[Skip to Content]
[Skip to Content Landing]

Association of Noninvasive Oxygenation Strategies With All-Cause Mortality in Adults With Acute Hypoxemic Respiratory FailureA Systematic Review and Meta-analysis

Educational Objective
To understand the associations between noninvasive oxygenation strategies and outcomes among adults with acute hypoxemic respiratory failure
1 Credit CME
Key Points

Question  What are the associations between noninvasive oxygenation strategies and outcomes among adults with acute hypoxemic respiratory failure?

Findings  In this systematic review and network meta-analysis that included 25 studies and 3804 patients with acute hypoxemic respiratory failure, compared with standard oxygen therapy there was a statistically significant lower risk of death with helmet noninvasive ventilation (risk ratio, 0.40) and face mask noninvasive ventilation (risk ratio, 0.83).

Meaning  Noninvasive oxygenation strategies compared with standard oxygen therapy were significantly associated with lower risk of death.

Abstract

Importance  Treatment with noninvasive oxygenation strategies such as noninvasive ventilation and high-flow nasal oxygen may be more effective than standard oxygen therapy alone in patients with acute hypoxemic respiratory failure.

Objective  To compare the association of noninvasive oxygenation strategies with mortality and endotracheal intubation in adults with acute hypoxemic respiratory failure.

Data Sources  The following bibliographic databases were searched from inception until April 2020: MEDLINE, Embase, PubMed, Cochrane Central Register of Controlled Trials, CINAHL, Web of Science, and LILACS. No limits were applied to language, publication year, sex, or race.

Study Selection  Randomized clinical trials enrolling adult participants with acute hypoxemic respiratory failure comparing high-flow nasal oxygen, face mask noninvasive ventilation, helmet noninvasive ventilation, or standard oxygen therapy.

Data Extraction and Synthesis  Two reviewers independently extracted individual study data and evaluated studies for risk of bias using the Cochrane Risk of Bias tool. Network meta-analyses using a bayesian framework to derive risk ratios (RRs) and risk differences along with 95% credible intervals (CrIs) were conducted. GRADE methodology was used to rate the certainty in findings.

Main Outcomes and Measures  The primary outcome was all-cause mortality up to 90 days. A secondary outcome was endotracheal intubation up to 30 days.

Results  Twenty-five randomized clinical trials (3804 participants) were included. Compared with standard oxygen, treatment with helmet noninvasive ventilation (RR, 0.40 [95% CrI, 0.24-0.63]; absolute risk difference, −0.19 [95% CrI, −0.37 to −0.09]; low certainty) and face mask noninvasive ventilation (RR, 0.83 [95% CrI, 0.68-0.99]; absolute risk difference, −0.06 [95% CrI, −0.15 to −0.01]; moderate certainty) were associated with a lower risk of mortality (21 studies [3370 patients]). Helmet noninvasive ventilation (RR, 0.26 [95% CrI, 0.14-0.46]; absolute risk difference, −0.32 [95% CrI, −0.60 to −0.16]; low certainty), face mask noninvasive ventilation (RR, 0.76 [95% CrI, 0.62-0.90]; absolute risk difference, −0.12 [95% CrI, −0.25 to −0.05]; moderate certainty) and high-flow nasal oxygen (RR, 0.76 [95% CrI, 0.55-0.99]; absolute risk difference, −0.11 [95% CrI, −0.27 to −0.01]; moderate certainty) were associated with lower risk of endotracheal intubation (25 studies [3804 patients]). The risk of bias due to lack of blinding for intubation was deemed high.

Conclusions and Relevance  In this network meta-analysis of trials of adult patients with acute hypoxemic respiratory failure, treatment with noninvasive oxygenation strategies compared with standard oxygen therapy was associated with lower risk of death. Further research is needed to better understand the relative benefits of each strategy.

Sign in to take quiz and track your certificates

Buy This Activity
Our websites may be periodically unavailable between 12:00am CT March 25, 2023 and 4:00pm CT March 26, 2023 for regularly scheduled maintenance.

