[Skip to Content]
[Skip to Content Landing]

Diagnosis and Treatment of Parkinson DiseaseA Review

Educational Objective
To review the clinical management of patients with Parkinson disease.
1 Credit CME
Abstract

Importance  Parkinson disease is the most common form of parkinsonism, a group of neurological disorders with Parkinson disease–like movement problems such as rigidity, slowness, and tremor. More than 6 million individuals worldwide have Parkinson disease.

Observations  Diagnosis of Parkinson disease is based on history and examination. History can include prodromal features (eg, rapid eye movement sleep behavior disorder, hyposmia, constipation), characteristic movement difficulty (eg, tremor, stiffness, slowness), and psychological or cognitive problems (eg, cognitive decline, depression, anxiety). Examination typically demonstrates bradykinesia with tremor, rigidity, or both. Dopamine transporter single-photon emission computed tomography can improve the accuracy of diagnosis when the presence of parkinsonism is uncertain. Parkinson disease has multiple disease variants with different prognoses. Individuals with a diffuse malignant subtype (9%-16% of individuals with Parkinson disease) have prominent early motor and nonmotor symptoms, poor response to medication, and faster disease progression. Individuals with mild motor-predominant Parkinson disease (49%-53% of individuals with Parkinson disease) have mild symptoms, a good response to dopaminergic medications (eg, carbidopa-levodopa, dopamine agonists), and slower disease progression. Other individuals have an intermediate subtype. For all patients with Parkinson disease, treatment is symptomatic, focused on improvement in motor (eg, tremor, rigidity, bradykinesia) and nonmotor (eg, constipation, cognition, mood, sleep) signs and symptoms. No disease-modifying pharmacologic treatments are available. Dopamine-based therapies typically help initial motor symptoms. Nonmotor symptoms require nondopaminergic approaches (eg, selective serotonin reuptake inhibitors for psychiatric symptoms, cholinesterase inhibitors for cognition). Rehabilitative therapy and exercise complement pharmacologic treatments. Individuals experiencing complications, such as worsening symptoms and functional impairment when a medication dose wears off (“off periods”), medication-resistant tremor, and dyskinesias, benefit from advanced treatments such as therapy with levodopa-carbidopa enteral suspension or deep brain stimulation. Palliative care is part of Parkinson disease management.

Conclusions and Relevance  Parkinson disease is a heterogeneous disease with rapidly and slowly progressive forms. Treatment involves pharmacologic approaches (typically with levodopa preparations prescribed with or without other medications) and nonpharmacologic approaches (such as exercise and physical, occupational, and speech therapies). Approaches such as deep brain stimulation and treatment with levodopa-carbidopa enteral suspension can help individuals with medication-resistant tremor, worsening symptoms when the medication wears off, and dyskinesias.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Corresponding Author: Melissa J. Armstrong, MD, MSc, McKnight Brain Institute, Department of Neurology, University of Florida College of Medicine, PO Box 100236, Gainesville, FL 32610 (melissa.armstrong@neurology.ufl.edu).

Accepted for Publication: December 27, 2019.

Author Contributions: Dr Armstrong had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Both authors.

Acquisition, analysis, or interpretation of data: Both authors.

Drafting of the manuscript: Armstrong.

Critical revision of the manuscript for important intellectual content: Both authors.

Administrative, technical, or material support: Okun.

Conflict of Interest Disclosures: Dr Armstrong reported receipt of personal fees from the American Academy of Neurology (consultancy services); grants from the Lewy Body Dementia Association and the Michael J. Fox Foundation; funding from the Agency of Healthcare Research and Quality; and other from Oxford University Press (royalties) outside the submitted work. Dr Okun reported receipt of grants from the National Institutes of Health, the Michael J. Fox Foundation, the Tourette Association of America, and the Parkinson's Foundation outside the submitted work; serving as the medical director for the Parkinson's Foundation; receipt or royalties from Demos Medical Publishing, Manson Publishing, Amazon, Smashwords, Books4Patients, Perseus, Robert Rose, Oxford University Press, and Cambridge University Press (movement disorders books); serving as associate editor for the New England Journal of Medicine Journal Watch Neurology; and participating in continuing medical education and educational activities on movement disorders sponsored by the Academy for Healthcare Learning, PeerView, Prime, QuantiaMD, WebMD/Medscape, Medicus, MedNet, Einstein, MedNet, Henry Stewart, American Academy of Neurology, Movement Disorders Society, and Vanderbilt University.

