[Skip to Content]
[Skip to Content Landing]

Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19)A Review

Educational Objective
To review the treatment of patients with COVID-19.
1 Credit CME
Abstract

Importance  The pandemic of coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents an unprecedented challenge to identify effective drugs for prevention and treatment. Given the rapid pace of scientific discovery and clinical data generated by the large number of people rapidly infected by SARS-CoV-2, clinicians need accurate evidence regarding effective medical treatments for this infection.

Observations  No proven effective therapies for this virus currently exist. The rapidly expanding knowledge regarding SARS-CoV-2 virology provides a significant number of potential drug targets. The most promising therapy is remdesivir. Remdesivir has potent in vitro activity against SARS-CoV-2, but it is not US Food and Drug Administration approved and currently is being tested in ongoing randomized trials. Oseltamivir has not been shown to have efficacy, and corticosteroids are currently not recommended. Current clinical evidence does not support stopping angiotensin-converting enzyme inhibitors or angiotensin receptor blockers in patients with COVID-19.

Conclusions and Relevance  The COVID-19 pandemic represents the greatest global public health crisis of this generation and, potentially, since the pandemic influenza outbreak of 1918. The speed and volume of clinical trials launched to investigate potential therapies for COVID-19 highlight both the need and capability to produce high-quality evidence even in the middle of a pandemic. No therapies have been shown effective to date.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Corresponding Author: James B. Cutrell, MD, Division of Infectious Diseases and Geographic Medicine, Department of Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9113 (james.cutrell@utsouthwestern.edu).

Accepted for Publication: April 3, 2020.

Published Online: April 13, 2020. doi:10.1001/jama.2020.6019

Author Contributions: Dr Cutrell had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: All authors.

Acquisition, analysis, or interpretation of data: Monogue, Jodlowski, Cutrell.

Drafting of the manuscript: All authors.

Critical revision of the manuscript for important intellectual content: Monogue, Jodlowski, Cutrell.

Administrative, technical, or material support: Cutrell.

Supervision: Cutrell.

Conflict of Interest Disclosures: Dr Cutrell reported receiving nonfinancial support from Regeneron and Gilead outside the submitted work. No other disclosures were reported.

Additional Contributions: We acknowledge our infectious disease physician and pharmacy colleagues at UT Southwestern and its respective hospital sites, Clements University Hospital, Parkland Hospital, and the VA North Texas Health Care System for their thoughtful discussions regarding COVID-19 clinical management.

