Potential Effects of Coronaviruses on the Cardiovascular System | Infectious Diseases | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

Potential Effects of Coronaviruses on the Cardiovascular SystemA Review

Educational Objective
To understand the potential effects of coronaviruses on the cardiovascular system
1 Credit CME
Abstract

Importance  Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19) has reached a pandemic level. Coronaviruses are known to affect the cardiovascular system. We review the basics of coronaviruses, with a focus on COVID-19, along with their effects on the cardiovascular system.

Observations  Coronavirus disease 2019 can cause a viral pneumonia with additional extrapulmonary manifestations and complications. A large proportion of patients have underlying cardiovascular disease and/or cardiac risk factors. Factors associated with mortality include male sex, advanced age, and presence of comorbidities including hypertension, diabetes mellitus, cardiovascular diseases, and cerebrovascular diseases. Acute cardiac injury determined by elevated high-sensitivity troponin levels is commonly observed in severe cases and is strongly associated with mortality. Acute respiratory distress syndrome is also strongly associated with mortality.

Conclusions and Relevance  Coronavirus disease 2019 is associated with a high inflammatory burden that can induce vascular inflammation, myocarditis, and cardiac arrhythmias. Extensive efforts are underway to find specific vaccines and antivirals against SARS-CoV-2. Meanwhile, cardiovascular risk factors and conditions should be judiciously controlled per evidence-based guidelines.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Corresponding Author: Mohammad Madjid, MD, MS, McGovern Medical School, Department of Medicine, University of Texas Health Science Center at Houston, 6431 Fannin, MSB 1.246, Houston, TX 77030 (mmadjid@gmail.com).

Published Online: March 27, 2020. doi:10.1001/jamacardio.2020.1286

Accepted for Publication: March 21, 2020.

Conflict of Interest Disclosures: Dr Madjid has been a speaker and consultant to Sanofi Pasteur Inc. Dr Vardeny reports research support from the National Institutes of Health and consulting with Sanofi-Pasteur Inc. Dr Solomon has received research grants from Alnylam, Amgen, AstraZeneca, Bellerophon, Bayer, BMS, Celladon, Cytokinetics, Eidos, Gilead, GSK, Ionis, Lone Star Heart, Mesoblast, MyoKardia, National Institutes of Health/National Heart, Lung, and Blood Institute, Novartis, Sanofi Pasteur, and Theracos and has consulted for Akros, Alnylam, Amgen, Arena, AstraZeneca, Bayer, BMS, Cardior, Cardurion, Corvia, Cytokinetics, Daiichi-Sankyo, Gilead, GSK, Ironwood, Merck, Myokardia, Novartis, Roche, Sanofi-Pasteur, Takeda, Theracos, Quantum Genetics, Cardurion, AoBiome, Janssen, Cardiac Dimensions, Tenaya, Dinaqor, and Tremeau. No other disclosures were reported.

Additional Contributions: The authors thank Timothy M. Uyeki MD, MPH, MPP, US Centers for Disease Control and Prevention, Atlanta, Georgia, for valuable input regarding virus epidemiology and treatment strategies.

References
1.
Cheng  VCC , Lau  SKP , Woo  PCY , Yuen  KY .  Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection.   Clin Microbiol Rev. 2007;20(4):660-694. doi:10.1128/CMR.00023-07PubMedGoogle ScholarCrossref
2.
Cowan  LT , Lutsey  PL , Pankow  JS , Matsushita  K , Ishigami  J , Lakshminarayan  K .  Inpatient and outpatient infection as a trigger of cardiovascular disease: the ARIC study.   J Am Heart Assoc. 2018;7(22):e009683-e009683. doi:10.1161/JAHA.118.009683PubMedGoogle ScholarCrossref
3.
Madjid  M , Miller  CC , Zarubaev  VV ,  et al.  Influenza epidemics and acute respiratory disease activity are associated with a surge in autopsy-confirmed coronary heart disease death: results from 8 years of autopsies in 34,892 subjects.   Eur Heart J. 2007;28(10):1205-1210. doi:10.1093/eurheartj/ehm035PubMedGoogle ScholarCrossref
4.
