcy  J , Christiansen  JP ,  et al.  Determination of clinical outcome in mitral regurgitation with cardiovascular magnetic resonance quantification.   Circulation. 2016;133(23):2287-2296. doi:10.1161/CIRCULATIONAHA.115.017888 PubMedGoogle Scholar
27.
Grossman  W , Jones  D , McLaurin  LP .  Wall stress and patterns of hypertrophy in the human left ventricle.   J Clin Invest. 1975;56(1):56-64. doi:10.1172/JCI108079 PubMedGoogle Scholar
28.
Conway  MA , Bottomley  PA , Ouwerkerk  R , Radda  GK , Rajagopalan  B .  Mitral regurgitation: impaired systolic function, eccentric hypertrophy, and increased severity are linked to lower phosphocreatine/ATP ratios in humans.   Circulation. 1998;97(17):1716-1723. doi:10.1161/01.CIR.97.17.1716 PubMedGoogle Scholar
29.
Lang  RM , Badano  LP , Mor-Avi  V ,  et al.  Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging.   J Am Soc Echocardiogr. 2015;28(1):1-39.e14. doi:10.1016/j.echo.2014.10.003 PubMedGoogle Scholar
30.
Schiros  CG , Dell’Italia  LJ , Gladden  JD ,  et al.  Magnetic resonance imaging with 3-dimensional analysis of left ventricular remodeling in isolated mitral regurgitation: implications beyond dimensions.   Circulation. 2012;125(19):2334-2342. doi:10.1161/CIRCULATIONAHA.111.073239 PubMedGoogle Scholar
31.
DeMaria  AN , Neumann  A , Schubart  PJ , Lee  G , Mason  DT .  Systematic correlation of cardiac chamber size and ventricular performance determined with echocardiography and alterations in heart rate in normal persons.   Am J Cardiol. 1979;43(1):1-9. doi:10.1016/0002-9149(79)90036-5 PubMedGoogle Scholar
32.
Brenner  JI , Waugh  RA .  Effect of phasic respiration on left ventricular dimension and performance in a normal population: an echocardiographic study.   Circulation. 1978;57(1):122-127. doi:10.1161/01.CIR.57.1.122 PubMedGoogle Scholar
33.
Wallerson  DC , Devereux  RB .  Reproducibility of echocardiographic left ventricular measurements.   Hypertension. 1987;9(2, pt 2):II6-II18.PubMedGoogle Scholar
34.
King  DL , Harrison  MR , King  DL  Jr , Gopal  AS , Martin  RP , DeMaria  AN .  Improved reproducibility of left atrial and left ventricular measurements by guided three-dimensional echocardiography.   J Am Coll Cardiol. 1992;20(5):1238-1245. doi:10.1016/0735-1097(92)90383-X PubMedGoogle Scholar
35.
Thomson  HL , Basmadjian  AJ , Rainbird  AJ ,  et al.  Contrast echocardiography improves the accuracy and reproducibility of left ventricular remodeling measurements: a prospective, randomly assigned, blinded study.   J Am Coll Cardiol. 2001;38(3):867-875. doi:10.1016/S0735-1097(01)01416-4 PubMedGoogle Scholar
36.
Enriquez-Sarano  M , Tajik  AJ , Schaff  HV , Orszulak  TA , Bailey  KR , Frye  RL .  Echocardiographic prediction of survival after surgical correction of organic mitral regurgitation.   Circulation. 1994;90(2):830-837. doi:10.1161/01.CIR.90.2.830 PubMedGoogle Scholar
37.
Grigioni  F , Tribouilloy  C , Avierinos  JF ,  et al; MIDA Investigators.  Outcomes in mitral regurgitation due to flail leaflets: a multicenter European study.   JACC Cardiovasc Imaging. 2008;1(2):133-141. doi:10.1016/j.jcmg.2007.12.005 PubMedGoogle Scholar
38.