References
1.
Zhu  N , Zhang  D , Wang  W ,  et al; China Novel Coronavirus Investigating and Research Team.  A novel coronavirus from patients with pneumonia in China, 2019.   N Engl J Med. 2020;382(8):727-733. doi:10.1056/NEJMoa2001017 PubMedGoogle ScholarCrossref
2.
Chinese Clinical Trials. http://www/chictr.org/enindex.aspx. Accessed March 31, 2020.
3.
Hoffmann  M , Kleine-Weber  H , Schroeder  S ,  et al.  SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor.   Cell. Published online March 4, 2020. doi:10.1016/j.cell.2020.02.052 PubMedGoogle Scholar
4.
Chen  Y , Liu  Q , Guo  D .  Emerging coronaviruses: genome structure, replication, and pathogenesis.   J Med Virol. 2020;92(4):418-423. doi:10.1002/jmv.25681 PubMedGoogle ScholarCrossref
5.
Fehr  AR , Perlman  S .  Coronaviruses: an overview of their replication and pathogenesis.   Methods Mol Biol. 2015;1282:1-23. doi:10.1007/978-1-4939-2438-7_1 PubMedGoogle ScholarCrossref
6.
Fung  TS , Liu  DX .  Coronavirus infection, ER stress, apoptosis and innate immunity.   Front Microbiol. 2014;5:296. doi:10.3389/fmicb.2014.00296 PubMedGoogle ScholarCrossref
7.
Savarino  A , Boelaert  JR , Cassone  A , Majori  G , Cauda  R .  Effects of chloroquine on viral infections: an old drug against today’s diseases?   Lancet Infect Dis. 2003;3(11):722-727. doi:10.1016/S1473-3099(03)00806-5 PubMedGoogle ScholarCrossref
8.
Al-Bari  MAA .  Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases.   Pharmacol Res Perspect. 2017;5(1):e00293. doi:10.1002/prp2.293 PubMedGoogle Scholar
9.
Zhou  D , Dai  SM , Tong  Q .  COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression.  [published online March 20, 2020].  J Antimicrob Chemother. 2020;dkaa114. doi:10.1093/jac/dkaa114 PubMedGoogle Scholar
10.
Devaux  CA , Rolain  JM , Colson  P , Raoult  D .  New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19?   Int J Antimicrob Agents. Published online March 11, 2020. doi:10.1016/j.ijantimicag.2020.105938 PubMedGoogle Scholar
11.
Colson  P , Rolain  JM , Lagier  JC , Brouqui  P , Raoult  D .  Chloroquine and hydroxychloroquine as available weapons to fight COVID-19.   Int J Antimicrob Agents. Published online March 4, 2020. doi:10.1016/j.ijantimicag.2020.105932 PubMedGoogle Scholar
12.
National Health Commission and State Administration of Traditional Chinese Medicine. Diagnosis and treatment protocol for novel coronavirus pneumonia. Accessed March 18, 2020. https://www.chinalawtranslate.com/wp-content/uploads/2020/03/Who-translation.pdf
13.
Chloroquine [database online]. Hudson, OH: Lexicomp Inc; 2016. Accessed March 17, 2020. http://online.lexi.com
14.
Aralen (chloroquine phosphate) [package insert]. Bridgewater, NJ: Sanofi-Aventis; 2008. Accessed March 17, 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/006002s045lbl.pdf
15.
Yao  X , Ye  F , Zhang  M ,  et al.  In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).   Clin Infect Dis. Published online March 9, 2020. doi:10.1093/cid/ciaa237 PubMedGoogle Scholar
16.
Gautret  P , Lagier  JC , Parola  P ,  et al.  Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial.   Int J Antimicrob Agents. Published online March 20, 2020. doi:10.1016/j.ijantimicag.2020.105949 PubMedGoogle Scholar
17.
Chen  J , Liu  D , Liu  L ,  et al.  A pilot study of hydroxychloroquine in treatment of patients with common coronavirus disease-19 (COVID-19).   J Zhejiang Univ (Med Sci). Published online March 6, 2020. doi:10.3785/j.issn.1008-9292.2020.03.03Google Scholar
18.
Hydroxychloroquine [database online]. Hudson, OH: Lexicomp Inc; 2016. Accessed March 17, 2020. http://online.lexi.com
19.