Dhainaut  J-F , Claessens  Y-E , Janes  J , Nelson  DR .  Underlying disorders and their impact on the host response to infection.   Clin Infect Dis. 2005;41(suppl 7):S481-S489. doi:10.1086/432001PubMedGoogle ScholarCrossref
5.
Fauci  AS , Lane  HC , Redfield  RR .  Covid-19: navigating the uncharted.   N Engl J Med. 2020. doi:10.1056/NEJMe2002387PubMedGoogle Scholar
6.
Team  TNCPERE .  The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) -China, 2020 (J).   China CDC Weekly. 2020;2(8):113-122.Google Scholar
7.
Zhang  S-F , Tuo  J-L , Huang  X-B ,  et al.  Epidemiology characteristics of human coronaviruses in patients with respiratory infection symptoms and phylogenetic analysis of HCoV-OC43 during 2010-2015 in Guangzhou.   PLoS One. 2018;13(1):e0191789-e0191789. doi:10.1371/journal.pone.0191789PubMedGoogle ScholarCrossref
8.
Fehr  AR , Perlman  S .  Coronaviruses: an overview of their replication and pathogenesis.   Methods Mol Biol. 2015;1282:1-23. doi:10.1007/978-1-4939-2438-7_1PubMedGoogle ScholarCrossref
9.
Li  W , Hulswit  RJG , Kenney  SP ,  et al.  Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility.   Proc Natl Acad Sci U S A. 2018;115(22):E5135-E5143. doi:10.1073/pnas.1802879115PubMedGoogle ScholarCrossref
10.
Chen  N , Zhou  M , Dong  X ,  et al.  Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study.   Lancet. 2020;395(10223):507-513. doi:10.1016/S0140-6736(20)30211-7PubMedGoogle ScholarCrossref
11.
Su  S , Wong  G , Shi  W ,  et al.  Epidemiology, genetic recombination, and pathogenesis of coronaviruses.   Trends Microbiol. 2016;24(6):490-502. doi:10.1016/j.tim.2016.03.003PubMedGoogle ScholarCrossref
12.
Falsey  AR , Walsh  EE , Hayden  FG .  Rhinovirus and coronavirus infection-associated hospitalizations among older adults.   J Infect Dis. 2002;185(9):1338-1341. doi:10.1086/339881PubMedGoogle ScholarCrossref
13.
El-Sahly  HM , Atmar  RL , Glezen  WP , Greenberg  SB .  Spectrum of clinical illness in hospitalized patients with “common cold” virus infections.   Clin Infect Dis. 2000;31(1):96-100. doi:10.1086/313937PubMedGoogle ScholarCrossref
14.
Berry  M , Gamieldien  J , Fielding  BC .  Identification of new respiratory viruses in the new millennium.   Viruses. 2015;7(3):996-1019. doi:10.3390/v7030996PubMedGoogle ScholarCrossref
15.
Li  F .  Structure, function, and evolution of coronavirus spike proteins.   Annu Rev Virol. 2016;3(1):237-261. doi:10.1146/annurev-virology-110615-042301PubMedGoogle ScholarCrossref
16.
Imai  Y , Kuba  K , Rao  S ,  et al.  Angiotensin-converting enzyme 2 protects from severe acute lung failure.   Nature. 2005;436(7047):112-116. doi:10.1038/nature03712PubMedGoogle ScholarCrossref
17.
Hamming  I , Timens  W , Bulthuis  ML , Lely  AT , Navis  G , van Goor  H .  Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus: a first step in understanding SARS pathogenesis.   J Pathol. 2004;203(2):631-637. doi:10.1002/path.1570PubMedGoogle ScholarCrossref
18.
Pyrc  K , Berkhout  B , van der Hoek  L .  The novel human coronaviruses NL63 and HKU1.   J Virol. 2007;81(7):3051-3057. doi:10.1128/JVI.01466-06PubMedGoogle ScholarCrossref
19.
Otter  JA , Donskey  C , Yezli  S , Douthwaite  S , Goldenberg  SD , Weber  DJ .  Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination.   J Hosp Infect. 2016;92(3):235-250. doi:10.1016/j.jhin.2015.08.027PubMedGoogle ScholarCrossref
20.