References
1.
GBD 2016 Parkinson’s Disease Collaborators.  Global, regional, and national burden of Parkinson’s disease, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016.  Lancet Neurol. 2018;17(11):939-953. doi:10.1016/S1474-4422(18)30295-3PubMedGoogle ScholarCrossref
2.
Marras  C, Beck  JC, Bower  JH,  et al; Parkinson’s Foundation P4 Group.  Prevalence of Parkinson’s disease across North America.  NPJ Parkinsons Dis. 2018;4:21. doi:10.1038/s41531-018-0058-0PubMedGoogle ScholarCrossref
3.
Kouli  A, Torsney  KM, Kuan  WL. Parkinson’s Disease: Etiology, Neuropathology, and Pathogenesis. In: Stoker  TB, Greenland  JC, eds.  Parkinson’s Disease: Pathogenesis and Clinical Aspects [Internet]. Brisbane, Australia: Codon Publications; 2018. https://www.ncbi.nlm.nih.gov/books/NBK536722/. Accessed September 6, 2019. doi:10.15586/codonpublications.parkinsonsdisease.2018.ch1
4.
International Parkinson and Movement Disorder Society.  Evidence Based Medicine Publications.https://www.movementdisorders.org/MDS/Resources/Publications-Reviews/EBM-Reviews.htm. Accessed November 14, 2019.
5.
Wilczynski  NL, McKibbon  KA, Walter  SD, Garg  AX, Haynes  RB.  MEDLINE clinical queries are robust when searching in recent publishing years.  J Am Med Inform Assoc. 2013;20(2):363-368. doi:10.1136/amiajnl-2012-001075PubMedGoogle ScholarCrossref
6.
US National Library of Medicine.  Search strategy used to create the PubMed systematic reviews filter.https://www.nlm.nih.gov/bsd/pubmed_subsets/sysreviews_strategy.html. Updated December 2018. Accessed September 6, 2019.
7.
Braak  H, Del Tredici  K, Rüb  U, de Vos  RA, Jansen Steur  EN, Braak  E.  Staging of brain pathology related to sporadic Parkinson’s disease.  Neurobiol Aging. 2003;24(2):197-211. doi:10.1016/S0197-4580(02)00065-9PubMedGoogle ScholarCrossref
8.
Pasquini  J, Ceravolo  R, Qamhawi  Z,  et al.  Progression of tremor in early stages of Parkinson’s disease: a clinical and neuroimaging study.  Brain. 2018;141(3):811-821. doi:10.1093/brain/awx376PubMedGoogle ScholarCrossref
9.
Factor  SA, McDonald  WM, Goldstein  FC.  The role of neurotransmitters in the development of Parkinson’s disease–related psychosis.  Eur J Neurol. 2017;24(10):1244-1254. doi:10.1111/ene.13376PubMedGoogle ScholarCrossref
10.
Schapira  AHV, Chaudhuri  KR, Jenner  P.  Non-motor features of Parkinson disease.  Nat Rev Neurosci. 2017;18(7):435-450. doi:10.1038/nrn.2017.62PubMedGoogle ScholarCrossref
11.
Maillet  A, Krack  P, Lhommée  E,  et al.  The prominent role of serotonergic degeneration in apathy, anxiety and depression in de novo Parkinson’s disease.  Brain. 2016;139(Pt 9):2486-2502. doi:10.1093/brain/aww162PubMedGoogle ScholarCrossref
12.
Morris  R, Martini  DN, Madhyastha  T,  et al.  Overview of the cholinergic contribution to gait, balance and falls in Parkinson’s disease.  Parkinsonism Relat Disord. 2019;63:20-30. doi:10.1016/j.parkreldis.2019.02.017PubMedGoogle ScholarCrossref
13.
Chaudhuri  KR, Prieto-Jurcynska  C, Naidu  Y,  et al.  The nondeclaration of nonmotor symptoms of Parkinson’s disease to health care professionals: an international study using the nonmotor symptoms questionnaire.  Mov Disord. 2010;25(6):704-709. doi:10.1002/mds.22868PubMedGoogle ScholarCrossref
