[Skip to Content]
[Skip to Content Landing]

Hookworm Treatment for Relapsing Multiple SclerosisA Randomized Double-Blinded Placebo-Controlled Trial

Educational Objective
To assess the effects of hookworm treatment compared with placebo on relapsing multiple sclerosis.
1 Credit CME
Key Points

Question  What are the effects of hookworm treatment compared with placebo on relapsing multiple sclerosis?

Findings  In this randomized clinical trial that included 71 patients, the median cumulative numbers of new magnetic resonance imaging lesions were not significantly different between the groups, but approximately half of participants treated with hookworm vs approximately a quarter of those receiving placebo had no detectable magnetic resonance activity. Hookworm significantly increased T regulatory cell counts in peripheral blood.

Meaning  The data from this study suggest a possible, albeit mild, therapeutic effect of hookworm infection in relapsing multiple sclerosis that warrants further study.

Abstract

Importance  Studies suggest gut worms induce immune responses that can protect against multiple sclerosis (MS). To our knowledge, there are no controlled treatment trials with helminth in MS.

Objective  To determine whether hookworm treatment has effects on magnetic resonance imaging (MRI) activity and T regulatory cells in relapsing MS.

Design, Setting, and Participants  This 9-month double-blind, randomized, placebo-controlled trial was conducted between September 2012 and March 2016 in a modified intention-to-treat population (the data were analyzed June 2018) at the University of Nottingham, Queen’s Medical Centre, a single tertiary referral center. Patients aged 18 to 61 years with relapsing MS without disease-modifying treatment were recruited from the MS clinic. Seventy-three patients were screened; of these, 71 were recruited (2 ineligible/declined).

Interventions  Patients were randomized (1:1) to receive either 25 Necator americanus larvae transcutaneously or placebo. The MRI scans were performed monthly during months 3 to 9 and 3 months posttreatment.

Main Outcomes and Measures  The primary end point was the cumulative number of new/enlarging T2/new enhancing T1 lesions at month 9. The secondary end point was the percentage of cluster of differentiation (CD) 4+CD25highCD127negT regulatory cells in peripheral blood.

Results  Patients (mean [SD] age, 45 [9.5] years; 50 women [71%]) were randomized to receive hookworm (35 [49.3%]) or placebo (36 [50.7%]). Sixty-six patients (93.0%) completed the trial. The median cumulative numbers of new/enlarging/enhancing lesions were not significantly different between the groups by preplanned Mann-Whitney U tests, which lose power with tied data (high number of zeroactivity MRIs in the hookworm group, 18/35 [51.4%] vs 10/36 [27.8%] in the placebo group). The percentage of CD4+CD25highCD127negT cells increased at month 9 in the hookworm group (hookworm, 32 [4.4%]; placebo, 34 [3.9%]; P = .01). No patients withdrew because of adverse effects. There were no differences in adverse events between groups except more application-site skin discomfort in the hookworm group (82% vs 28%). There were 5 relapses (14.3%) in the hookworm group vs 11 (30.6%) receiving placebo.

Conclusions and Relevance  Treatment with hookworm was safe and well tolerated. The primary outcome did not reach significance, likely because of a low level of disease activity. Hookworm infection increased T regulatory cells, suggesting an immunobiological effect of hookworm. It appears that a living organism can precipitate immunoregulatory changes that may affect MS disease activity.

Trial Registration  ClinicalTrials.gov Identifier: NCT01470521

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: February 4, 2020.

Corresponding Authors: Cris S. Constantinescu, MD, PhD, Section of Clinical Neurology, Division of Clinical Neuroscience, University of Nottingham, Queen’s Medical Centre, C Floor South Block, Nottingham NG7 2UH, England (cris.constantinescu@nottingham.ac.uk); David I. Pritchard, PhD, Immune Regulation Research Group, University of Nottingham School of Pharmacy, Nottingham NG7 2RD, England (david.pritchard@nottingham.ac.uk).

Published Online: June 15, 2020. doi:10.1001/jamaneurol.2020.1118

Author Contributions: Dr Constantinescu (principal investigator) had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Tanasescu, Tench, Constantinescu, Onion, Auer, Ranshaw, Pritchard.

Acquisition, analysis, or interpretation of data: Tanasescu, Tench, Constantinescu, Telford, Singh, Frakich, Onion, Auer, Gran, Evangelou, Falah, Cantacessi, Jenkins, Pritchard.

