Effect of Intraoperative Dexamethasone on Major Complications and Mortality Among Infants Undergoing Cardiac Surgery | Cardiology | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

Effect of Intraoperative Dexamethasone on Major Complications and Mortality Among Infants Undergoing Cardiac SurgeryThe DECISION Randomized Clinical Trial

Educational Objective
To understand the benefits and risks of corticosteroid therapy for infants undergoing cardiac surgery.
1 Credit CME
Key Points

Question  What is the effect of dexamethasone on complications and mortality in infants undergoing cardiac surgery?

Findings  In this randomized clinical trial that involved 394 infants, intraoperative administration of dexamethasone 1 mg/kg, compared with placebo, did not significantly reduce the primary composite end point of death, nonfatal myocardial infarction, need for extracorporeal membrane oxygenation, cardiopulmonary resuscitation, acute kidney injury, prolonged mechanical ventilation, or neurological complications (38.1% vs 45.5%, respectively; hazard ratio, 0.82).

Meaning  Among patients younger than 12 months undergoing cardiac surgery with cardiopulmonary bypass, intraoperative dexamethasone did not significantly reduce major complications and mortality compared with placebo.

Abstract

Importance  Corticosteroids are widely used in pediatric cardiac surgery to blunt systemic inflammatory response and to reduce complications; nevertheless, their clinical efficacy is uncertain.

Objective  To determine whether intraoperative administration of dexamethasone is more effective than placebo for reducing major complications and mortality during pediatric cardiac surgery.

Design, Setting, and Participants  The Intraoperative Dexamethasone in Pediatric Cardiac Surgery was an investigator-initiated, double-blind, multicenter randomized trial that involved 4 centers in China, Brazil, and Russia. A total of 394 infants younger than 12 months, undergoing cardiac surgery with cardiopulmonary bypass were enrolled from December 2015 to October 2018, with follow-up completed in November 2018.

Interventions  The dexamethasone group (n = 194) received 1 mg/kg of dexamethasone; the control group (n = 200) received an equivolume of 0.9% sodium chloride intravenously after anesthesia induction.

Main Outcomes and Measures  The primary end point was a composite of death, nonfatal myocardial infarction, need for extracorporeal membrane oxygenation, need for cardiopulmonary resuscitation, acute kidney injury, prolonged mechanical ventilation, or neurological complications within 30 days after surgery. There were 17 secondary end points, including the individual components of the primary end point, and duration of mechanical ventilation, inotropic index, intensive care unit stay, readmission to intensive care unit, and length of hospitalization.

Results  All of the 394 patients randomized (median age, 6 months; 47.2% boys) completed the trial. The primary end point occurred in 74 patients (38.1%) in the dexamethasone group vs 91 patients (45.5%) in the control group (absolute risk reduction, 7.4%; 95% CI, −0.8% to 15.3%; hazard ratio, 0.82; 95% CI, 0.60 to 1.10; P = .20). Of the 17 prespecified secondary end points, none showed a statistically significant difference between groups. Infections occurred in 4 patients (2.0%) in the dexamethasone group vs 3 patients (1.5%) in the control group.

Conclusions and Relevance  Among infants younger than 12 months undergoing cardiac surgery with cardiopulmonary bypass, intraoperative administration of dexamethasone, compared with placebo, did not significantly reduce major complications and mortality at 30 days. However, the study may have been underpowered to detect a clinically important difference.

Trial Registration  ClinicalTrials.gov Identifier: NCT02615262

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Corresponding Author: Dmitry Ponomarev, MD, PhD, MSc, E. N. Meshalkin National Medical Research Center, 15 Rechkunovskaya St, Novosibirsk 630055, Russian Federation (d_ponomarev@meshalkin.ru).

Accepted for Publication: April 30, 2020.

Author Contributions: Dr Ponomarev had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Lomivorotov, Kornilov, Boboshko, Shmyrev, Strunin, Bogachev-Prokophiev, Landoni, Renjie, Ponomarev.

Acquisition, analysis, or interpretation of data: Lomivorotov, Kornilov, Bondarenko, Soynov, Voytov, Polyanskih, Strunin, Landoni, Nigro Neto, Oliveira Nicolau, Saurith Izquierdo, Nogueira Nascimento, W. Zhang, H. Zhang, Bazylev, Evdokimov, Sulejmanov, Chernogrivov, Ponomarev.