Tribouilloy  C , Grigioni  F , Avierinos  JF ,  et al; MIDA Investigators.  Survival implication of left ventricular end-systolic diameter in mitral regurgitation due to flail leaflets: a long-term follow-up multicenter study.   J Am Coll Cardiol. 2009;54(21):1961-1968. doi:10.1016/j.jacc.2009.06.047 PubMedGoogle Scholar
39.
Grigioni  F , Clavel  MA , Vanoverschelde  JL ,  et al.  The MIDA Mortality Risk Score: development and external validation of a prognostic model for early and late death in degenerative mitral regurgitation.   Eur Heart J. 2018;39(15):1281-1291. doi:10.1093/eurheartj/ehx465 PubMedGoogle Scholar
40.
Quintana  E , Suri  RM , Thalji  NM ,  et al.  Left ventricular dysfunction after mitral valve repair: the fallacy of “normal” preoperative myocardial function.   J Thorac Cardiovasc Surg. 2014;148(6):2752-2760. doi:10.1016/j.jtcvs.2014.07.029 PubMedGoogle Scholar
41.
Naji  P , Griffin  BP , Asfahan  F ,  et al.  Predictors of long-term outcomes in patients with significant myxomatous mitral regurgitation undergoing exercise echocardiography.   Circulation. 2014;129(12):1310-1319. doi:10.1161/CIRCULATIONAHA.113.005287 PubMedGoogle Scholar
42.
Crawford  MH , Souchek  J , Oprian  CA ,  et al; Department of Veterans Affairs Cooperative Study on Valvular Heart Disease.  Determinants of survival and left ventricular performance after mitral valve replacement.   Circulation. 1990;81(4):1173-1181. doi:10.1161/01.CIR.81.4.1173 PubMedGoogle Scholar
43.
Suri  RM , Schaff  HV , Dearani  JA ,  et al.  Determinants of early decline in ejection fraction after surgical correction of mitral regurgitation.   J Thorac Cardiovasc Surg. 2008;136(2):442-447. doi:10.1016/j.jtcvs.2007.10.067 PubMedGoogle Scholar
44.
Tribouilloy  C , Rusinaru  D , Szymanski  C ,  et al.  Predicting left ventricular dysfunction after valve repair for mitral regurgitation due to leaflet prolapse: additive value of left ventricular end-systolic dimension to ejection fraction.   Eur J Echocardiogr. 2011;12(9):702-710. doi:10.1093/ejechocard/jer128 PubMedGoogle Scholar
45.
Varghese  R , Itagaki  S , Anyanwu  AC , Milla  F , Adams  DH .  Predicting early left ventricular dysfunction after mitral valve reconstruction: the effect of atrial fibrillation and pulmonary hypertension.   J Thorac Cardiovasc Surg. 2014;148(2):422-427. doi:10.1016/j.jtcvs.2013.08.073 PubMedGoogle Scholar
46.
Malm  S , Frigstad  S , Sagberg  E , Larsson  H , Skjaerpe  T .  Accurate and reproducible measurement of left ventricular volume and ejection fraction by contrast echocardiography: a comparison with magnetic resonance imaging.   J Am Coll Cardiol. 2004;44(5):1030-1035. doi:10.1016/j.jacc.2004.05.068 PubMedGoogle Scholar
47.
Thavendiranathan  P , Popović  ZB , Flamm  SD , Dahiya  A , Grimm  RA , Marwick  TH .  Improved interobserver variability and accuracy of echocardiographic visual left ventricular ejection fraction assessment through a self-directed learning program using cardiac magnetic resonance images.   J Am Soc Echocardiogr. 2013;26(11):1267-1273. doi:10.1016/j.echo.2013.07.017 PubMedGoogle Scholar
48.
Jenkins  C , Bricknell  K , Hanekom  L , Marwick  TH .  Reproducibility and accuracy of echocardiographic measurements of left ventricular parameters using real-time three-dimensional echocardiography.   J Am Coll Cardiol. 2004;44(4):878-886. doi:10.1016/j.jacc.2004.05.050 PubMedGoogle Scholar
49.