Drafting of the manuscript: Tanasescu, Tench, Constantinescu, Singh, Falah, Pritchard.

Critical revision of the manuscript for important intellectual content: Tanasescu, Tench, Constantinescu, Telford, Frakich, Onion, Auer, Gran, Evangelou, Ranshaw, Cantacessi, Jenkins, Pritchard.

Statistical analysis: Tench, Constantinescu, Onion.

Obtained funding: Constantinescu, Pritchard.

Administrative, technical, or material support: Constantinescu, Telford, Frakich, Onion, Auer, Falah, Ranshaw, Jenkins, Pritchard.

Supervision: Tanasescu, Tench, Constantinescu, Evangelou, Cantacessi, Pritchard.

Other - biological and immunological sample collection, flow cytometry setup design and data analysis: Gran.

Other - Qualified Person for MA (IMP) Investigational Medicinal Products (Clinical Trials): Ranshaw.

Other - MRI analysis: Singh.

Conflict of Interest Disclosures: Dr Tanasescu reported nonfinancial support from Biogen, Teva UK, and Sanofi Genzyme and personal fees from Sanofi Genzyme outside the submitted work. Dr Constantinescu reported grants from the Multiple Sclerosis Society of Great Britain and Northern Ireland, Forman Hardy Charitable Trust via University of Nottingham, and Bayer Pharmaceuticals during the conduct of the study; grants, personal fees, and nonfinancial support from Biogen; personal fees and nonsupport from Novartis, Teva, and Merck; and grants from Sanofi Genzyme outside the submitted work. Dr Auer reported grants from the National Institute of Health Research (NIHR) and nonfinancial support from UK Research and Innovation and Biogen outside the submitted work. Dr Gran reported personal fees from Merck, Roche, Biogen, and Teva UK; grants from Biogen Idec, Merck, Bayer Healthcare, Teva UK, Novartis, and Sanofi Genzyme; and nonfinancial support from Biogen, Merck, Bayer Healthcare, Teva UK, Novartis, and Sanofi Genzyme outside the submitted work. Dr Evangelou reported grants from Patient-Centered Outcomes Research Institute, NIHR, and the Medical Research Council, nonfinancial support from Biogen, and personal fees from Novartis outside the submitted work. No other disclosures were reported.

Funding/Support: This study was supported by the MS Society of the Great Britain and Northern Ireland, the Forman Hardy Charitable Trust via the University of Nottingham, and an unrestricted grant from Bayer-Schering.

Role of the Funder/Sponsor: The funding organizations had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Data Sharing Statement: See Supplement 3.

Additional Contributions: We thank the Nottingham Clinical Trials Unit, the multiple sclerosis (MS) research coordinators and administrators within the MS clinical trials unit, and all the trial participants. We also thank Herb Sewell, PhD, DDS, FMedSci, Ian Hall, MD, PhD, FMedSci, and Christopher Hawkey, MD, PhD, FMedSci (University of Nottingham), for stimulating discussions and support.