Drafting of the manuscript: Lomivorotov, Kornilov, Boboshko, Bondarenko, Soynov, Voytov, Polyanskih, Strunin, Landoni, Saurith Izquierdo, Nogueira Nascimento, W. Zhang, Renjie, H. Zhang, Sulejmanov, Ponomarev.

Critical revision of the manuscript for important intellectual content: Lomivorotov, Kornilov, Shmyrev, Strunin, Bogachev-Prokophiev, Landoni, Nigro Neto, Oliveira Nicolau, Bazylev, Evdokimov, Chernogrivov, Ponomarev.

Statistical analysis: Lomivorotov, Soynov, Polyanskih, Strunin, Landoni, Nogueira Nascimento, Bazylev, Chernogrivov, Ponomarev.

Administrative, technical, or material support: Lomivorotov, Boboshko, Shmyrev, Soynov, Voytov, Strunin, Bogachev-Prokophiev, Oliveira Nicolau, Saurith Izquierdo, Renjie, H. Zhang, Evdokimov, Sulejmanov.

Supervision: Lomivorotov, Bogachev-Prokophiev, Landoni, H. Zhang, Bazylev, Chernogrivov, Ponomarev.

Conflict of Interest Disclosures: None reported.

Funding/Support: This research was supported by local institutional funding only.

Role of the Funder/Sponsor: E. N. Meshalkin National Medical Research Center established an independent data and safety monitoring board to monitor safety and had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Data Sharing Statement: See Supplement 3.

