Association of Central Noninvasive Brain Stimulation Interventions With Efficacy and Safety in Tinnitus Management: A Meta-analysis | Otolaryngology | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

Association of Central Noninvasive Brain Stimulation Interventions With Efficacy and Safety in Tinnitus ManagementA Meta-analysis

Educational Objective
To estimate the association between different central noninvasive brain stimulation interventions and relative efficacy and acceptability in patients with tinnitus.
1 Credit CME
Key Points

Question  Which noninvasive brain stimulation treatment was associated with the best efficacy and acceptability in tinnitus management?

Findings  In this meta-analysis of 32 unique studies including 1458 unique participants, the cathodal transcranial direct current stimulation over the left dorsolateral prefrontal cortex combined with transcranial random noise stimulation over the bilateral auditory cortex was associated with the greatest improvement in both tinnitus severity and quality of life. Continuous theta-burst stimulation over both auditory cortices ranked more favorably than that over the left auditory cortex only.

Meaning  Regarding the efficacy and acceptability for tinnitus treatment, these findings suggest that the cathodal transcranial direct current stimulation over the left dorsolateral prefrontal cortex combined with transcranial random noise stimulation over the bilateral auditory cortex is preferable.

Abstract

Importance  Tinnitus has a prevalence of 10% to 25% and is frequently associated with numerous complications, such as neuropsychiatric disease. Traditional treatments have failed to meet the needs of patients with tinnitus. Noninvasive brain stimulation (NIBS) can focally modify cortical functioning and has been proposed as a strategy for reducing tinnitus severity. However, the results have been inconclusive.

Objective  To evaluate the association between different central NIBS therapies and efficacy and acceptability for treatment of tinnitus.

Data Sources  ClinicalKey, Cochrane CENTRAL, Embase, ProQuest, PubMed, ScienceDirect, and Web of Science databases were searched from inception to August 4, 2019. No language restriction was applied. Manual searches were performed for potentially eligible articles selected from the reference lists of review articles and pairwise meta-analyses.

Study Selection  Randomized clinical trials (RCTs) examining the central NIBS method used in patients with unilateral or bilateral tinnitus were included in the current network meta-analysis. The central NIBS method was compared with sham, waiting list, or active controls. Studies that were not clinical trials or RCTs and did not report the outcome of interest were excluded.

Data Extraction and Synthesis  Two authors independently screened the studies, extracted the relevant information, and evaluated the risk of bias in the included studies. In cases of discrepancy, a third author became involved. If manuscript data were not available, the corresponding authors or coauthors were approached to obtain the original data. This network meta-analysis was based on the frequentist model.

Main Outcomes and Measures  The primary outcome was change in the severity of tinnitus. Secondary outcomes were changes in quality of life and the response rate related to the NIBS method in patients with tinnitus.

Results  Overall, 32 unique RCTs were included with 1458 unique participants (mean female proportion, 34.4% [range, 0%-81.2%]; mean age, 49.6 [range, 40.0-62.8] years; median age, 49.8 [interquartile range, 48.1-52.4] years). The results of the network meta-analysis revealed that cathodal transcranial direct current stimulation over the left dorsolateral prefrontal cortex combined with transcranial random noise stimulation over the bilateral auditory cortex was associated with the greatest improvement in tinnitus severity (standardized mean difference [SMD], –1.89; 95% CI, –3.00 to –0.78) and quality of life (SMD, –1.24; 95% CI, –2.02 to –0.45) compared with the controls. Improvement in tinnitus severity ranked more favorably for continuous theta-burst stimulation (cTBS) over both auditory cortices (SMD, −0.79; 95% CI = −1.57 to −0.01) than cTBS over only the left auditory cortex (SMD, −0.30; 95% CI, −0.87 to 0.28), compared with controls. Repetitive transcranial magnetic stimulation with priming had a superior beneficial association with tinnitus severity compared with the strategies without priming. None of the investigated NIBS types had a significantly different dropout rate compared with that of the control group.

Conclusions and Relevance  This network meta-analysis suggests a potential role of NIBS interventions in tinnitus management. Future large-scale RCTs focusing on longer follow-up and different priming procedure NIBS are warranted to confirm these findings.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: May 5, 2020.

Corresponding Authors: Ping-Tao Tseng, MD, Prospect Clinic for Otorhinolaryngology and Neurology, No. 252, Nanzixin Road, Nanzi District, Kaohsiung City 81166, Taiwan (ducktseng@gmail.com), and Cheng-Ta Li, MD, PhD, Division of Community and Rehabilitation Psychiatry, Department of Psychiatry, Taipei Veterans General Hospital, Taiwan, No. 201, Section 2, Shipai Road, Beitou District, Taipei City 11267, Taiwan (on5083@msn.com).