Plaquenil (Hydroxychloroquine sulfate) [package insert]. St Michael, Barbados: Concordia Pharmaceuticals Inc; 2018. Accessed March 17, 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/009768Orig1s051lbl.pdf
20.
Lim  HS , Im  JS , Cho  JY ,  et al.  Pharmacokinetics of hydroxychloroquine and its clinical implications in chemoprophylaxis against malaria caused by Plasmodium vivax.   Antimicrob Agents Chemother. 2009;53(4):1468-1475. doi:10.1128/AAC.00339-08 PubMedGoogle ScholarCrossref
21.
Chu  CM , Cheng  VC , Hung  IF ,  et al; HKU/UCH SARS Study Group.  Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings.   Thorax. 2004;59(3):252-256. doi:10.1136/thorax.2003.012658 PubMedGoogle ScholarCrossref
22.
de Wilde  AH , Jochmans  D , Posthuma  CC ,  et al.  Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture.   Antimicrob Agents Chemother. 2014;58(8):4875-4884. doi:10.1128/AAC.03011-14 PubMedGoogle ScholarCrossref
23.
Cao  B , Wang  Y , Wen  D ,  et al.  A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19.   N Engl J Med. Published online March 18, 2020. doi:10.1056/NEJMoa2001282 PubMedGoogle Scholar
24.
Lopinavir/ritonavir [database online]. Hudson (OH): Lexicomp Inc; 2016. Accessed March 17, 2020. http://online.lexi.com
25.
Kaletra (Lopinavir and ritonavir) [package insert]. North Chicago, IL: Abbvie; 2019. Accessed March 17, 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/021226s048lbl.pdf
26.
Department of Health and Human Services Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in adults and adolescents with HIV. Accessed March 17, 2020. http://www.aidsinfo.nih.gov/ContentFiles/ AdultandAdolescentGL.pdf
27.
Kadam  RU , Wilson  IA .  Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol.   Proc Natl Acad Sci U S A. 2017;114(2):206-214. doi:10.1073/pnas.1617020114 PubMedGoogle ScholarCrossref
28.
Khamitov  RA , Loginova  SIa , Shchukina  VN , Borisevich  SV , Maksimov  VA , Shuster  AM .  Antiviral activity of arbidol and its derivatives against the pathogen of severe acute respiratory syndrome in the cell cultures [in Russian].   Vopr Virusol. 2008;53(4):9-13.PubMedGoogle Scholar
29.
Wang  Z , Yang  B , Li  Q , Wen  L , Zhang  R .  Clinical Features of 69 cases with coronavirus disease 2019 in Wuhan, China.   Clin Infect Dis. Published online March 16, 2020. doi:10.1093/cid/ciaa272 PubMedGoogle Scholar
30.
Siegel  D , Hui  HC , Doerffler  E ,  et al.  Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo[2,1-f][triazin-4-amino] adenine C-nucleoside (GS-5734) for the treatment of Ebola and emerging viruses.   J Med Chem. 2017;60(5):1648-1661. doi:10.1021/acs.jmedchem.6b01594 PubMedGoogle ScholarCrossref
31.
Al-Tawfiq  JA , Al-Homoud  AH , Memish  ZA .  Remdesivir as a possible therapeutic option for the COVID-19.   Travel Med Infect Dis. Published online March 5, 2020. doi:10.1016/j.tmaid.2020.101615 PubMedGoogle Scholar
32.
Sheahan  TP , Sims  AC , Leist  SR ,  et al.  Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV.   Nat Commun. 2020;11(1):222. doi:10.1038/s41467-019-13940-6 PubMedGoogle ScholarCrossref
33.
Hayden  FG , Shindo  N .  Influenza virus polymerase inhibitors in clinical development.   Curr Opin Infect Dis. 2019;32(2):176-186. doi:10.1097/QCO.0000000000000532 PubMedGoogle ScholarCrossref
34.
Avigan (favipiravir) [package insert]. Tokyo, Japan: Taisho Toyama Pharmaceutical Co Ltd; 2017, 4th version. Accessed March 25, 2020.
35.
Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. chinaXiv. Preprint posted March 5, 2020. doi:10.12074/202003.00026
36.
Actemra (tocilizumab) [package insert]. South San Francisco, CA: Genentech, Inc; 2019. Accessed March 17, 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/125276s127,125472s040lbl.pdf