Cheng  VCC , Chan  JFW , To  KKW , Yuen  KY .  Clinical management and infection control of SARS: lessons learned.   Antiviral Res. 2013;100(2):407-419. doi:10.1016/j.antiviral.2013.08.016PubMedGoogle ScholarCrossref
21.
Heffernan  JM , Smith  RJ , Wahl  LM .  Perspectives on the basic reproductive ratio.   J R Soc Interface. 2005;2(4):281-293. doi:10.1098/rsif.2005.0042PubMedGoogle ScholarCrossref
22.
Wallinga  J , Teunis  P .  Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures.   Am J Epidemiol. 2004;160(6):509-516. doi:10.1093/aje/kwh255PubMedGoogle ScholarCrossref
23.
Louie  JK , Hacker  JK , Mark  J ,  et al; Unexplained Deaths and Critical Illnesses Working Group.  SARS and common viral infections.   Emerg Infect Dis. 2004;10(6):1143-1146. doi:10.3201/eid1006.030863PubMedGoogle ScholarCrossref
24.
Centers for Disease Control and Prevention. SARS (10 Years After). Accessed February 22, 2020. https://www.cdc.gov/dotw/sars/index.html
25.
Wang  JT , Chang  SC .  Severe acute respiratory syndrome.   Curr Opin Infect Dis. 2004;17(2):143-148. doi:10.1097/00001432-200404000-00013PubMedGoogle ScholarCrossref
26.
Peiris  JS , Chu  CM , Cheng  VC ,  et al; HKU/UCH SARS Study Group.  Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study.   Lancet. 2003;361(9371):1767-1772. doi:10.1016/S0140-6736(03)13412-5PubMedGoogle ScholarCrossref
27.
Chong  PY , Chui  P , Ling  AE ,  et al.  Analysis of deaths during the severe acute respiratory syndrome (SARS) epidemic in Singapore: challenges in determining a SARS diagnosis.   Arch Pathol Lab Med. 2004;128(2):195-204.PubMedGoogle Scholar
28.
Li  SS , Cheng  CW , Fu  CL ,  et al.  Left ventricular performance in patients with severe acute respiratory syndrome: a 30-day echocardiographic follow-up study.   Circulation. 2003;108(15):1798-1803. doi:10.1161/01.CIR.0000094737.21775.32PubMedGoogle ScholarCrossref
29.
Yu  CM , Wong  RSM , Wu  EB ,  et al.  Cardiovascular complications of severe acute respiratory syndrome.   Postgrad Med J. 2006;82(964):140-144. doi:10.1136/pgmj.2005.037515PubMedGoogle ScholarCrossref
30.
Mohd  HA , Al-Tawfiq  JA , Memish  ZA .  Middle East Respiratory Syndrome Coronavirus (MERS-CoV) origin and animal reservoir.   Virol J. 2016;13(1):87. doi:10.1186/s12985-016-0544-0PubMedGoogle ScholarCrossref
31.
Zumla  A , Hui  DS , Perlman  S .  Middle East respiratory syndrome.   Lancet. 2015;386(9997):995-1007. doi:10.1016/S0140-6736(15)60454-8PubMedGoogle ScholarCrossref
32.
Mackay  IM , Arden  KE .  MERS coronavirus: diagnostics, epidemiology and transmission.   Virol J. 2015;12(1):222. doi:10.1186/s12985-015-0439-5PubMedGoogle ScholarCrossref
33.
World Health Organization (WHO) Eastern Mediterranean Regional Office. Laboratory-confirmed cases of MERS reported in Eastern Mediterranean Region, July 2012-November 2019. Accessed February 22, 2020. https://wwwwhoint/emergencies/mers-cov/en/
34.
Choi  S , Jung  E , Choi  BY , Hur  YJ , Ki  M .  High reproduction number of Middle East respiratory syndrome coronavirus in nosocomial outbreaks: mathematical modelling in Saudi Arabia and South Korea.   J Hosp Infect. 2018;99(2):162-168. doi:10.1016/j.jhin.2017.09.017PubMedGoogle ScholarCrossref
35.