Published Online: July 9, 2020. doi:10.1001/jamaoto.2020.1497

Author Contributions: Drs J.-J. Chen and Zeng contributed equally as co–first authors, Drs Y-W Chen and Tseng had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: J.-J. Chen, Zeng, C.-N. Wu, Su, Tu, T.-Y. Chen, Liang, C.-W. Hsu, S.-P. Hsu, Kuo, Y.-W. Chen, Tseng.

Acquisition, analysis, or interpretation of data: J.-J. Chen, Zeng, Stubbs, Carvalho, Brunoni, Tu, Y.-C. Wu, T.-Y. Chen, Lin, Liang, Tseng, Li.

Drafting of the manuscript: J.-J. Chen, Zeng, Stubbs, Carvalho, Tu.

Critical revision of the manuscript for important intellectual content: C.-N. Wu, Stubbs, Carvalho, Brunoni, Su, Tu, Y.-C. Wu, T.-Y. Chen, Lin, Liang, C.-W. Hsu, S.-P. Hsu, Kuo, Y.-W. Chen, Tseng, Li.

Statistical analysis: J.-J. Chen, Carvalho, Tu, Liang, Y.-W. Chen, Tseng, Li.

Administrative, technical, or material support: J.-J. Chen, Zeng, Stubbs, T.-Y. Chen, Kuo, Tseng, Li.

Supervision: Stubbs, Brunoni, Su, Tu, Y.-C. Wu, Tseng, Li.

Conflict of Interest Disclosures: Dr Brunoni reported receiving academic support in the form of financial fees, outside the submitted work, from the University of Sao Paulo Medical School and the National Council for Scientific and Technological Development, and being a medical adviser for Flow Neuroscience with a small equity of the company (he receives no personal fees from the company). No other disclosures were reported.

Funding/Support: This study was supported by Clinical Lectureship ICA-CL-2017-03-001 jointly funded by Health Education England and the National Institute for Health Research (NIHR) (Dr Stubbs); the NIHR Biomedical Research Centre at South London and Maudsley NHS (National Health Service) Foundation Trust (Dr Stubbs); Maudsley Charity, King’s College London and the NIHR South London Collaboration for Leadership in Applied Health Research and Care funding (Dr Stubbs); grants MOST 106-2314-B-039-027-MY3, 107-2314-B-039-005, 108-2320-B-039-048, and 108-2314-B-039-016 from the Ministry of Science and Technology, Taiwan (Dr Su); grants DMR-107-091, DRM-108-091, CRS-108-048, CMU108-SR-106, DMR-108-216, CMRC-CMA-3, and DMR-109-102 from the Chinese Medicine Research Center from the China Medical University, Taiwan (Dr Su); grants MOST 106-2314-B-182A-085-MY2 and MOST 105-2314-B-182A-057 from the Ministry of Science and Technology, Taiwan (Dr Lin); grants CMRPG8F1371 and CMRPG8E1061F from Kaohsiung Chang Gung Memorial Hospital, Taiwan (Dr Lin); grant 106-2314-B-002-098-MY3 from the Ministry of Science and Technology, Taiwan (Dr Tu); grant MOST 108-2321-B-075-004-MY2) from the Ministry of Science and Technology; and grant 108BRC-B502 from the Brain Research Center within the framework of the Higher Education Sprout Project by the Ministry of Education in Taiwan (National Yang-Ming University from The Featured Areas Research Center Program).

Role of the Funder/Sponsor: The sponsors had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Disclaimer: The views expressed in this publication are those of the authors and not necessarily those of the acknowledged institutions.

Additional Contributions: This article was edited by Wallace Academic Editing. The work was not funded by any source of funding.