37.
Stockman  LJ , Bellamy  R , Garner  P .  SARS: systematic review of treatment effects.   PLoS Med. 2006;3(9):e343. doi:10.1371/journal.pmed.0030343 PubMedGoogle Scholar
38.
Morra  ME , Van Thanh  L , Kamel  MG ,  et al.  Clinical outcomes of current medical approaches for Middle East respiratory syndrome: a systematic review and meta-analysis.   Rev Med Virol. 2018;28(3):e1977. doi:10.1002/rmv.1977 PubMedGoogle Scholar
39.
Gao  J , Tian  Z , Yang  X .  Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies.   Biosci Trends. 2020;14(1):72-73. doi:10.5582/bst.2020.01047 PubMedGoogle ScholarCrossref
40.
ClinicalTrials.gov. Accessed March 18, 2020. https://clinicaltrials.gov/
41.
Kalil  AC .  Treating COVID-19—off-label drug use, compassionate use, and randomized clinical trials during pandemics.   JAMA. Published March 24, 2020. doi:10.1001/jama.2020.4742 PubMedGoogle Scholar
42.
Interview with David Juurlink.  Coronavirus (COVID-19) update: chloroquine/hydroxychloroquine and azithromycin.   JAMA. March 24, 2020. Accessed April 3, 2020. https://edhub.ama-assn.org/jn-learning/audio-player/18337225Google Scholar
43.
Osadchy  A , Ratnapalan  T , Koren  G .  Ocular toxicity in children exposed in utero to antimalarial drugs: review of the literature.   J Rheumatol. 2011;38(12):2504-2508. doi:10.3899/jrheum.110686 PubMedGoogle ScholarCrossref
44.
Dong  L , Hu  S , Gao  J .  Discovering drugs to treat coronavirus disease 2019 (COVID-19).   Drug Discov Ther. 2020;14(1):58-60. doi:10.5582/ddt.2020.01012 PubMedGoogle ScholarCrossref
45.
Yao  TT , Qian  JD , Zhu  WY , Wang  Y , Wang  GQ .  A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus-A possible reference for coronavirus disease-19 treatment option.  [published online February 27, 2020].  J Med Virol. 2020. doi:10.1002/jmv.25729 PubMedGoogle Scholar
46.
Chan  KS , Lai  ST , Chu  CM ,  et al.  Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study.   Hong Kong Med J. 2003;9(6):399-406.PubMedGoogle Scholar
47.
Wu  C , Chen  X , Cai  Y ,  et al.  Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China.   JAMA Intern Med. Published online March 13, 2020. PubMedGoogle Scholar
48.
Foolad  F , Aitken  SL , Shigle  TL ,  et al.  Oral versus aerosolized ribavirin for the treatment of respiratory syncytial virus infections in hematopoietic cell transplant recipients.   Clin Infect Dis. 2019;68(10):1641-1649. doi:10.1093/cid/ciy760 PubMedGoogle ScholarCrossref
49.
Arabi  YM , Shalhoub  S , Mandourah  Y ,  et al.  Ribavirin and interferon therapy for critically ill patients with Middle East respiratory syndrome: a multicenter observational study.  Clin Infect Dis. Published online June 25, 2019. doi:10.1093/cid/ciz544 PubMedGoogle Scholar
50.
Altınbas  S , Holmes  JA , Altınbas  A .  Hepatitis C virus infection in pregnancy: an update.   Gastroenterol Nurs. 2020;43(1):12-21. doi:10.1097/SGA.0000000000000404 PubMedGoogle ScholarCrossref
51.
Wang  D , Hu  B , Hu  C ,  et al.  Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China.   JAMA. Published online February 7, 2020. doi:10.1001/jama.2020.1585 PubMedGoogle Scholar
52.
Totura  AL , Bavari  S .  Broad-spectrum coronavirus antiviral drug discovery.   Expert Opin Drug Discov. 2019;14(4):397-412. doi:10.1080/17460441.2019.1581171 PubMedGoogle ScholarCrossref
53.
Li  G , De Clercq  E .  Therapeutic options for the 2019 novel coronavirus (2019-nCoV).   Nat Rev Drug Discov. 2020;19(3):149-150. doi:10.1038/d41573-020-00016-0 PubMedGoogle ScholarCrossref
54.
Coleman  CM , Sisk  JM , Mingo  RM , Nelson  EA , White  JM , Frieman  MB .  Abelson kinase inhibitors are potent inhibitors of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus fusion.   J Virol. 2016;90(19):8924-8933. doi:10.1128/JVI.01429-16 PubMedGoogle ScholarCrossref