Matsuyama  R , Nishiura  H , Kutsuna  S , Hayakawa  K , Ohmagari  N .  Clinical determinants of the severity of Middle East respiratory syndrome (MERS): a systematic review and meta-analysis.   BMC Public Health. 2016;16(1):1203. doi:10.1186/s12889-016-3881-4PubMedGoogle ScholarCrossref
36.
Park  J-E , Jung  S , Kim  A , Park  J-E .  MERS transmission and risk factors: a systematic review.   BMC Public Health. 2018;18(1):574. doi:10.1186/s12889-018-5484-8PubMedGoogle ScholarCrossref
37.
Badawi  A , Ryoo  SG .  Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): a systematic review and meta-analysis.   Int J Infect Dis. 2016;49:129-133. doi:10.1016/j.ijid.2016.06.015PubMedGoogle ScholarCrossref
38.
Wu  P , Hao  X , Lau  EHY ,  et al.  Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020.   Euro Surveill. 2020;25(3):2000044. doi:10.2807/1560-7917.ES.2020.25.3.2000044PubMedGoogle Scholar
39.
Chan  JF-W , Kok  K-H , Zhu  Z ,  et al.  Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan.   Emerg Microbes Infect. 2020;9(1):221-236. doi:10.1080/22221751.2020.1719902PubMedGoogle ScholarCrossref
40.
Wan  Y , Shang  J , Graham  R , Baric  RS , Li  F .  Receptor recognition by novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS.   J Virol. 2020;94(7):e00127-20. doi:10.1128/JVI.00127-20PubMedGoogle Scholar
41.
Lu  R , Zhao  X , Li  J ,  et al.  Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding.   Lancet. 2020;395(10224):565-574. doi:10.1016/S0140-6736(20)30251-8PubMedGoogle ScholarCrossref
42.
Chan  JF-W , Yuan  S , Kok  K-H ,  et al.  A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster.   Lancet. 2020;395(10223):514-523. doi:10.1016/S0140-6736(20)30154-9PubMedGoogle ScholarCrossref
43.
Li  Q , Guan  X , Wu  P ,  et al.  Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia.   N Engl J Med. 2020. doi:10.1056/NEJMoa2001316PubMedGoogle Scholar
44.
Backer  JA , Klinkenberg  D , Wallinga  J .  Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20-28 January 2020.   Euro Surveill. 2020;25(5):2000062. doi:10.2807/1560-7917.ES.2020.25.5.2000062PubMedGoogle Scholar
45.
Yeo  C , Kaushal  S , Yeo  D .  Enteric involvement of coronaviruses: is faecal-oral transmission of SARS-CoV-2 possible?   Lancet Gastroenterol Hepatol. 2020;5(4):335-337. doi:10.1016/S2468-1253(20)30048-0PubMedGoogle ScholarCrossref
46.
Holshue  ML , DeBolt  C , Lindquist  S ,  et al; Washington State 2019-nCoV Case Investigation Team.  First case of 2019 novel coronavirus in the United States.   N Engl J Med. 2020;382(10):929-936. doi:10.1056/NEJMoa2001191PubMedGoogle ScholarCrossref
47.
European Centre for Disease Prevention and Control. Pneumonia cases associated with novel coronavirus. Accessed March 19, 2020. https://www.ecdc.europa.eu/en/novel-coronavirus-china
48.
Flahault  A .  Has China faced only a herald wave of SARS-CoV-2?   Lancet. 2020;395(10228):947. doi:10.1016/S0140-6736(20)30521-3PubMedGoogle ScholarCrossref
49.
Coburn  BJ , Wagner  BG , Blower  S .  Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1).   BMC Med. 2009;7:30. doi:10.1186/1741-7015-7-30PubMedGoogle ScholarCrossref
50.
Huang  C , Wang  Y , Li  X ,  et al.  Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.   Lancet. 2020;395(10223):497-506. doi:10.1016/S0140-6736(20)30183-5PubMedGoogle ScholarCrossref
51.
Yang  X , Yu  Y , Xu  J ,  et al.  Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study.   Lancet Respir Med. 2020:S2213-2600(20)30079-5. doi:10.1016/S2213-2600(20)30079-5PubMedGoogle Scholar
52.
Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Accessed March 19, 2020. https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
53.