14.
Berg  D, Postuma  RB, Adler  CH,  et al.  MDS research criteria for prodromal Parkinson’s disease.  Mov Disord. 2015;30(12):1600-1611. doi:10.1002/mds.26431PubMedGoogle ScholarCrossref
15.
Galbiati  A, Verga  L, Giora  E, Zucconi  M, Ferini-Strambi  L.  The risk of neurodegeneration in REM sleep behavior disorder: a systematic review and meta-analysis of longitudinal studies.  Sleep Med Rev. 2019;43:37-46. doi:10.1016/j.smrv.2018.09.008PubMedGoogle ScholarCrossref
16.
Howell  MJ, Schenck  CH.  Rapid eye movement sleep behavior disorder and neurodegenerative disease.  JAMA Neurol. 2015;72(6):707-712. doi:10.1001/jamaneurol.2014.4563PubMedGoogle ScholarCrossref
17.
Fearnley  JM, Lees  AJ.  Ageing and Parkinson’s disease: substantia nigra regional selectivity.  Brain. 1991;114(Pt 5):2283-2301. doi:10.1093/brain/114.5.2283PubMedGoogle ScholarCrossref
18.
Hughes  AJ, Daniel  SE, Blankson  S, Lees  AJ.  A clinicopathologic study of 100 cases of Parkinson’s disease.  Arch Neurol. 1993;50(2):140-148. doi:10.1001/archneur.1993.00540020018011PubMedGoogle ScholarCrossref
19.
Postuma  RB, Berg  D, Stern  M,  et al.  MDS clinical diagnostic criteria for Parkinson’s disease.  Mov Disord. 2015;30(12):1591-1601. doi:10.1002/mds.26424PubMedGoogle ScholarCrossref
20.
Ahlskog  JE, Muenter  MD.  Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature.  Mov Disord. 2001;16(3):448-458. doi:10.1002/mds.1090PubMedGoogle ScholarCrossref
21.
Suwijn  SR, van Boheemen  CJ, de Haan  RJ, Tissingh  G, Booij  J, de Bie  RM.  The diagnostic accuracy of dopamine transporter SPECT imaging to detect nigrostriatal cell loss in patients with Parkinson’s disease or clinically uncertain parkinsonism: a systematic review.  EJNMMI Res. 2015;5:12. doi:10.1186/s13550-015-0087-1PubMedGoogle ScholarCrossref
22.
Isaacson  SH, Fisher  S, Gupta  F,  et al.  Clinical utility of DaTscan™ imaging in the evaluation of patients with parkinsonism: a US perspective.  Expert Rev Neurother. 2017;17(3):219-225. doi:10.1080/14737175.2017.1256205PubMedGoogle ScholarCrossref
23.
Bajaj  N, Hauser  RA, Grachev  ID.  Clinical utility of dopamine transporter single photon emission CT (DaT-SPECT) with (123I) ioflupane in diagnosis of parkinsonian syndromes.  J Neurol Neurosurg Psychiatry. 2013;84(11):1288-1295. doi:10.1136/jnnp-2012-304436PubMedGoogle ScholarCrossref
24.
Prange  S, Metereau  E, Thobois  S.  Structural imaging in Parkinson’s disease: new developments.  Curr Neurol Neurosci Rep. 2019;19(8):50. doi:10.1007/s11910-019-0964-5PubMedGoogle ScholarCrossref
25.
Burciu  RG, Ofori  E, Archer  DB,  et al.  Progression marker of Parkinson’s disease: a 4-year multi-site imaging study.  Brain. 2017;140(8):2183-2192. doi:10.1093/brain/awx146PubMedGoogle ScholarCrossref
26.
Orimo  S, Suzuki  M, Inaba  A, Mizusawa  H.  123I-MIBG myocardial scintigraphy for differentiating Parkinson’s disease from other neurodegenerative parkinsonism: a systematic review and meta-analysis.  Parkinsonism Relat Disord. 2012;18(5):494-500. doi:10.1016/j.parkreldis.2012.01.009PubMedGoogle ScholarCrossref
27.