55.
Dyall  J , Gross  R , Kindrachuk  J ,  et al.  Middle East respiratory syndrome and severe acute respiratory syndrome: current therapeutic options and potential targets for novel therapies.   Drugs. 2017;77(18):1935-1966. doi:10.1007/s40265-017-0830-1 PubMedGoogle ScholarCrossref
56.
Pfefferle  S , Schöpf  J , Kögl  M ,  et al.  The SARS-coronavirus-host interactome: identification of cyclophilins as target for pan-coronavirus inhibitors.   PLoS Pathog. 2011;7(10):e1002331. doi:10.1371/journal.ppat.1002331 PubMedGoogle Scholar
57.
de Wilde  AH , Zevenhoven-Dobbe  JC , van der Meer  Y ,  et al.  Cyclosporin A inhibits the replication of diverse coronaviruses.   J Gen Virol. 2011;92(pt 11):2542-2548. doi:10.1099/vir.0.034983-0 PubMedGoogle ScholarCrossref
58.
Wang  M , Cao  R , Zhang  L ,  et al.  Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro.   Cell Res. 2020;30(3):269-271. doi:10.1038/s41422-020-0282-0 PubMedGoogle ScholarCrossref
59.
Rossignol  JF .  Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus.   J Infect Public Health. 2016;9(3):227-230. doi:10.1016/j.jiph.2016.04.001 PubMedGoogle ScholarCrossref
60.
Gurwitz  D .  Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics.   Drug Dev Res. Published online March 4, 2020. doi:10.1002/ddr.21656 PubMedGoogle Scholar
61.
American Heart Association. Patients taking angiotensin converting enzyme inhibitors (ACE-i) or angiotensin receptor blocker (ARB) medications should continue therapy as prescribed [news release]. Published March 17, 2020. Accessed March 18, 2020. https://newsroom.heart.org/news/patients-taking-ace-i-and-arbs-who-contract-covid-19-should-continue-treatment-unless-otherwise-advised-by-their-physician
62.
European Society for Cardiology. Position statement of the ESC Council on Hypertension on ACE-Inhibitors and Angiotensin Receptor Blockers. Published March 13, 2020. Accessed March 18, 2020. https://www.escardio.org/Councils/Council-on-Hypertension-(CHT)/News/position-statement-of-the-esc-council-on-hypertension-on-ace-inhibitors-and-ang
63.
World Health Organization. WHO R&D blueprint: ad-hoc expert consultation on clinical trials for Ebola therapeutics. Published October 2018. Accessed March 20, 2020. https://www.who.int/ebola/drc-2018/summaries-of-evidence-experimental-therapeutics.pdf
64.
Jacobs  M , Rodger  A , Bell  DJ ,  et al.  Late Ebola virus relapse causing meningoencephalitis: a case report.   Lancet. 2016;388(10043):498-503. doi:10.1016/S0140-6736(16)30386-5 PubMedGoogle ScholarCrossref
65.
Holshue  ML , DeBolt  C , Lindquist  S ,  et al; Washington State 2019-nCoV Case Investigation Team.  First case of 2019 novel coronavirus in the United States.   N Engl J Med. 2020;382(10):929-936. doi:10.1056/NEJMoa2001191 PubMedGoogle ScholarCrossref
66.
Kujawski  SA , Wong  K , Collins  JP ,  et al. First 12 patients with coronavirus disease 2019 (COVID-19) in the United States. medRxiv. Preprint posted March 9, 2020. doi:10.1101/2020.03.09.20032896
67.
Furuta  Y , Komeno  T , Nakamura  T .  Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase.   Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(7):449-463. doi:10.2183/pjab.93.027 PubMedGoogle ScholarCrossref
68.
Mentré  F , Taburet  AM , Guedj  J ,  et al.  Dose regimen of favipiravir for Ebola virus disease.   Lancet Infect Dis. 2015;15(2):150-151. doi:10.1016/S1473-3099(14)71047-3 PubMedGoogle ScholarCrossref
69.