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Corresponding Author: Bruno L. Ferreyro, MD, Department of Medicine, Sinai Health System and University Health Network Interdepartmental Division of Critical Care Medicine, University of Toronto, 600 University Ave, Room 18-210, Toronto, ON M5G 1X5, Canada (bruno.ferreyro@uhn.ca).

Accepted for Publication: May 18, 2020.

Published Online: June 4, 2020. doi:10.1001/jama.2020.9524

Author Contributions: Dr Ferreyro had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Ferreyro, Angriman, Munshi, Saskin, da Costa, Scales.

Acquisition, analysis, or interpretation of data: Ferreyro, Angriman, Munshi, del Sorbo, Ferguson, Rochwerg, Ryu, Wunsch, da Costa, Scales.

Drafting of the manuscript: Ferreyro, Angriman, Ryu, da Costa, Scales.

Critical revision of the manuscript for important intellectual content: Ferreyro, Angriman, Munshi, del Sorbo, Ferguson, Rochwerg, Saskin, Wunsch, da Costa, Scales.

Statistical analysis: Ferreyro, Angriman, Rochwerg, Saskin, da Costa.

Administrative, technical, or material support: Ferreyro, Munshi, Ryu.

Supervision: Munshi, Rochwerg, Wunsch, Scales.

Conflict of Interest Disclosures: Dr Ferguson reported receipt of personal fees from Xenios and Getinge. No other disclosures were reported.

Funding/Support: Dr Ferreyro is supported by a Vanier Canada Graduate Scholarship. Dr Angriman is partially supported by research funding from the Department of Critical Care Medicine, Sunnybrook Health Sciences Centre. Dr Rochwerg is supported by a Hamilton Health Sciences Early Career Research Award. Dr Scales holds operating grants from the Canadian Institute for Health Research.

Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; or decision to submit the manuscript for publication.