Gutiérrez-Chico  JL , Zamorano  JL , Pérez de Isla  L ,  et al.  Comparison of left ventricular volumes and ejection fractions measured by three-dimensional echocardiography versus by two-dimensional echocardiography and cardiac magnetic resonance in patients with various cardiomyopathies.   Am J Cardiol. 2005;95(6):809-813. doi:10.1016/j.amjcard.2004.11.046 PubMedGoogle Scholar
50.
Hiemstra  YL , Tomsic  A , van Wijngaarden  SE ,  et al.  Prognostic value of global longitudinal strain and etiology after surgery for primary mitral regurgitation [published online June 12, 2019].   JACC Cardiovasc Imaging. PubMedGoogle Scholar
51.
Kim  HM , Cho  GY , Hwang  IC ,  et al.  Myocardial strain in prediction of outcomes after surgery for severe mitral regurgitation.   JACC Cardiovasc Imaging. 2018;11(9):1235-1244. doi:10.1016/j.jcmg.2018.03.016 PubMedGoogle Scholar
52.
Bijvoet  GP , Teske  AJ , Chamuleau  SAJ , Hart  EA , Jansen  R , Schaap  J .  Global longitudinal strain to predict left ventricular dysfunction in asymptomatic patients with severe mitral valve regurgitation: literature review.  [published online August 13, 2019].  Neth Heart J. 2019. PubMedGoogle Scholar
53.
Detaint  D , Messika-Zeitoun  D , Avierinos  JF ,  et al.  B-type natriuretic peptide in organic mitral regurgitation: determinants and impact on outcome.   Circulation. 2005;111(18):2391-2397. doi:10.1161/01.CIR.0000164269.80908.9D PubMedGoogle Scholar
54.
Pizarro  R , Bazzino  OO , Oberti  PF ,  et al.  Prospective validation of the prognostic usefulness of brain natriuretic peptide in asymptomatic patients with chronic severe mitral regurgitation.   J Am Coll Cardiol. 2009;54(12):1099-1106. doi:10.1016/j.jacc.2009.06.013 PubMedGoogle Scholar
55.
Klaar  U , Gabriel  H , Bergler-Klein  J ,  et al.  Prognostic value of serial B-type natriuretic peptide measurement in asymptomatic organic mitral regurgitation.   Eur J Heart Fail. 2011;13(2):163-169. doi:10.1093/eurjhf/hfq189 PubMedGoogle Scholar
56.
Magne  J , Mahjoub  H , Pierard  LA ,  et al.  Prognostic importance of brain natriuretic peptide and left ventricular longitudinal function in asymptomatic degenerative mitral regurgitation.   Heart. 2012;98(7):584-591. doi:10.1136/heartjnl-2011-301128 PubMedGoogle Scholar
57.
Magne  J , Mahjoub  H , Pibarot  P , Pirlet  C , Pierard  LA , Lancellotti  P .  Prognostic importance of exercise brain natriuretic peptide in asymptomatic degenerative mitral regurgitation.   Eur J Heart Fail. 2012;14(11):1293-1302. doi:10.1093/eurjhf/hfs114 PubMedGoogle Scholar
58.
Clavel  MA , Tribouilloy  C , Vanoverschelde  JL ,  et al.  Association of B-type natriuretic peptide with survival in patients with degenerative mitral regurgitation.   J Am Coll Cardiol. 2016;68(12):1297-1307. doi:10.1016/j.jacc.2016.06.047 PubMedGoogle Scholar
59.
Alashi  A , Mentias  A , Patel  K ,  et al.  Synergistic utility of brain natriuretic peptide and left ventricular global longitudinal strain in asymptomatic patients with significant primary mitral regurgitation and preserved systolic function undergoing mitral valve surgery.   Circ Cardiovasc Imaging. 2016;9(7):e004451. doi:10.1161/CIRCIMAGING.115.004451 PubMedGoogle Scholar
60.