Sissoko  D , Laouenan  C , Folkesson  E ,  et al; JIKI Study Group.  Experimental treatment with favipiravir for Ebola virus disease (the JIKI Trial): a historically controlled, single-arm proof-of-concept trial in Guinea  [published correction appears in PLoS Med. 2016;13(4):e1002009].  PLoS Med. 2016;13(3):e1001967. doi:10.1371/journal.pmed.1001967 PubMedGoogle Scholar
70.
Shiraki  K , Daikoku  T .  Favipiravir, an anti-influenza drug against life-threatening RNA virus infections.  [published online February 22, 2020].  Pharmacol Ther. 2020;107512. doi:10.1016/j.pharmthera.2020.107512 PubMedGoogle Scholar
71.
Chinello  P , Petrosillo  N , Pittalis  S , Biava  G , Ippolito  G , Nicastri  E ; INMI Ebola Team.  QTc interval prolongation during favipiravir therapy in an Ebolavirus-infected patient.   PLoS Negl Trop Dis. 2017;11(12):e0006034. doi:10.1371/journal.pntd.0006034 PubMedGoogle Scholar
72.
Kumagai  Y , Murakawa  Y , Hasunuma  T ,  et al.  Lack of effect of favipiravir, a novel antiviral agent, on QT interval in healthy Japanese adults.   Int J Clin Pharmacol Ther. 2015;53(10):866-874. doi:10.5414/CP202388 PubMedGoogle ScholarCrossref
73.
Chen  C , Huang  J , Cheng  Z ,  et al. Favipiravir versus Arbidol for COVID-19: a randomized clinical trial. medRxiv. Preprint posted March 27, 2020. doi:10.1101/2020.03.17.20037432
74.
Liu  C , Zhou  Q , Li  Y ,  et al.  Research and development of therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases.   ACS Cent Sci. 2020;6(3):315-331. doi:10.1021/acscentsci.0c00272 PubMedGoogle ScholarCrossref
75.
Gordon DE, Jang GM, Bouhaddou M, et al. A SARS-CoV-2-human protein-protein interaction map reveals drug targets and potential drug-repurposing. bioRxiv. Preprint posted March 22, 2020. doi:10.1101/2020.03.22.002386
76.
Russell  CD , Millar  JE , Baillie  JK .  Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury.   Lancet. 2020;395(10223):473-475. doi:10.1016/S0140-6736(20)30317-2 PubMedGoogle ScholarCrossref
77.
Arabi  YM , Mandourah  Y , Al-Hameed  F ,  et al; Saudi Critical Care Trial Group.  Corticosteroid therapy for critically ill patients with Middle East respiratory syndrome.   Am J Respir Crit Care Med. 2018;197(6):757-767. doi:10.1164/rccm.201706-1172OC PubMedGoogle ScholarCrossref
78.
Ni  YN , Chen  G , Sun  J , Liang  BM , Liang  ZA .  The effect of corticosteroids on mortality of patients with influenza pneumonia: a systematic review and meta-analysis.   Crit Care. 2019;23(1):99. doi:10.1186/s13054-019-2395-8 PubMedGoogle ScholarCrossref
79.
Mehta  P , McAuley  DF , Brown  M , Sanchez  E , Tattersall  RS , Manson  JJ ; HLH Across Speciality Collaboration, UK.  COVID-19: consider cytokine storm syndromes and immunosuppression.   Lancet. 2020;395(10229):1033-1034. doi:10.1016/S0140-6736(20)30628-0 PubMedGoogle ScholarCrossref
80.
Zhou  F , Yu  T , Du  R ,  et al.  Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study.   Lancet. 2020;395(10229):1054-1062. doi:10.1016/S0140-6736(20)30566-3 PubMedGoogle ScholarCrossref
81.
Sanofi. Sanofi and Regeneron begin global Kevzara (sarilumab) clinical trial program in patients with severe COVID-19 [news release]. Published March 16, 2020. Accessed March 18, 2020. http://www.news.sanofi.us/2020-03-16-Sanofi-and-Regeneron-begin-global-Kevzara-R-sarilumab-clinical-trial-program-in-patients-with-severe-COVID-19
82.
Chen  L , Xiong  J , Bao  L , Shi  Y .  Convalescent plasma as a potential therapy for COVID-19.   Lancet Infect Dis. 2020;20(4):398-400. doi:10.1016/S1473-3099(20)30141-9 PubMedGoogle ScholarCrossref
83.
Soo  YO , Cheng  Y , Wong  R ,  et al.  Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients.   Clin Microbiol Infect. 2004;10(7):676-678. doi:10.1111/j.1469-0691.2004.00956.x PubMedGoogle ScholarCrossref
84.