Fereshtehnejad  SM, Postuma  RB.  Subtypes of Parkinson’s disease: what do they tell us about disease progression?  Curr Neurol Neurosci Rep. 2017;17(4):34. doi:10.1007/s11910-017-0738-xPubMedGoogle ScholarCrossref
28.
Thenganatt  MA, Jankovic  J.  Parkinson disease subtypes.  JAMA Neurol. 2014;71(4):499-504. doi:10.1001/jamaneurol.2013.6233PubMedGoogle ScholarCrossref
29.
Fereshtehnejad  SM, Zeighami  Y, Dagher  A, Postuma  RB.  Clinical criteria for subtyping Parkinson’s disease: biomarkers and longitudinal progression.  Brain. 2017;140(7):1959-1976. doi:10.1093/brain/awx118PubMedGoogle ScholarCrossref
30.
Lawton  M, Ben-Shlomo  Y, May  MT,  et al.  Developing and validating Parkinson’s disease subtypes and their motor and cognitive progression.  J Neurol Neurosurg Psychiatry. 2018;89(12):1279-1287. doi:10.1136/jnnp-2018-318337PubMedGoogle ScholarCrossref
31.
van Rooden  SM, Colas  F, Martínez-Martín  P,  et al.  Clinical subtypes of Parkinson’s disease.  Mov Disord. 2011;26(1):51-58. doi:10.1002/mds.23346PubMedGoogle ScholarCrossref
32.
De Pablo-Fernández  E, Lees  AJ, Holton  JL, Warner  TT.  Prognosis and neuropathologic correlation of clinical subtypes of Parkinson disease.  JAMA Neurol. 2019;76(4):470-479. doi:10.1001/jamaneurol.2018.4377PubMedGoogle ScholarCrossref
33.
Macleod  AD, Taylor  KS, Counsell  CE.  Mortality in Parkinson’s disease: a systematic review and meta-analysis.  Mov Disord. 2014;29(13):1615-1622. doi:10.1002/mds.25898PubMedGoogle ScholarCrossref
34.
Hely  MA, Reid  WGJ, Adena  MA, Halliday  GM, Morris  JGL.  The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years.  Mov Disord. 2008;23(6):837-844. doi:10.1002/mds.21956PubMedGoogle ScholarCrossref
35.
Moscovich  M, Boschetti  G, Moro  A, Teive  HAG, Hassan  A, Munhoz  RP.  Death certificate data and causes of death in patients with parkinsonism.  Parkinsonism Relat Disord. 2017;41:99-103. doi:10.1016/j.parkreldis.2017.05.022PubMedGoogle ScholarCrossref
36.
Pennington  S, Snell  K, Lee  M, Walker  R.  The cause of death in idiopathic Parkinson’s disease.  Parkinsonism Relat Disord. 2010;16(7):434-437. doi:10.1016/j.parkreldis.2010.04.010PubMedGoogle ScholarCrossref
37.
Chou  KL, Stacy  M, Simuni  T,  et al.  The spectrum of “off” in Parkinson’s disease: what have we learned over 40 years?  Parkinsonism Relat Disord. 2018;51:9-16. doi:10.1016/j.parkreldis.2018.02.001PubMedGoogle ScholarCrossref
38.
Cilia  R, Akpalu  A, Sarfo  FS,  et al.  The modern pre-levodopa era of Parkinson’s disease: insights into motor complications from sub-Saharan Africa.  Brain. 2014;137(Pt 10):2731-2742. doi:10.1093/brain/awu195PubMedGoogle ScholarCrossref
39.
Espay  AJ, Morgante  F, Merola  A,  et al.  Levodopa-induced dyskinesia in Parkinson disease: current and evolving concepts.  Ann Neurol. 2018;84(6):797-811. doi:10.1002/ana.25364PubMedGoogle ScholarCrossref
40.
Turcano  P, Mielke  MM, Bower  JH,  et al.  Levodopa-induced dyskinesia in Parkinson disease: a population-based cohort study.  Neurology. 2018;91(24):e2238-e2243. doi:10.1212/WNL.0000000000006643PubMedGoogle ScholarCrossref
41.
Williams-Gray  CH, Mason  SL, Evans  JR,  et al.  The CamPaIGN study of Parkinson’s disease: 10-year outlook in an incident population-based cohort.  J Neurol Neurosurg Psychiatry. 2013;84(11):1258-1264. doi:10.1136/jnnp-2013-305277PubMedGoogle ScholarCrossref