References
1.
Scala  R , Heunks  L .  Highlights in acute respiratory failure.   Eur Respir Rev. 2018;27(147):180008. doi:10.1183/16000617.0008-2018PubMedGoogle Scholar
2.
Slutsky  AS , Ranieri  VM .  Ventilator-induced lung injury.   N Engl J Med. 2013;369(22):2126-2136. doi:10.1056/NEJMra1208707PubMedGoogle ScholarCrossref
3.
García-de-Acilu  M , Patel  BK , Roca  O .  Noninvasive approach for de novo acute hypoxemic respiratory failure: noninvasive ventilation, high-flow nasal cannula, both or none?   Curr Opin Crit Care. 2019;25(1):54-62. doi:10.1097/MCC.0000000000000570PubMedGoogle ScholarCrossref
4.
Dugan  KC , Hall  JB , Patel  BK .  High-flow nasal oxygen-the pendulum continues to swing in the assessment of critical care technology.   JAMA. 2018;320(20):2083-2084. doi:10.1001/jama.2018.14287PubMedGoogle ScholarCrossref
5.
Goligher  EC , Slutsky  AS .  Not just oxygen? mechanisms of benefit from high-flow nasal cannula in hypoxemic respiratory failure.   Am J Respir Crit Care Med. 2017;195(9):1128-1131. doi:10.1164/rccm.201701-0006EDPubMedGoogle ScholarCrossref
6.
Antonelli  M , Conti  G , Bufi  M ,  et al.  Noninvasive ventilation for treatment of acute respiratory failure in patients undergoing solid organ transplantation: a randomized trial.   JAMA. 2000;283(2):235-241. doi:10.1001/jama.283.2.235PubMedGoogle ScholarCrossref
7.
Frat  J-P , Thille  AW , Mercat  A ,  et al; FLORALI Study Group; REVA Network.  High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure.   N Engl J Med. 2015;372(23):2185-2196. doi:10.1056/NEJMoa1503326PubMedGoogle ScholarCrossref
8.
Lemiale  V , Mokart  D , Resche-Rigon  M ,  et al; Groupe de Recherche en Réanimation Respiratoire du patient d’Onco-Hématologie (GRRR-OH).  Effect of noninvasive ventilation vs oxygen therapy on mortality among immunocompromised patients with acute respiratory failure: a randomized clinical trial.   JAMA. 2015;314(16):1711-1719. doi:10.1001/jama.2015.12402PubMedGoogle ScholarCrossref
9.
Brambilla  AM , Aliberti  S , Prina  E ,  et al.  Helmet CPAP vs oxygen therapy in severe hypoxemic respiratory failure due to pneumonia.   Intensive Care Med. 2014;40(7):942-949. doi:10.1007/s00134-014-3325-5PubMedGoogle ScholarCrossref
10.
Doshi  P , Whittle  JS , Bublewicz  M ,  et al.  High-velocity nasal insufflation in the treatment of respiratory failure: a randomized clinical trial.   Ann Emerg Med. 2018;72(1):73-83.e5. doi:10.1016/j.annemergmed.2017.12.006PubMedGoogle ScholarCrossref
11.
Patel  BK , Wolfe  KS , Pohlman  AS , Hall  JB , Kress  JP .  Effect of noninvasive ventilation delivered by helmet vs face mask on the rate of endotracheal intubation in patients with acute respiratory distress syndrome: a randomized clinical trial.   JAMA. 2016;315(22):2435-2441. doi:10.1001/jama.2016.6338PubMedGoogle ScholarCrossref
12.
Rittayamai  N , Tscheikuna  J , Praphruetkit  N , Kijpinyochai  S .  Use of high-flow nasal cannula for acute dyspnea and hypoxemia in the emergency department.   Respir Care. 2015;60(10):1377-1382. doi:10.4187/respcare.03837PubMedGoogle ScholarCrossref
13.
Liu  Q , Gao  Y , Chen  R , Cheng  Z .  Noninvasive ventilation with helmet versus control strategy in patients with acute respiratory failure: a systematic review and meta-analysis of controlled studies.   Crit Care. 2016;20:265. doi:10.1186/s13054-016-1449-4PubMedGoogle ScholarCrossref
14.
Rochwerg  B , Granton  D , Wang  DX ,  et al.  High flow nasal cannula compared with conventional oxygen therapy for acute hypoxemic respiratory failure: a systematic review and meta-analysis.   Intensive Care Med. 2019;45(5):563-572. doi:10.1007/s00134-019-05590-5PubMedGoogle Scholar