Arabi  Y , Balkhy  H , Hajeer  AH ,  et al.  Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for patients with Middle East respiratory syndrome coronavirus infection: a study protocol.   Springerplus. 2015;4:709. doi:10.1186/s40064-015-1490-9 PubMedGoogle ScholarCrossref
85.
Hung  IF , To  KK , Lee  CK ,  et al.  Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection.   Clin Infect Dis. 2011;52(4):447-456. doi:10.1093/cid/ciq106 PubMedGoogle ScholarCrossref
86.
Mair-Jenkins  J , Saavedra-Campos  M , Baillie  JK ,  et al; Convalescent Plasma Study Group.  The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis.   J Infect Dis. 2015;211(1):80-90. doi:10.1093/infdis/jiu396 PubMedGoogle ScholarCrossref
87.
Shen  C , Wang  Z , Zhao  F ,  et al.  Treatment of 5 critically ill patients with COVID-19 with convalescent plasma.   JAMA. 2020. Published online March 27, 2020. doi:10.1001/jama.2020.4783PubMedGoogle Scholar
88.
Cao  W , Liu  X , Bai  T ,  et al.  High-dose intravenous immunoglobulin as a therapeutic option for deteriorating patients with coronavirus disease 2019.   Open Forum Infect Dis. Published online March 21, 2020. doi:10.1093/ofid/ofaa102 Google Scholar
89.
US Food and Drug Administration. Investigational COVID-19 Convalescent plasma: emergency INDs. Updated April 3, 2020. Accessed March 26, 2020. https://www.fda.gov/vaccines-blood-biologics/investigational-new-drug-ind-or-device-exemption-ide-process-cber/investigational-covid-19-convalescent-plasma-emergency-inds
90.
Wang C, Li W, Drabek D, et al. A human monoclonal antibody blocking SARS-CoV-2 infection. bioRxiv. Preprint posted March 11, 2020. doi:10.1101/2020.03.11.987958.2020
91.
Huang  C , Wang  Y , Li  X ,  et al.  Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.   Lancet. 2020;395(10223):497-506. doi:10.1016/S0140-6736(20)30183-5 PubMedGoogle ScholarCrossref
92.
Chen  N , Zhou  M , Dong  X ,  et al.  Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study.   Lancet. 2020;395(10223):507-513. doi:10.1016/S0140-6736(20)30211-7 PubMedGoogle ScholarCrossref
93.
Yang  X , Yu  Y , Xu  J ,  et al.  Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study.   Lancet Respir Med. Published online February 24, 2020. doi:10.1016/S2213-2600(20)30079-5 PubMedGoogle Scholar
94.
Young  BE , Ong  SWX , Kalimuddin  S ,  et al; Singapore 2019 Novel Coronavirus Outbreak Research Team.  Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore.   JAMA. Published online March 3, 2020. doi:10.1001/jama.2020.3204 PubMedGoogle Scholar
95.
Guan  WJ , Ni  ZY , Hu  Y ,  et al; China Medical Treatment Expert Group for Covid-19.  Clinical Characteristics of Coronavirus Disease 2019 in China.   N Engl J Med. Published online February 28, 2020. doi:10.1056/NEJMoa2002032 PubMedGoogle Scholar
96.
Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19) clinical care. Updated March 30, 2020. Accessed March 18, 2020. https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html
97.
World Health Organization. Clinical management of severe acute respiratory infection when COVID-19 is suspected. Updated March 13, 2020. Accessed March 18, 2020. https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novel-coronavirus-(ncov)-infection-is-suspected
98.
Kupferschmidt  K , Cohen  J . WHO launches global megatrial of the four most promising coronavirus treatments. Science. Published March 22, 2020. Accessed March 23, 2020. https://www.sciencemag.org/news/2020/03/who-launches-global-megatrial-four-most-promising-coronavirus-treatments#
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
Close
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_LoginSubscribe_Purchase
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close