Guan  WJ , Ni  ZY , Hu  Y ,  et al; China Medical Treatment Expert Group for Covid-19.  Clinical characteristics of coronavirus disease 2019 in China.   N Engl J Med. 2020. doi:10.1056/NEJMoa2002032PubMedGoogle Scholar
54.
Baud  D , Qi  X , Nielsen-Saines  K , Musso  D , Pomar  L , Favre  G .  Real estimates of mortality following COVID-19 infection.   Lancet Infect Dis. 2020:S1473-3099(20)30195-X. doi:10.1016/S1473-3099(20)30195-XPubMedGoogle Scholar
55.
Burke  RM , Midgley  CM , Dratch  A ,  et al.  Active monitoring of persons exposed to patients with confirmed COVID-19: United States, January-February 2020.   MMWR Morb Mortal Wkly Rep. 2020;69(9):245-246. doi:10.15585/mmwr.mm6909e1PubMedGoogle ScholarCrossref
56.
Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19). Accessed February 22, 2020. https://www.cdc.gov/coronavirus/2019-ncov/about/symptoms.html
57.
Zou  L , Ruan  F , Huang  M ,  et al.  SARS-CoV-2 viral load in upper respiratory specimens of infected patients.   N Engl J Med. 2020;382(12):1177-1179. doi:10.1056/NEJMc2001737PubMedGoogle ScholarCrossref
58.
Lin  D , Liu  L , Zhang  M ,  et al.  Co-infections of SARS-CoV-2 with multiple common respiratory pathogens in infected patients.   Sci China Life Sci. 2020. doi:10.1007/s11427-020-1668-5PubMedGoogle Scholar
59.
Hosseiny  M , Kooraki  S , Gholamrezanezhad  A , Reddy  S , Myers  L .  Radiology perspective of coronavirus disease 2019 (COVID-19): lessons from severe acute respiratory syndrome and Middle East Respiratory Syndrome.   AJR Am J Roentgenol. 2020;1-5:1-5. doi:10.2214/AJR.20.22969PubMedGoogle ScholarCrossref
60.
US Centers for Disease Control and Prevention COVID-19 Response Team.  Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19): United States, February 12-March 16, 2020.   MMWR Morb Mortal Wkly Rep. Published online March 18, 2020. doi:10.15585/mmwr.mm6912e2Google Scholar
61.
The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team.  The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19): China, 2020  [J].  China CDC Weekly. 2020;2(8):113-122.Google ScholarCrossref
62.
Wang  D , Hu  B , Hu  C ,  et al.  Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China.   JAMA. 2020. doi:10.1001/jama.2020.1585PubMedGoogle Scholar
63.
Zhou  F , Yu  T , Du  R ,  et al.  Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study.   Lancet. 2020:S0140-6736(20)30566-3. doi:10.1016/S0140-6736(20)30566-3PubMedGoogle Scholar
64.
Ruan  Q , Yang  K , Wang  W , Jiang  L , Song  J .  Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China.   Intensive Care Med. 2020. doi:10.1007/s00134-020-05991-xPubMedGoogle Scholar
65.
Xu  Z , Shi  L , Wang  Y ,  et al.  Pathological findings of COVID-19 associated with acute respiratory distress syndrome.   Lancet Respir Med. 2020:S2213-2600(20)30076-X. doi:10.1016/S2213-2600(20)30076-XPubMedGoogle Scholar
66.
Inciardi  RM , Lupi  L , Zaccone  G ,  et al.  Cardiac involvement 1 with coronavirus 2019 (COVID-19) infection.   JAMA Cardiol. 2020. doi:10.1001/jamacardio.2020.1096Google Scholar
67.
Hu  H , Ma  F , Wei  X , Fang  Y .  Coronavirus fulminant myocarditis saved with glucocorticoid and human immunoglobulin.   Eur Heart J. 2020:ehaa190. doi:10.1093/eurheartj/ehaa190PubMedGoogle Scholar
68.
Shi  S , Qin  M , Shen  B ,  et al.  Cardiac injury in patients with corona virus disease 2019.   JAMA Cardiol. Published online March 25, 2020. doi:10.1001/jamacardio.2020.0950Google Scholar
69.