References
1.
Thompson  AJ , Baranzini  SE , Geurts  J , Hemmer  B , Ciccarelli  O .  Multiple sclerosis.   Lancet. 2018;391(10130):1622-1636. doi:10.1016/S0140-6736(18)30481-1 PubMedGoogle Scholar
2.
Bach  JF .  The effect of infections on susceptibility to autoimmune and allergic diseases.   N Engl J Med. 2002;347(12):911-920. doi:10.1056/NEJMra020100 PubMedGoogle Scholar
3.
Maizels  RM , Smith  KA .  Regulatory T cells in infection.   Adv Immunol. 2011;112:73-136. doi:10.1016/B978-0-12-387827-4.00003-6 PubMedGoogle Scholar
4.
Fleming  JO , Cook  TD .  Multiple sclerosis and the hygiene hypothesis.   Neurology. 2006;67(11):2085-2086. doi:10.1212/01.wnl.0000247663.40297.2d PubMedGoogle Scholar
5.
de Cássia Ribeiro Silva  R , Barreto  ML , Assis  AM ,  et al.  The relative influence of polyparasitism, environment, and host factors on schistosome infection.   Am J Trop Med Hyg. 2007;77(4):672-675. doi:10.4269/ajtmh.2007.77.672 PubMedGoogle Scholar
6.
Correale  J , Farez  M .  Association between parasite infection and immune responses in multiple sclerosis.   Ann Neurol. 2007;61(2):97-108. doi:10.1002/ana.21067 PubMedGoogle Scholar
7.
Elliott  DE , Weinstock  JV .  Nematodes and human therapeutic trials for inflammatory disease.   Parasite Immunol. 2017;39(5). doi:10.1111/pim.12407 PubMedGoogle Scholar
8.
Fleming  JO , Isaak  A , Lee  JE ,  et al.  Probiotic helminth administration in relapsing-remitting multiple sclerosis: a phase 1 study.   Mult Scler. 2011;17(6):743-754. doi:10.1177/1352458511398054 PubMedGoogle Scholar
9.
Benzel  F , Erdur  H , Kohler  S ,  et al.  Immune monitoring of Trichuris suis egg therapy in multiple sclerosis patients.   J Helminthol. 2012;86(3):339-347. doi:10.1017/S0022149X11000460 PubMedGoogle Scholar
10.
Voldsgaard  A , Bager  P , Garde  E ,  et al.  Trichuris suis ova therapy in relapsing multiple sclerosis is safe but without signals of beneficial effect.   Mult Scler. 2015;21(13):1723-1729. doi:10.1177/1352458514568173 PubMedGoogle Scholar
11.
Fleming  J , Hernandez  G , Hartman  L ,  et al.  Safety and efficacy of helminth treatment in relapsing-remitting multiple sclerosis: Results of the HINT 2 clinical trial.   Mult Scler. 2017;25(1):81-91. doi:10.1177/1352458517736377PubMedGoogle Scholar
12.
Fumagalli  M , Pozzoli  U , Cagliani  R ,  et al.  The landscape of human genes involved in the immune response to parasitic worms.   BMC Evol Biol. 2010;10:264. doi:10.1186/1471-2148-10-264 PubMedGoogle Scholar
13.
Pritchard  DI , Quinnell  RJ , Moustafa  M ,  et al.  Hookworm (Necator americanus) infection and storage iron depletion.   Trans R Soc Trop Med Hyg. 1991;85(2):235-238. doi:10.1016/0035-9203(91)90038-Z PubMedGoogle Scholar
14.
de Silva  NR , Brooker  S , Hotez  PJ , Montresor  A , Engels  D , Savioli  L .  Soil-transmitted helminth infections: updating the global picture.   Trends Parasitol. 2003;19(12):547-551. doi:10.1016/j.pt.2003.10.002 PubMedGoogle Scholar
15.
Quinnell  RJ , Bethony  J , Pritchard  DI .  The immunoepidemiology of human hookworm infection.   Parasite Immunol. 2004;26(11-12):443-454. doi:10.1111/j.0141-9838.2004.00727.x PubMedGoogle Scholar
16.
Hotez  PJ , Pritchard  DI .  Hookworm infection.   Sci Am. 1995;272(6):68-74. doi:10.1038/scientificamerican0695-68 PubMedGoogle Scholar
17.
Mortimer  K , Brown  A , Feary  J ,  et al.  Dose-ranging study for trials of therapeutic infection with Necator americanus in humans.   Am J Trop Med Hyg. 2006;75(5):914-920. doi:10.4269/ajtmh.2006.75.914 PubMedGoogle Scholar
18.
Blount  D , Hooi  D , Feary  J ,  et al.  Immunologic profiles of persons recruited for a randomized, placebo-controlled clinical trial of hookworm infection.   Am J Trop Med Hyg. 2009;81(5):911-916. doi:10.4269/ajtmh.2009.09-0237 PubMedGoogle Scholar
19.
Croese  J , O’neil  J , Masson  J ,  et al.  A proof of concept study establishing Necator americanus in Crohn’s patients and reservoir donors.   Gut. 2006;55(1):136-137. doi:10.1136/gut.2005.079129 PubMedGoogle Scholar
20.
McDonald  WI , Compston  A , Edan  G ,  et al.  Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis.   Ann Neurol. 2001;50(1):121-127. doi:10.1002/ana.1032 PubMedGoogle Scholar