15.
Sklar  MC , Mohammed  A , Orchanian-Cheff  A , Del Sorbo  L , Mehta  S , Munshi  L .  The impact of high-flow nasal oxygen in the immunocompromised critically ill: a systematic review and meta-analysis.   Respir Care. 2018;63(12):1555-1566. doi:10.4187/respcare.05962PubMedGoogle ScholarCrossref
16.
Zayed  Y , Barbarawi  M , Kheiri  B ,  et al.  Initial noninvasive oxygenation strategies in subjects with de novo acute hypoxemic respiratory failure.   Respir Care. 2019;64(11):1433-1444. doi:10.4187/respcare.06981PubMedGoogle ScholarCrossref
17.
Moher  D , Shamseer  L , Clarke  M ,  et al; PRISMA-P Group.  Preferred Reporting Items for Systematic Review and Meta-analysis Protocols (PRISMA-P) 2015 statement.   Syst Rev. 2015;4:1. doi:10.1186/2046-4053-4-1PubMedGoogle ScholarCrossref
18.
Hutton  B , Salanti  G , Caldwell  DM ,  et al.  The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations.   Ann Intern Med. 2015;162(11):777-784. doi:10.7326/M14-2385PubMedGoogle ScholarCrossref
19.
Ferreyro  BL , Angriman  F , Munshi  L ,  et al.  Noninvasive oxygenation strategies in adult patients with acute respiratory failure: a protocol for a systematic review and network meta-analysis.   Syst Rev. 2020;9(1):95. doi:10.1186/s13643-020-01363-0PubMedGoogle ScholarCrossref
20.
Keenan  SP , Sinuff  T , Burns  KE ,  et al; Canadian Critical Care Trials Group/Canadian Critical Care Society Noninvasive Ventilation Guidelines Group.  Clinical practice guidelines for the use of noninvasive positive-pressure ventilation and noninvasive continuous positive airway pressure in the acute care setting.   CMAJ. 2011;183(3):E195-E214. doi:10.1503/cmaj.100071PubMedGoogle ScholarCrossref
21.
Rochwerg  B , Brochard  L , Elliott  MW ,  et al.  Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure.   Eur Respir J. 2017;50(2):1602426. doi:10.1183/13993003.02426-2016PubMedGoogle Scholar
22.
McGowan  J , Sampson  M , Salzwedel  DM , Cogo  E , Foerster  V , Lefebvre  C .  PRESS Peer Review of Electronic Search Strategies: 2015 guideline statement.   J Clin Epidemiol. 2016;75:40-46. doi:10.1016/j.jclinepi.2016.01.021PubMedGoogle ScholarCrossref
23.
Higgins  JPTTJ , Chandler  J , Cumpston  M , Li  T , Page  MJ , Welch  VA , eds. Cochrane Handbook for Systematic Reviews of Interventions Version 6.0. Updated July 2019. Accessed May 26, 2020. https://training.cochrane.org/handbook
24.
Puhan  MA , Schünemann  HJ , Murad  MH ,  et al; GRADE Working Group.  A GRADE Working Group approach for rating the quality of treatment effect estimates from network meta-analysis.   BMJ. 2014;349:g5630. doi:10.1136/bmj.g5630PubMedGoogle ScholarCrossref
25.
Turner  RM , Jackson  D , Wei  Y , Thompson  SG , Higgins  JP .  Predictive distributions for between-study heterogeneity and simple methods for their application in bayesian meta-analysis.   Stat Med. 2015;34(6):984-998. doi:10.1002/sim.6381PubMedGoogle ScholarCrossref
26.
Franchini  AJ , Dias  S , Ades  AE , Jansen  JP , Welton  NJ .  Accounting for correlation in network meta-analysis with multi-arm trials.   Res Synth Methods. 2012;3(2):142-160. doi:10.1002/jrsm.1049PubMedGoogle ScholarCrossref
27.
Bellani  G , Laffey  JG , Pham  T ,  et al; LUNG SAFE Investigators; ESICM Trials Group.  Noninvasive ventilation of patients with acute respiratory distress syndrome: insights from the LUNG SAFE study.   Am J Respir Crit Care Med. 2017;195(1):67-77. doi:10.1164/rccm.201606-1306OCPubMedGoogle ScholarCrossref
28.
Neupane  B , Richer  D , Bonner  AJ , Kibret  T , Beyene  J .  Network meta-analysis using R: a review of currently available automated packages.   PLoS One. 2014;9(12):e115065. doi:10.1371/journal.pone.0115065PubMedGoogle Scholar