References
1.
Jacobs  ML , Jacobs  JP , Hill  KD ,  et al.  The Society of Thoracic Surgeons Congenital Heart Surgery Database: 2017 update on research.   Ann Thorac Surg. 2017;104(3):731-741. doi:10.1016/j.athoracsur.2017.07.001 PubMedGoogle ScholarCrossref
2.
Hickey  PA , Pasquali  SK , Gaynor  JW ,  et al.  Critical care nursing’s impact on pediatric patient outcomes.   Ann Thorac Surg. 2016;102(4):1375-1380. doi:10.1016/j.athoracsur.2016.03.019 PubMedGoogle ScholarCrossref
3.
Hill  KD , O’Brien  S , Baldwin  HS ,  et al.  Abstract 16573: overcoming underpowering: simulation study to evaluate an STS global rank endpoint for trials in congenital heart surgery.   Circulation. 2017;136(suppl 1):A16573-A16573.Google Scholar
4.
Brudney  CS , Gosling  P , Manji  M .  Pulmonary and renal function following cardiopulmonary bypass is associated with systemic capillary leak.   J Cardiothorac Vasc Anesth. 2005;19(2):188-192. doi:10.1053/j.jvca.2005.01.029 PubMedGoogle ScholarCrossref
5.
Neuhof  C , Walter  O , Dapper  F ,  et al.  Bradykinin and histamine generation with generalized enhancement of microvascular permeability in neonates, infants, and children undergoing cardiopulmonary bypass surgery.   Pediatr Crit Care Med. 2003;4(3):299-304. doi:10.1097/01.PCC.0000074264.13983.99 PubMedGoogle ScholarCrossref
6.
Pesonen  E , Keski-Nisula  J , Andersson  S , Palo  R , Salminen  J , Suominen  PK .  High-dose methylprednisolone and endothelial glycocalyx in paediatric heart surgery.   Acta Anaesthesiol Scand. 2016;60(10):1386-1394. doi:10.1111/aas.12785 PubMedGoogle ScholarCrossref
7.
Heying  R , Wehage  E , Schumacher  K ,  et al.  Dexamethasone pretreatment provides antiinflammatory and myocardial protection in neonatal arterial switch operation.   Ann Thorac Surg. 2012;93(3):869-876. doi:10.1016/j.athoracsur.2011.11.059 PubMedGoogle ScholarCrossref
8.
Bronicki  RA , Backer  CL , Baden  HP , Mavroudis  C , Crawford  SE , Green  TP .  Dexamethasone reduces the inflammatory response to cardiopulmonary bypass in children.   Ann Thorac Surg. 2000;69(5):1490-1495. doi:10.1016/S0003-4975(00)01082-1 PubMedGoogle ScholarCrossref
9.
Dieleman  JM , Nierich  AP , Rosseel  PM ,  et al; Dexamethasone for Cardiac Surgery (DECS) Study Group.  Intraoperative high-dose dexamethasone for cardiac surgery: a randomized controlled trial.   JAMA. 2012;308(17):1761-1767. doi:10.1001/jama.2012.14144 PubMedGoogle ScholarCrossref
10.
Whitlock  RP , Devereaux  PJ , Teoh  KH ,  et al; SIRS Investigators.  Methylprednisolone in patients undergoing cardiopulmonary bypass (SIRS): a randomised, double-blind, placebo-controlled trial.   Lancet. 2015;386(10000):1243-1253. doi:10.1016/S0140-6736(15)00273-1 PubMedGoogle ScholarCrossref
11.
Keski-Nisula  J , Pesonen  E , Olkkola  KT ,  et al.  Methylprednisolone in neonatal cardiac surgery: reduced inflammation without improved clinical outcome.   Ann Thorac Surg. 2013;95(6):2126-2132. doi:10.1016/j.athoracsur.2013.02.013 PubMedGoogle ScholarCrossref
12.
Pasquali  SK , Li  JS , He  X ,  et al.  Perioperative methylprednisolone and outcome in neonates undergoing heart surgery.   Pediatrics. 2012;129(2):e385-e391. doi:10.1542/peds.2011-2034 PubMedGoogle ScholarCrossref
13.
Roeleveld  PP , de Klerk  JCA .  The perspective of the intensivist on inotropes and postoperative care following pediatric heart surgery: an international survey and systematic review of the literature.   World J Pediatr Congenit Heart Surg. 2018;9(1):10-21. doi:10.1177/2150135117731725 PubMedGoogle ScholarCrossref
14.
Ponomarev  D , Boboshko  V , Shmyrev  V ,  et al.  Dexamethasone in pEdiatric Cardiac Surgery (DECiSion): Rationale and design of a randomized controlled trial.   Contemp Clin Trials. 2018;72:16-19. doi:10.1016/j.cct.2018.07.005 PubMedGoogle ScholarCrossref
15.
Broglio  K .  Randomization in clinical trials: permuted blocks and stratification.   JAMA. 2018;319(21):2223-2224. doi:10.1001/jama.2018.6360 PubMedGoogle ScholarCrossref
16.
Soler  YA , Nieves-Plaza  M , Prieto  M , García-De Jesús  R , Suárez-Rivera  M .  Pediatric Risk, Injury, Failure, Loss, End-Stage Renal Disease score identifies acute kidney injury and predicts mortality in critically ill children: a prospective study.   Pediatr Crit Care Med. 2013;14(4):e189-e195. doi:10.1097/PCC.0b013e3182745675 PubMedGoogle ScholarCrossref