42.
Luquin  MR, Kulisevsky  J, Martinez-Martin  P, Mir  P, Tolosa  ES.  Consensus on the definition of advanced Parkinson’s disease: a neurologists-based Delphi study (CEPA Study).  Parkinsons Dis. 2017;2017:4047392. doi:10.1155/2017/4047392PubMedGoogle Scholar
43.
Fox  SH, Katzenschlager  R, Lim  SY,  et al; Movement Disorder Society Evidence-Based Medicine Committee.  International Parkinson and movement disorder society evidence-based medicine review: update on treatments for the motor symptoms of Parkinson’s disease.  Mov Disord. 2018;33(8):1248-1266. doi:10.1002/mds.27372PubMedGoogle ScholarCrossref
44.
Espay  AJ, Lang  AE.  Common myths in the use of levodopa in Parkinson disease: when clinical trials misinform clinical practice.  JAMA Neurol. 2017;74(6):633-634. doi:10.1001/jamaneurol.2017.0348PubMedGoogle ScholarCrossref
45.
Gray  R, Ives  N, Rick  C,  et al; PD Med Collaborative Group.  Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson’s disease (PD MED): a large, open-label, pragmatic randomised trial.  Lancet. 2014;384(9949):1196-1205. doi:10.1016/S0140-6736(14)60683-8PubMedGoogle ScholarCrossref
46.
Garcia-Ruiz  PJ, Martinez Castrillo  JC, Alonso-Canovas  A,  et al.  Impulse control disorder in patients with Parkinson’s disease under dopamine agonist therapy: a multicentre study.  J Neurol Neurosurg Psychiatry. 2014;85(8):840-844. doi:10.1136/jnnp-2013-306787PubMedGoogle ScholarCrossref
47.
Rabinak  CA, Nirenberg  MJ.  Dopamine agonist withdrawal syndrome in Parkinson disease.  Arch Neurol. 2010;67(1):58-63. doi:10.1001/archneurol.2009.294PubMedGoogle ScholarCrossref
48.
Pondal  M, Marras  C, Miyasaki  J,  et al.  Clinical features of dopamine agonist withdrawal syndrome in a movement disorders clinic.  J Neurol Neurosurg Psychiatry. 2013;84(2):130-135. doi:10.1136/jnnp-2012-302684PubMedGoogle ScholarCrossref
49.
Pessoa  RR, Moro  A, Munhoz  RP, Teive  HAG, Lees  AJ.  Apomorphine in the treatment of Parkinson’s disease: a review.  Arq Neuropsiquiatr. 2018;76(12):840-848. doi:10.1590/0004-282x20180140PubMedGoogle ScholarCrossref
50.
LeWitt  PA, Hauser  RA, Pahwa  R,  et al; SPAN-PD Study Investigators.  Safety and efficacy of CVT-301 (levodopa inhalation powder) on motor function during off periods in patients with Parkinson’s disease: a randomised, double-blind, placebo-controlled phase 3 trial.  Lancet Neurol. 2019;18(2):145-154. doi:10.1016/S1474-4422(18)30405-8PubMedGoogle ScholarCrossref
51.
Pahwa  R, Tanner  CM, Hauser  RA,  et al.  ADS-5102 (amantadine) extended-release capsules for levodopa-induced dyskinesia in Parkinson disease (EASE LID study): a randomized clinical trial.  JAMA Neurol. 2017;74(8):941-949. doi:10.1001/jamaneurol.2017.0943PubMedGoogle ScholarCrossref
52.
Vertical Pharmaceuticals.  Osmolex ER prescribing information. 2018. https://www.osmolexhcp.com/images/pdf/Prescribing_Information.pdf. Accessed July 29, 2019.
53.
Mak  MK, Wong-Yu  IS, Shen  X, Chung  CL.  Long-term effects of exercise and physical therapy in people with Parkinson disease.  Nat Rev Neurol. 2017;13(11):689-703. doi:10.1038/nrneurol.2017.128PubMedGoogle ScholarCrossref