29.
Salanti  G , Ades  AE , Ioannidis  JP .  Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial.   J Clin Epidemiol. 2011;64(2):163-171. doi:10.1016/j.jclinepi.2010.03.016PubMedGoogle ScholarCrossref
30.
van Valkenhoef  G , Dias  S , Ades  AE , Welton  NJ .  Automated generation of node-splitting models for assessment of inconsistency in network meta-analysis.   Res Synth Methods. 2016;7(1):80-93. doi:10.1002/jrsm.1167PubMedGoogle ScholarCrossref
31.
Higgins  JP , Jackson  D , Barrett  JK , Lu  G , Ades  AE , White  IR .  Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies.   Res Synth Methods. 2012;3(2):98-110. doi:10.1002/jrsm.1044PubMedGoogle ScholarCrossref
32.
Goligher  EC , Tomlinson  G , Hajage  D ,  et al.  Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome and posterior probability of mortality benefit in a post hoc bayesian analysis of a randomized clinical trial.   JAMA. 2018;320(21):2251-2259. doi:10.1001/jama.2018.14276PubMedGoogle ScholarCrossref
33.
Azevedo  J , Montenegro  W , Leitao  A , Silva  M , Prazeres  J , Maranhao  J .  High flow nasal cannula oxygen (HFNC) versus non-invasive positive pressure ventilation (NIPPV) in acute hypoxemic respiratory failure: a pilot randomized controlled trial.   Intensive Care Med Exp. 2015;3(suppl 1):A166. doi:10.1186/2197-425X-3-S1-A166Google ScholarCrossref
34.
Azoulay  E , Lemiale  V , Mokart  D ,  et al.  Effect of high-flow nasal oxygen vs standard oxygen on 28-day mortality in immunocompromised patients with acute respiratory failure: the HIGH randomized clinical trial.   JAMA. 2018;320(20):2099-2107. doi:10.1001/jama.2018.14282PubMedGoogle ScholarCrossref
35.
Bell  N , Hutchinson  CL , Green  TC , Rogan  E , Bein  KJ , Dinh  MM .  Randomised control trial of humidified high flow nasal cannulae versus standard oxygen in the emergency department.   Emerg Med Australas. 2015;27(6):537-541. doi:10.1111/1742-6723.12490PubMedGoogle ScholarCrossref
36.
Confalonieri  M , Potena  A , Carbone  G , Porta  RD , Tolley  EA , Umberto Meduri  G .  Acute respiratory failure in patients with severe community-acquired pneumonia: a prospective randomized evaluation of noninvasive ventilation.   Am J Respir Crit Care Med. 1999;160(5 pt 1):1585-1591. doi:10.1164/ajrccm.160.5.9903015PubMedGoogle ScholarCrossref
37.
Cosentini  R , Brambilla  AM , Aliberti  S ,  et al.  Helmet continuous positive airway pressure vs oxygen therapy to improve oxygenation in community-acquired pneumonia: a randomized, controlled trial.   Chest. 2010;138(1):114-120. doi:10.1378/chest.09-2290PubMedGoogle ScholarCrossref
38.
Delclaux  C , L’Her  E , Alberti  C ,  et al.  Treatment of acute hypoxemic nonhypercapnic respiratory insufficiency with continuous positive airway pressure delivered by a face mask: a randomized controlled trial.   JAMA. 2000;284(18):2352-2360. doi:10.1001/jama.284.18.2352PubMedGoogle ScholarCrossref
39.
Ferrer  M , Esquinas  A , Leon  M , Gonzalez  G , Alarcon  A , Torres  A .  Noninvasive ventilation in severe hypoxemic respiratory failure: a randomized clinical trial.   Am J Respir Crit Care Med. 2003;168(12):1438-1444. doi:10.1164/rccm.200301-072OCPubMedGoogle ScholarCrossref
40.
Hernandez  G , Fernandez  R , Lopez-Reina  P ,  et al.  Noninvasive ventilation reduces intubation in chest trauma-related hypoxemia: a randomized clinical trial.   Chest. 2010;137(1):74-80. doi:10.1378/chest.09-1114PubMedGoogle ScholarCrossref
41.
He  H , Sun  B , Liang  L ,  et al; ENIVA Study Group.  A multicenter RCT of noninvasive ventilation in pneumonia-induced early mild acute respiratory distress syndrome.   Crit Care. 2019;23(1):300. doi:10.1186/s13054-019-2575-6PubMedGoogle ScholarCrossref