17.
Goldstein  B , Giroir  B , Randolph  A ; International Consensus Conference on Pediatric Sepsis.  International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics.   Pediatr Crit Care Med. 2005;6(1):2-8. doi:10.1097/01.PCC.0000149131.72248.E6 PubMedGoogle ScholarCrossref
18.
Agarwal  HS , Wolfram  KB , Saville  BR , Donahue  BS , Bichell  DP .  Postoperative complications and association with outcomes in pediatric cardiac surgery.   J Thorac Cardiovasc Surg. 2014;148(2):609-16.e1. doi:10.1016/j.jtcvs.2013.10.031PubMedGoogle ScholarCrossref
19.
Tolles  J , Lewis  RJ .  Time-to-event analysis.   JAMA. 2016;315(10):1046-1047. doi:10.1001/jama.2016.1825 PubMedGoogle ScholarCrossref
20.
Jenkins  KJ , Gauvreau  K , Newburger  JW , Spray  TL , Moller  JH , Iezzoni  LI .  Consensus-based method for risk adjustment for surgery for congenital heart disease.   J Thorac Cardiovasc Surg. 2002;123(1):110-118. doi:10.1067/mtc.2002.119064 PubMedGoogle ScholarCrossref
21.
Graham  EM , Martin  RH , Buckley  JR ,  et al.  Corticosteroid therapy in neonates undergoing cardiopulmonary bypass: randomized controlled trial.   J Am Coll Cardiol. 2019;74(5):659-668. doi:10.1016/j.jacc.2019.05.060 PubMedGoogle ScholarCrossref
22.
Stiller  B , Sonntag  J , Dähnert  I ,  et al.  Capillary leak syndrome in children who undergo cardiopulmonary bypass: clinical outcome in comparison with complement activation and C1 inhibitor.   Intensive Care Med. 2001;27(1):193-200. doi:10.1007/s001340000704 PubMedGoogle ScholarCrossref
23.
Hirleman  E , Larson  DF .  Cardiopulmonary bypass and edema: physiology and pathophysiology.   Perfusion. 2008;23(6):311-322. doi:10.1177/0267659109105079 PubMedGoogle ScholarCrossref
24.
Bocsi  J , Hänzka  MC , Osmancik  P ,  et al.  Modulation of the cellular and humoral immune response to pediatric open heart surgery by methylprednisolone.   Cytometry B Clin Cytom. 2011;80(4):212-220. doi:10.1002/cyto.b.20587 PubMedGoogle ScholarCrossref
25.
Suominen  PK , Keski-Nisula  J , Ojala  T ,  et al.  Stress-dose corticosteroid versus placebo in neonatal cardiac operations: a randomized controlled trial.   Ann Thorac Surg. 2017;104(4):1378-1385. doi:10.1016/j.athoracsur.2017.01.111 PubMedGoogle ScholarCrossref
26.
Graham  EM , Atz  AM , Butts  RJ ,  et al.  Standardized preoperative corticosteroid treatment in neonates undergoing cardiac surgery: results from a randomized trial.   J Thorac Cardiovasc Surg. 2011;142(6):1523-1529. doi:10.1016/j.jtcvs.2011.04.019 PubMedGoogle ScholarCrossref
27.
Lindberg  L , Forsell  C , Jögi  P , Olsson  AK .  Effects of dexamethasone on clinical course, C-reactive protein, S100B protein and von Willebrand factor antigen after paediatric cardiac surgery.   Br J Anaesth. 2003;90(6):728-732. doi:10.1093/bja/aeg125 PubMedGoogle ScholarCrossref
28.
Schroeder  VA , Pearl  JM , Schwartz  SM , Shanley  TP , Manning  PB , Nelson  DP .  Combined steroid treatment for congenital heart surgery improves oxygen delivery and reduces postbypass inflammatory mediator expression.   Circulation. 2003;107(22):2823-2828. doi:10.1161/01.CIR.0000070955.55636.25 PubMedGoogle ScholarCrossref
29.
Pesonen  E , Keski-Nisula  J , Passov  A ,  et al.  Heart-type fatty acid binding protein and high-dose methylprednisolone in pediatric cardiac surgery.   J Cardiothorac Vasc Anesth. 2017;31(6):1952-1956. doi:10.1053/j.jvca.2017.05.013 PubMedGoogle ScholarCrossref
30.
Scrascia  G , Rotunno  C , Guida  P ,  et al.  Perioperative steroids administration in pediatric cardiac surgery: a meta-analysis of randomized controlled trials*.   Pediatr Crit Care Med. 2014;15(5):435-442. doi:10.1097/PCC.0000000000000128 PubMedGoogle ScholarCrossref
31.
Jafar  N , Edriss  H , Nugent  K .  The effect of short-term hyperglycemia on the innate immune system.   Am J Med Sci. 2016;351(2):201-211. doi:10.1016/j.amjms.2015.11.011 PubMedGoogle ScholarCrossref
32.
Kunst  G , Milojevic  M , Boer  C ,  et al; Authors/Task Force Members; EACTS/EACTA/EBCP Committee Reviewers.  2019 EACTS/EACTA/EBCP guidelines on cardiopulmonary bypass in adult cardiac surgery.   Br J Anaesth. 2019;123(6):713-757. doi:10.1016/j.bja.2019.09.012 PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close