Mentias  A , Patel  K , Patel  H ,  et al.  Prognostic utility of brain natriuretic peptide in asymptomatic patients with significant mitral regurgitation and preserved left ventricular ejection fraction.   Am J Cardiol. 2016;117(2):258-263. doi:10.1016/j.amjcard.2015.10.040 PubMedGoogle Scholar
61.
Potocki  M , Mair  J , Weber  M ,  et al.  Relation of N-terminal pro-B-type natriuretic peptide to symptoms, severity, and left ventricular remodeling in patients with organic mitral regurgitation.   Am J Cardiol. 2009;104(4):559-564. doi:10.1016/j.amjcard.2009.04.023 PubMedGoogle Scholar
62.
Johl  MM , Malhotra  P , Kehl  DW , Rader  F , Siegel  RJ .  Natriuretic peptides in the evaluation and management of degenerative mitral regurgitation: a systematic review.   Heart. 2017;103(10):738-744. doi:10.1136/heartjnl-2016-310547 PubMedGoogle Scholar
63.
Lee  R , Haluska  B , Leung  DY , Case  C , Mundy  J , Marwick  TH .  Functional and prognostic implications of left ventricular contractile reserve in patients with asymptomatic severe mitral regurgitation.   Heart. 2005;91(11):1407-1412. doi:10.1136/hrt.2004.047613 PubMedGoogle Scholar
64.
Supino  PG , Borer  JS , Schuleri  K ,  et al.  Prognostic value of exercise tolerance testing in asymptomatic chronic nonischemic mitral regurgitation.   Am J Cardiol. 2007;100(8):1274-1281. doi:10.1016/j.amjcard.2007.05.046 PubMedGoogle Scholar
65.
Magne  J , Lancellotti  P , Piérard  LA .  Exercise-induced changes in degenerative mitral regurgitation.   J Am Coll Cardiol. 2010;56(4):300-309. doi:10.1016/j.jacc.2009.12.073 PubMedGoogle Scholar
66.
Kusunose  K , Popović  ZB , Motoki  H , Marwick  TH .  Prognostic significance of exercise-induced right ventricular dysfunction in asymptomatic degenerative mitral regurgitation.   Circ Cardiovasc Imaging. 2013;6(2):167-176. doi:10.1161/CIRCIMAGING.112.000162 PubMedGoogle Scholar
67.
Naji  P , Griffin  BP , Barr  T ,  et al.  Importance of exercise capacity in predicting outcomes and determining optimal timing of surgery in significant primary mitral regurgitation.   J Am Heart Assoc. 2014;3(5):e001010. doi:10.1161/JAHA.114.001010 PubMedGoogle Scholar
68.
Magne  J , Mahjoub  H , Dulgheru  R , Pibarot  P , Pierard  LA , Lancellotti  P .  Left ventricular contractile reserve in asymptomatic primary mitral regurgitation.   Eur Heart J. 2014;35(24):1608-1616. doi:10.1093/eurheartj/eht345 PubMedGoogle Scholar
69.
Suzuki  K , Izumo  M , Yoneyama  K ,  et al.  Influence of exercise-induced pulmonary hypertension on exercise capacity in asymptomatic degenerative mitral regurgitation.   J Cardiol. 2015;66(3):246-252. doi:10.1016/j.jjcc.2014.11.005 PubMedGoogle Scholar
70.
Stoddard  MF , Prince  CR , Dillon  S , Longaker  RA , Morris  GT , Liddell  NE .  Exercise-induced mitral regurgitation is a predictor of morbid events in subjects with mitral valve prolapse.   J Am Coll Cardiol. 1995;25(3):693-699. doi:10.1016/0735-1097(94)00408-I PubMedGoogle Scholar
71.