42.
Hilbert  G , Gruson  D , Vargas  F ,  et al.  Noninvasive ventilation in immunosuppressed patients with pulmonary infiltrates, fever, and acute respiratory failure.   N Engl J Med. 2001;344(7):481-487. doi:10.1056/NEJM200102153440703PubMedGoogle ScholarCrossref
43.
Jaber  S , Lescot  T , Futier  E ,  et al; NIVAS Study Group.  Effect of noninvasive ventilation on tracheal reintubation among patients with hypoxemic respiratory failure following abdominal surgery: a randomized clinical trial.   JAMA. 2016;315(13):1345-1353. doi:10.1001/jama.2016.2706PubMedGoogle ScholarCrossref
44.
Jones  PG , Kamona  S , Doran  O , Sawtell  F , Wilsher  M .  Randomized controlled trial of humidified high-flow nasal oxygen for acute respiratory distress in the emergency department: the HOT-ER study.   Respir Care. 2016;61(3):291-299. doi:10.4187/respcare.04252PubMedGoogle ScholarCrossref
45.
Lemiale  V , Mokart  D , Mayaux  J ,  et al.  The effects of a 2-h trial of high-flow oxygen by nasal cannula versus Venturi mask in immunocompromised patients with hypoxemic acute respiratory failure: a multicenter randomized trial.   Crit Care. 2015;19:380. doi:10.1186/s13054-015-1097-0PubMedGoogle ScholarCrossref
46.
Martin  TJ , Hovis  JD , Costantino  JP ,  et al.  A randomized, prospective evaluation of noninvasive ventilation for acute respiratory failure.   Am J Respir Crit Care Med. 2000;161(3 Pt 1):807-813. doi:10.1164/ajrccm.161.3.9808143PubMedGoogle ScholarCrossref
47.
Squadrone  V , Coha  M , Cerutti  E ,  et al; Piedmont Intensive Care Units Network (PICUN).  Continuous positive airway pressure for treatment of postoperative hypoxemia: a randomized controlled trial.   JAMA. 2005;293(5):589-595. doi:10.1001/jama.293.5.589PubMedGoogle ScholarCrossref
48.
Squadrone  V , Massaia  M , Bruno  B ,  et al.  Early CPAP prevents evolution of acute lung injury in patients with hematologic malignancy.   Intensive Care Med. 2010;36(10):1666-1674. doi:10.1007/s00134-010-1934-1PubMedGoogle ScholarCrossref
49.
Wermke  M , Schiemanck  S , Höffken  G , Ehninger  G , Bornhäuser  M , Illmer  T .  Respiratory failure in patients undergoing allogeneic hematopoietic SCT—a randomized trial on early non-invasive ventilation based on standard care hematology wards.   Bone Marrow Transplant. 2012;47(4):574-580. doi:10.1038/bmt.2011.160PubMedGoogle ScholarCrossref
50.
Wysocki  M , Tric  L , Wolff  MA , Millet  H , Herman  B .  Noninvasive pressure support ventilation in patients with acute respiratory failure: a randomized comparison with conventional therapy.   Chest. 1995;107(3):761-768. doi:10.1378/chest.107.3.761PubMedGoogle ScholarCrossref
51.
Zhan  Q , Sun  B , Liang  L ,  et al.  Early use of noninvasive positive pressure ventilation for acute lung injury: a multicenter randomized controlled trial.   Crit Care Med. 2012;40(2):455-460. doi:10.1097/CCM.0b013e318232d75ePubMedGoogle ScholarCrossref
52.
Grieco  DL , Menga  LS , Eleuteri  D , Antonelli  M .  Patient self-inflicted lung injury: implications for acute hypoxemic respiratory failure and ARDS patients on non-invasive support.   Minerva Anestesiol. 2019;85(9):1014-1023. doi:10.23736/S0375-9393.19.13418-9PubMedGoogle ScholarCrossref
53.
Nava  S , Hill  N .  Non-invasive ventilation in acute respiratory failure.   Lancet. 2009;374(9685):250-259. doi:10.1016/S0140-6736(09)60496-7PubMedGoogle ScholarCrossref
54.
Esquinas Rodriguez  AM , Papadakos  PJ , Carron  M ,  et al.  Clinical review: helmet and non-invasive mechanical ventilation in critically ill patients.   Crit Care. 2013;17(2):223. doi:10.1186/cc11875PubMedGoogle ScholarCrossref