54.
Chung  CL, Thilarajah  S, Tan  D.  Effectiveness of resistance training on muscle strength and physical function in people with Parkinson’s disease: a systematic review and meta-analysis.  Clin Rehabil. 2016;30(1):11-23. doi:10.1177/0269215515570381PubMedGoogle ScholarCrossref
55.
Mehrholz  J, Kugler  J, Storch  A, Pohl  M, Hirsch  K, Elsner  B.  Treadmill training for patients with Parkinson disease: an abridged version of a Cochrane Review.  Eur J Phys Rehabil Med. 2016;52(5):704-713.PubMedGoogle Scholar
56.
Zhang  S, Liu  D, Ye  D, Li  H, Chen  F.  Can music-based movement therapy improve motor dysfunction in patients with Parkinson’s disease? systematic review and meta-analysis.  Neurol Sci. 2017;38(9):1629-1636. doi:10.1007/s10072-017-3020-8PubMedGoogle ScholarCrossref
57.
Lötzke  D, Ostermann  T, Büssing  A.  Argentine tango in Parkinson disease—a systematic review and meta-analysis.  BMC Neurol. 2015;15:226. doi:10.1186/s12883-015-0484-0PubMedGoogle ScholarCrossref
58.
Yang  Y, Li  XY, Gong  L, Zhu  YL, Hao  YL.  Tai Chi for improvement of motor function, balance and gait in Parkinson’s disease: a systematic review and meta-analysis.  PLoS One. 2014;9(7):e102942. doi:10.1371/journal.pone.0102942PubMedGoogle Scholar
59.
Tomlinson  CL, Patel  S, Meek  C,  et al.  Physiotherapy versus placebo or no intervention in Parkinson’s disease.  Cochrane Database Syst Rev. 2013;9(9):CD002817. doi:10.1002/14651858.CD002817.pub4PubMedGoogle Scholar
60.
Factor  SA, Bennett  A, Hohler  AD, Wang  D, Miyasaki  JM.  Quality improvement in neurology: Parkinson disease update quality measurement set: executive summary.  Neurology. 2016;86(24):2278-2283. doi:10.1212/WNL.0000000000002670PubMedGoogle ScholarCrossref
61.
Shulman  LM, Gruber-Baldini  AL, Anderson  KE, Fishman  PS, Reich  SG, Weiner  WJ.  The clinically important difference on the Unified Parkinson's Disease Rating Scale.  Arch Neurol. 2010;67(1):64-70. doi:10.1001/archneurol.2009.295PubMedGoogle ScholarCrossref
62.
Bratsos  S, Karponis  D, Saleh  SN.  Efficacy and safety of deep brain stimulation in the treatment of parkinson’s disease: a systematic review and meta-analysis of randomized controlled trials.  Cureus. 2018;10(10):e3474. doi:10.7759/cureus.3474PubMedGoogle Scholar
63.
Bond  AE, Shah  BB, Huss  DS,  et al.  Safety and efficacy of focused ultrasound thalamotomy for patients with medication-refractory, tremor-dominant Parkinson disease: a randomized clinical trial.  JAMA Neurol. 2017;74(12):1412-1418. doi:10.1001/jamaneurol.2017.3098PubMedGoogle ScholarCrossref
64.
Moro  E, Schüpbach  M, Wächter  T,  et al.  Referring Parkinson’s disease patients for deep brain stimulation: a RAND/UCLA appropriateness study.  J Neurol. 2016;263(1):112-119. doi:10.1007/s00415-015-7942-xPubMedGoogle ScholarCrossref
65.
Okun  MS, Fernandez  HH, Pedraza  O,  et al.  Development and initial validation of a screening tool for Parkinson disease surgical candidates.  Neurology. 2004;63(1):161-163. doi:10.1212/01.WNL.0000133122.14824.25PubMedGoogle ScholarCrossref
66.