21.
Barkhof  F , Filippi  M , Miller  DH ,  et al.  Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis.   Brain. 1997;120(pt 11):2059-2069. doi:10.1093/brain/120.11.2059 PubMedGoogle Scholar
22.
Kurtzke  JF .  Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS).   Neurology. 1983;33(11):1444-1452. doi:10.1212/WNL.33.11.1444 PubMedGoogle Scholar
23.
Correale  J , Farez  MF .  The impact of parasite infections on the course of multiple sclerosis.   J Neuroimmunol. 2011;233(1-2):6-11. doi:10.1016/j.jneuroim.2011.01.002 PubMedGoogle Scholar
24.
Tubridy  N , Ader  HJ , Barkhof  F , Thompson  AJ , Miller  DH .  Exploratory treatment trials in multiple sclerosis using MRI: sample size calculations for relapsing-remitting and secondary progressive subgroups using placebo controlled parallel groups.   J Neurol Neurosurg Psychiatry. 1998;64(1):50-55. doi:10.1136/jnnp.64.1.50 PubMedGoogle Scholar
25.
Fay  BR .  Various methods of resolving ties for six distribution-free tests of location.   J Mod Appl Stat Methods. 2006;5(1):22-40. doi:10.22237/jmasm/1146456180 Google Scholar
26.
Traboulsee  A , Li  DKB , Cascione  M , Fang  J , Dangond  F , Miller  A .  Effect of interferon beta-1a subcutaneously three times weekly on clinical and radiological measures and no evidence of disease activity status in patients with relapsing-remitting multiple sclerosis at year 1.   BMC Neurol. 2018;18(1):143. doi:10.1186/s12883-018-1145-x PubMedGoogle Scholar
27.
Kappos  L , Radue  EW , O’Connor  P ,  et al; FREEDOMS Study Group.  A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis.   N Engl J Med. 2010;362(5):387-401. doi:10.1056/NEJMoa0909494 PubMedGoogle Scholar
28.
Dasgupta  A , Mahapatra  M , Saxena  R .  Flow cytometric immunophenotyping of regulatory T cells in chronic lymphocytic leukemia: comparative assessment of various markers and use of novel antibody panel with CD127 as alternative to transcription factor FoxP3.   Leuk Lymphoma. 2013;54(4):778-789. doi:10.3109/10428194.2012.730614 PubMedGoogle Scholar
29.
Ruitenberg  JJ , Boyce  C , Hingorani  R , Putnam  A , Ghanekar  SA .  Rapid assessment of in vitro expanded human regulatory T cell function.   J Immunol Methods. 2011;372(1-2):95-106. doi:10.1016/j.jim.2011.07.001 PubMedGoogle Scholar
30.
Weinstock  JV , Elliott  DE .  Helminth infections decrease host susceptibility to immune-mediated diseases.   J Immunol. 2014;193(7):3239-3247. doi:10.4049/jimmunol.1400927 PubMedGoogle Scholar
31.
Wang  J , Ioan-Facsinay  A , van der Voort  EI , Huizinga  TW , Toes  RE .  Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells.   Eur J Immunol. 2007;37(1):129-138. doi:10.1002/eji.200636435 PubMedGoogle Scholar
32.
Kleinewietfeld  M , Hafler  DA .  Regulatory T cells in autoimmune neuroinflammation.   Immunol Rev. 2014;259(1):231-244. doi:10.1111/imr.12169 PubMedGoogle Scholar
33.
Constantinescu  CS , Gran  B .  The essential role of T cells in multiple sclerosis: a reappraisal.   Biomed J. 2014;37(2):34-40. doi:10.4103/2319-4170.128746PubMedGoogle Scholar
34.
Cantacessi  C , Giacomin  P , Croese  J ,  et al.  Impact of experimental hookworm infection on the human gut microbiota.   J Infect Dis. 2014;210(9):1431-1434. doi:10.1093/infdis/jiu256 PubMedGoogle Scholar
35.
Correale  J , Equiza  TR .  Regulatory B cells, helminths, and multiple sclerosis.   Methods Mol Biol. 2014;1190:257-269. doi:10.1007/978-1-4939-1161-5_18 PubMedGoogle Scholar
36.
Smith  DR , Balashov  KE , Hafler  DA , Khoury  SJ , Weiner  HL .  Immune deviation following pulse cyclophosphamide/methylprednisolone treatment of multiple sclerosis: increased interleukin-4 production and associated eosinophilia.   Ann Neurol. 1997;42(3):313-318. doi:10.1002/ana.410420307 PubMedGoogle Scholar
37.
Finlay  CM , Stefanska  AM , Walsh  KP ,  et al.  Helminth products protect against autoimmunity via innate type 2 cytokines IL-5 and IL-33, which promote eosinophilia.   J Immunol. 2016;196(2):703-714. doi:10.4049/jimmunol.1501820 PubMedGoogle Scholar
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close