Uretsky  S , Argulian  E , Narula  J , Wolff  SD .  Use of cardiac magnetic resonance imaging in assessing mitral regurgitation: current evidence.   J Am Coll Cardiol. 2018;71(5):547-563. doi:10.1016/j.jacc.2017.12.009 PubMedGoogle Scholar
72.
Krieger  EV , Lee  J , Branch  KR , Hamilton-Craig  C .  Quantitation of mitral regurgitation with cardiac magnetic resonance imaging: a systematic review.   Heart. 2016;102(23):1864-1870. doi:10.1136/heartjnl-2015-309054 PubMedGoogle Scholar
73.
Penicka  M , Vecera  J , Mirica  DC , Kotrc  M , Kockova  R , Van Camp  G .  Prognostic implications of magnetic resonance–derived quantification in asymptomatic patients with organic mitral regurgitation: comparison with Doppler echocardiography–derived integrative approach.   Circulation. 2018;137(13):1349-1360. doi:10.1161/CIRCULATIONAHA.117.029332 PubMedGoogle Scholar
74.
Uretsky  S , Gillam  L , Lang  R ,  et al.  Discordance between echocardiography and MRI in the assessment of mitral regurgitation severity: a prospective multicenter trial.   J Am Coll Cardiol. 2015;65(11):1078-1088. doi:10.1016/j.jacc.2014.12.047 PubMedGoogle Scholar
75.
Rafique  AM , Siegel  RJ .  Left ventricular size is critical for the echocardiographic assessment of chronic severe mitral regurgitation.   J Am Coll Cardiol. 2015;66(13):1519-1521. doi:10.1016/j.jacc.2015.05.084 PubMedGoogle Scholar
76.
Gammie  JS , Chikwe  J , Badhwar  V ,  et al.  Isolated mitral valve surgery: The Society of Thoracic Surgeons Adult Cardiac Surgery Database analysis.   Ann Thorac Surg. 2018;106(3):716-727. doi:10.1016/j.athoracsur.2018.03.086 PubMedGoogle Scholar
77.
Lazam  S , Vanoverschelde  JL , Tribouilloy  C ,  et al; MIDA (Mitral Regurgitation International Database) Investigators.  Twenty-year outcome after mitral repair versus replacement for severe degenerative mitral regurgitation: analysis of a large, prospective, multicenter, international registry.   Circulation. 2017;135(5):410-422. doi:10.1161/CIRCULATIONAHA.116.023340 PubMedGoogle Scholar
78.
Flameng  W , Meuris  B , Herijgers  P , Herregods  MC .  Durability of mitral valve repair in Barlow disease versus fibroelastic deficiency.   J Thorac Cardiovasc Surg. 2008;135(2):274-282. doi:10.1016/j.jtcvs.2007.06.040 PubMedGoogle Scholar
79.
Seeburger  J , Borger  MA , Doll  N ,  et al.  Comparison of outcomes of minimally invasive mitral valve surgery for posterior, anterior and bileaflet prolapse.   Eur J Cardiothorac Surg. 2009;36(3):532-538. doi:10.1016/j.ejcts.2009.03.058 PubMedGoogle Scholar
80.
Borger  MA , Kaeding  AF , Seeburger  J ,  et al.  Minimally invasive mitral valve repair in Barlow’s disease: early and long-term results.   J Thorac Cardiovasc Surg. 2014;148(4):1379-1385. doi:10.1016/j.jtcvs.2013.11.030 PubMedGoogle Scholar
81.
Castillo  JG , Anyanwu  AC , Fuster  V , Adams  DH .  A near 100% repair rate for mitral valve prolapse is achievable in a reference center: implications for future guidelines.   J Thorac Cardiovasc Surg. 2012;144(2):308-312. doi:10.1016/j.jtcvs.2011.12.054 PubMedGoogle Scholar
82.
LaPar  DJ , Ailawadi  G , Isbell  JM ,  et al; Virginia Cardiac Surgery Quality Initiative.  Mitral valve repair rates correlate with surgeon and institutional experience.   J Thorac Cardiovasc Surg. 2014;148(3):995-1003. doi:10.1016/j.jtcvs.2014.06.039 PubMedGoogle Scholar
83.