Wächter  T, Mínguez-Castellanos  A, Valldeoriola  F, Herzog  J, Stoevelaar  H.  A tool to improve pre-selection for deep brain stimulation in patients with Parkinson’s disease.  J Neurol. 2011;258(4):641-646. doi:10.1007/s00415-010-5814-yPubMedGoogle ScholarCrossref
67.
Wang  L, Li  J, Chen  J.  Levodopa-carbidopa intestinal gel in Parkinson’s disease: a systematic review and meta-analysis.  Front Neurol. 2018;9:620. doi:10.3389/fneur.2018.00620PubMedGoogle ScholarCrossref
68.
Wirdefeldt  K, Odin  P, Nyholm  D.  Levodopa-carbidopa intestinal gel in patients with Parkinson’s disease: a systematic review.  CNS Drugs. 2016;30(5):381-404. doi:10.1007/s40263-016-0336-5PubMedGoogle ScholarCrossref
69.
Seppi  K, Ray Chaudhuri  K, Coelho  M,  et al; the collaborators of the Parkinson’s Disease Update on Non-Motor Symptoms Study Group on behalf of the Movement Disorders Society Evidence-Based Medicine Committee.  Update on treatments for nonmotor symptoms of Parkinson’s disease-an evidence-based medicine review.  Mov Disord. 2019;34(2):180-198. doi:10.1002/mds.27602PubMedGoogle ScholarCrossref
70.
Emre  M, Aarsland  D, Albanese  A,  et al.  Rivastigmine for dementia associated with Parkinson’s disease.  N Engl J Med. 2004;351(24):2509-2518. doi:10.1056/NEJMoa041470PubMedGoogle ScholarCrossref
71.
Weintraub  D, Chiang  C, Kim  HM,  et al.  Association of antipsychotic use with mortality risk in patients with parkinson disease.  JAMA Neurol. 2016;73(5):535-541. doi:10.1001/jamaneurol.2016.0031PubMedGoogle ScholarCrossref
72.
Iketani  R, Kawasaki  Y, Yamada  H.  Comparative utility of atypical antipsychotics for the treatment of psychosis in Parkinson’s disease: a systematic review and Bayesian network meta-analysis.  Biol Pharm Bull. 2017;40(11):1976-1982. doi:10.1248/bpb.b17-00602PubMedGoogle ScholarCrossref
73.
Cummings  J, Isaacson  S, Mills  R,  et al.  Pimavanserin for patients with Parkinson’s disease psychosis: a randomised, placebo-controlled phase 3 trial.  Lancet. 2014;383(9916):533-540. doi:10.1016/S0140-6736(13)62106-6PubMedGoogle ScholarCrossref
74.
Elbers  RG, Verhoef  J, van Wegen  EE, Berendse  HW, Kwakkel  G.  Interventions for fatigue in Parkinson’s disease.  Cochrane Database Syst Rev. 2015;10(10):CD010925.PubMedGoogle Scholar
75.
Barboza  JL, Okun  MS, Moshiree  B.  The treatment of gastroparesis, constipation and small intestinal bacterial overgrowth syndrome in patients with Parkinson’s disease.  Expert Opin Pharmacother. 2015;16(16):2449-2464. doi:10.1517/14656566.2015.1086747PubMedGoogle ScholarCrossref
76.
Srivanitchapoom  P, Pandey  S, Hallett  M.  Drooling in Parkinson’s disease: a review.  Parkinsonism Relat Disord. 2014;20(11):1109-1118. doi:10.1016/j.parkreldis.2014.08.013PubMedGoogle ScholarCrossref
77.
Boersma  I, Miyasaki  J, Kutner  J, Kluger  B.  Palliative care and neurology: time for a paradigm shift.  Neurology. 2014;83(6):561-567. doi:10.1212/WNL.0000000000000674PubMedGoogle ScholarCrossref
78.
Schenkman  M, Moore  CG, Kohrt  WM,  et al.  Effect of high-intensity treadmill exercise on motor symptoms in patients with de novo Parkinson disease: a phase 2 randomized clinical trial.  JAMA Neurol. 2018;75(2):219-226. doi:10.1001/jamaneurol.2017.3517PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Topics
State Requirements