Guo  T , Fan  Y , Chen  M ,  et al.  Association of cardiovascular disease and myocardial injury with outcomes of patients hospitalized with 2019-coronavirus disease (COVID-19).   JAMA Cardiol. Published online March 27, 2020. doi:10.1001/jamacardio.2020.1017Google Scholar
70.
Kwong  JC , Schwartz  KL , Campitelli  MA ,  et al.  Acute myocardial infarction after laboratory-confirmed influenza infection.   N Engl J Med. 2018;378(4):345-353. doi:10.1056/NEJMoa1702090PubMedGoogle ScholarCrossref
71.
Madjid  M , Connolly  AT , Nabutovsky  Y , Safavi-Naeini  P , Razavi  M , Miller  CC .  Effect of high influenza activity on risk of ventricular arrhythmias requiring therapy in patients with implantable cardiac defibrillators and cardiac resynchronization therapy defibrillators.   Am J Cardiol. 2019;124(1):44-50. doi:10.1016/j.amjcard.2019.04.011PubMedGoogle ScholarCrossref
72.
Kytömaa  S , Hegde  S , Claggett  B ,  et al.  Association of influenza-like illness activity with hospitalizations for heart failure: the Atherosclerosis Risk in Communities Study.   JAMA Cardiol. 2019;4(4):363-369. doi:10.1001/jamacardio.2019.0549PubMedGoogle ScholarCrossref
73.
Vardeny  O , Solomon  SD .  Influenza vaccination: a one-shot deal to reduce cardiovascular events.   Eur Heart J. 2017;38(5):334-337.PubMedGoogle Scholar
74.
Madjid  M , Aboshady  I , Awan  I , Litovsky  S , Casscells  SW .  Influenza and cardiovascular disease: is there a causal relationship?   Tex Heart Inst J. 2004;31(1):4-13.PubMedGoogle Scholar
75.
Corrales-Medina  VF , Madjid  M , Musher  DM .  Role of acute infection in triggering acute coronary syndromes.   Lancet Infect Dis. 2010;10(2):83-92. doi:10.1016/S1473-3099(09)70331-7PubMedGoogle ScholarCrossref
76.
Madjid  M , Casscells  SW .  Of birds and men: cardiologists’ role in influenza pandemics.   Lancet. 2004;364(9442):1309. doi:10.1016/S0140-6736(04)17176-6PubMedGoogle ScholarCrossref
77.
Wu  Z , McGoogan  JM .  Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention.   JAMA. 2020. doi:10.1001/jama.2020.2648PubMedGoogle Scholar
78.
Wang  M , Cao  R , Zhang  L ,  et al.  Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro.   Cell Res. 2020;30(3):269-271. doi:10.1038/s41422-020-0282-0PubMedGoogle ScholarCrossref
79.
Gautret  P , Lagier  J-C , Parola  P ,  et al.  Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial.   Int J Antimicrob Agents. 2020. doi:10.1016/j.ijantimicag.2020.105949Google Scholar
80.
Gao  J , Tian  Z , Yang  X .  Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies.   Biosci Trends. 2020;14(1):72-73. doi:10.5582/bst.2020.01047PubMedGoogle ScholarCrossref
81.
Cao  B , Wang  Y , Wen  D ,  et al.  A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19.   N Engl J Med. 2020. doi:10.1056/NEJMoa2001282PubMedGoogle Scholar
82.
HFSA/ACC/AHA statement addresses concerns re: using RAAS antagonists in COVID-19. Accessed March 19, 2020. https://professional.heart.org/professional/ScienceNews/UCM_505836_HFSAACCAHA-statement-addresses-concerns-re-using-RAAS-antagonists-in-COVID-19.jsp
83.
Hoffmann  M , Kleine-Weber  H , Schroeder  S ,  et al.  SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor.   Cell. 2020:S0092-8674(20)30229-4. doi:10.1016/j.cell.2020.02.052PubMedGoogle Scholar
84.
Centers for Disease Control and Prevention. Coronavirus Disease 2019 (COVID-19). Accessed March 19, 2020. https://www.cdc.gov/coronavirus/2019-ncov/index.html
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
Close
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close