Vassileva  CM , Boley  T , Markwell  S , Hazelrigg  S .  Impact of hospital annual mitral procedural volume on mitral valve repair rates and mortality.   J Heart Valve Dis. 2012;21(1):41-47.PubMedGoogle Scholar
84.
Vassileva  CM , Mishkel  G , McNeely  C ,  et al.  Long-term survival of patients undergoing mitral valve repair and replacement: a longitudinal analysis of Medicare fee-for-service beneficiaries.   Circulation. 2013;127(18):1870-1876. doi:10.1161/CIRCULATIONAHA.113.002200 PubMedGoogle Scholar
85.
Vemulapalli  S , Grau-Sepulveda  M , Habib  R , Thourani  V , Bavaria  J , Badhwar  V .  Patient and hospital characteristics of mitral valve surgery in the United States [published online October 2, 2019].   JAMA Cardiol.PubMedGoogle Scholar
86.
Chikwe  J , Toyoda  N , Anyanwu  AC ,  et al.  Relation of mitral valve surgery volume to repair rate, durability, and survival [published online April 24, 2017].   J Am Coll Cardiol.PubMedGoogle Scholar
87.
Jouan  J .  Mitral valve repair over five decades.   Ann Cardiothorac Surg. 2015;4(4):322-334.PubMedGoogle Scholar
88.
Beckmann  A , Funkat  AK , Lewandowski  J ,  et al.  German Heart Surgery Report 2015: the annual updated registry of the German Society for Thoracic and Cardiovascular Surgery.   Thorac Cardiovasc Surg. 2016;64(6):462-474. doi:10.1055/s-0036-1592124 PubMedGoogle Scholar
89.
David  TE , David  CM , Tsang  W , Lafreniere-Roula  M , Manlhiot  C .  Long-term results of mitral valve repair for regurgitation due to leaflet prolapse.   J Am Coll Cardiol. 2019;74(8):1044-1053. doi:10.1016/j.jacc.2019.06.052 PubMedGoogle Scholar
90.
Flameng  W , Herijgers  P , Bogaerts  K .  Recurrence of mitral valve regurgitation after mitral valve repair in degenerative valve disease.   Circulation. 2003;107(12):1609-1613. doi:10.1161/01.CIR.0000058703.26715.9D PubMedGoogle Scholar
91.
Kim  JH , Lee  SH , Joo  HC ,  et al.  Effect of recurrent mitral regurgitation after mitral valve repair in patients with degenerative mitral regurgitation.   Circ J. 2017;82(1):93-101. doi:10.1253/circj.CJ-17-0380 PubMedGoogle Scholar
92.
David  TE , Armstrong  S , Ivanov  J .  Chordal replacement with polytetrafluoroethylene sutures for mitral valve repair: a 25-year experience.   J Thorac Cardiovasc Surg. 2013;145(6):1563-1569. doi:10.1016/j.jtcvs.2012.05.030 PubMedGoogle Scholar
93.
Watt  TMF , Brescia  AA , Murray  SL ,  et al; Michigan Mitral Research Group (MMRG).  Degenerative mitral valve repair restores life expectancy [published online August 28, 2019].   Ann Thorac Surg. PubMedGoogle Scholar
94.
Mehaffey  HJ , Hawkins  RB , Schubert  S ,  et al.  Contemporary outcomes in reoperative mitral valve surgery.   Heart. 2018;104(8):652-656. doi:10.1136/heartjnl-2017-312047 PubMedGoogle Scholar
95.
Braun  D , Frerker  C , Körber  MI ,  et al.  Percutaneous edge-to-edge repair of recurrent severe mitral regurgitation after surgical mitral valve repair.   J Am Coll Cardiol. 2017;70(4):504-505. doi:10.1016/j.jacc.2017.05.045 PubMedGoogle Scholar
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close