55.
Brochard  L , Mancebo  J , Wysocki  M ,  et al.  Noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease.   N Engl J Med. 1995;333(13):817-822. doi:10.1056/NEJM199509283331301PubMedGoogle ScholarCrossref
56.
Bott  J , Carroll  MP , Conway  JH ,  et al.  Randomised controlled trial of nasal ventilation in acute ventilatory failure due to chronic obstructive airways disease.   Lancet. 1993;341(8860):1555-1557. doi:10.1016/0140-6736(93)90696-EPubMedGoogle ScholarCrossref
57.
Lightowler  JV , Wedzicha  JA , Elliott  MW , Ram  FS .  Non-invasive positive pressure ventilation to treat respiratory failure resulting from exacerbations of chronic obstructive pulmonary disease: Cochrane systematic review and meta-analysis.   BMJ. 2003;326(7382):185. doi:10.1136/bmj.326.7382.185PubMedGoogle ScholarCrossref
58.
Bersten  AD , Holt  AW , Vedig  AE , Skowronski  GA , Baggoley  CJ .  Treatment of severe cardiogenic pulmonary edema with continuous positive airway pressure delivered by face mask.   N Engl J Med. 1991;325(26):1825-1830. doi:10.1056/NEJM199112263252601PubMedGoogle ScholarCrossref
59.
Mehta  S , Jay  GD , Woolard  RH ,  et al.  Randomized, prospective trial of bilevel versus continuous positive airway pressure in acute pulmonary edema.   Crit Care Med. 1997;25(4):620-628. doi:10.1097/00003246-199704000-00011PubMedGoogle ScholarCrossref
60.
Carteaux  G , Millán-Guilarte  T , De Prost  N ,  et al.  Failure of noninvasive ventilation for de novo acute hypoxemic respiratory failure: role of tidal volume.   Crit Care Med. 2016;44(2):282-290. doi:10.1097/CCM.0000000000001379PubMedGoogle ScholarCrossref
61.
Brochard  L , Slutsky  A , Pesenti  A .  Mechanical ventilation to minimize progression of lung injury in acute respiratory failure.   Am J Respir Crit Care Med. 2017;195(4):438-442. doi:10.1164/rccm.201605-1081CPPubMedGoogle ScholarCrossref
62.
De Jong  A , Calvet  L , Lemiale  V ,  et al.  The challenge of avoiding intubation in immunocompromised patients with acute respiratory failure.   Expert Rev Respir Med. 2018;12(10):867-880. doi:10.1080/17476348.2018.1511430PubMedGoogle ScholarCrossref
63.
Telias  I , Katira  BH , Brochard  L .  Is the prone position helpful during spontaneous breathing in patients with COVID-19?   JAMA. Published online May 15, 2020. doi:10.1001/jama.2020.8539PubMedGoogle Scholar
64.
Jansen  JP , Fleurence  R , Devine  B ,  et al.  Interpreting indirect treatment comparisons and network meta-analysis for health-care decision making: report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research Practices: part 1.   Value Health. 2011;14(4):417-428. doi:10.1016/j.jval.2011.04.002PubMedGoogle ScholarCrossref
AMA CME Accreditation Information

Credit Designation Statement: The American Medical Association designates this Journal-based CME activity activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to:

  • 1.00 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program;;
  • 1.00 Self-Assessment points in the American Board of Otolaryngology – Head and Neck Surgery’s (ABOHNS) Continuing Certification program;
  • 1.00 MOC points in the American Board of Pediatrics’ (ABP) Maintenance of Certification (MOC) program;
  • 1.00 Lifelong Learning points in the American Board of Pathology’s (ABPath) Continuing Certification program; and
  • 1.00 CME points in the American Board of Surgery’s (ABS) Continuing Certification program

It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting MOC credit.

Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close