References
1.
Bauer  CA .  Tinnitus.   N Engl J Med. 2018;378(13):1224-1231. doi:10.1056/NEJMcp1506631 PubMedGoogle ScholarCrossref
2.
Panov  F , Kopell  BH .  Use of cortical stimulation in neuropathic pain, tinnitus, depression, and movement disorders.   Neurotherapeutics. 2014;11(3):564-571. doi:10.1007/s13311-014-0283-0 PubMedGoogle ScholarCrossref
3.
Eggermont  JJ , Roberts  LE .  The neuroscience of tinnitus.   Trends Neurosci. 2004;27(11):676-682. doi:10.1016/j.tins.2004.08.010 PubMedGoogle ScholarCrossref
4.
Weisz  N , Müller  S , Schlee  W , Dohrmann  K , Hartmann  T , Elbert  T .  The neural code of auditory phantom perception.   J Neurosci. 2007;27(6):1479-1484. doi:10.1523/JNEUROSCI.3711-06.2007 PubMedGoogle ScholarCrossref
5.
Vanneste  S , Plazier  M , der Loo  Ev , de Heyning  PV , Congedo  M , De Ridder  D .  The neural correlates of tinnitus-related distress.   Neuroimage. 2010;52(2):470-480. doi:10.1016/j.neuroimage.2010.04.029 PubMedGoogle ScholarCrossref
6.
De Ridder  D , De Mulder  G , Walsh  V , Muggleton  N , Sunaert  S , Møller  A .  Magnetic and electrical stimulation of the auditory cortex for intractable tinnitus: case report.   J Neurosurg. 2004;100(3):560-564. doi:10.3171/jns.2004.100.3.0560 PubMedGoogle ScholarCrossref
7.
Formánek  M , Migaľová  P , Krulová  P ,  et al.  Combined transcranial magnetic stimulation in the treatment of chronic tinnitus.   Ann Clin Transl Neurol. 2018;5(7):857-864. doi:10.1002/acn3.587 PubMedGoogle ScholarCrossref
8.
Forogh  B , Yazdi-Bahri  SM , Ahadi  T , Fereshtehnejad  SM , Raissi  GR .  Comparison of two protocols of transcranial magnetic stimulation for treatment of chronic tinnitus: a randomized controlled clinical trial of burst repetitive versus high-frequency repetitive transcranial magnetic stimulation.   Neurol Sci. 2014;35(2):227-232. doi:10.1007/s10072-013-1487-5 PubMedGoogle ScholarCrossref
9.
Lorenz  I , Müller  N , Schlee  W , Langguth  B , Weisz  N .  Short-term effects of single repetitive TMS sessions on auditory evoked activity in patients with chronic tinnitus.   J Neurophysiol. 2010;104(3):1497-1505. doi:10.1152/jn.00370.2010 PubMedGoogle ScholarCrossref
10.
Faber  M , Vanneste  S , Fregni  F , De Ridder  D .  Top down prefrontal affective modulation of tinnitus with multiple sessions of tDCS of dorsolateral prefrontal cortex.   Brain Stimul. 2012;5(4):492-498. doi:10.1016/j.brs.2011.09.003 PubMedGoogle ScholarCrossref
11.
To  WT , Ost  J , Hart  J  Jr , De Ridder  D , Vanneste  S .  The added value of auditory cortex transcranial random noise stimulation (tRNS) after bifrontal transcranial direct current stimulation (tDCS) for tinnitus.   J Neural Transm (Vienna). 2017;124(1):79-88. doi:10.1007/s00702-016-1634-2 PubMedGoogle ScholarCrossref
12.
Milev  RV , Giacobbe  P , Kennedy  SH ,  et al; CANMAT Depression Work Group.  Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 clinical guidelines for the management of adults with major depressive disorder: section 4, neurostimulation treatments.   Can J Psychiatry. 2016;61(9):561-575. doi:10.1177/0706743716660033 PubMedGoogle ScholarCrossref
13.
Horvath  JC , Carter  O , Forte  JD .  Transcranial direct current stimulation: five important issues we aren’t discussing (but probably should be).   Front Syst Neurosci. 2014;8:2. doi:10.3389/fnsys.2014.00002 PubMedGoogle ScholarCrossref
14.
Hoare  DJ , Adjamian  P , Sereda  M .  Electrical stimulation of the ear, head, cranial nerve, or cortex for the treatment of tinnitus: a scoping review.   Neural Plast. 2016;2016:5130503. doi:10.1155/2016/5130503 PubMedGoogle Scholar
15.
Song  JJ , Vanneste  S , Van de Heyning  P , De Ridder  D .  Transcranial direct current stimulation in tinnitus patients: a systemic review and meta-analysis.   ScientificWorldJournal. 2012;2012:427941. doi:10.1100/2012/427941 PubMedGoogle Scholar
16.
Soleimani  R , Jalali  MM , Hasandokht  T .  Therapeutic impact of repetitive transcranial magnetic stimulation (rTMS) on tinnitus: a systematic review and meta-analysis.   Eur Arch Otorhinolaryngol. 2016;273(7):1663-1675. doi:10.1007/s00405-015-3642-5 PubMedGoogle ScholarCrossref
17.
Kreuzer  PM , Lehner  A , Schlee  W ,  et al.  Combined rTMS treatment targeting the anterior cingulate and the temporal cortex for the treatment of chronic tinnitus.   Sci Rep. 2015;5:18028. doi:10.1038/srep18028 PubMedGoogle ScholarCrossref
18.
Meng  Z , Liu  S , Zheng  Y , Phillips  JS .  Repetitive transcranial magnetic stimulation for tinnitus.   Cochrane Database Syst Rev. 2011;(10):CD007946.PubMedGoogle Scholar
19.
Higgins  JP , Welton  NJ .  Network meta-analysis: a norm for comparative effectiveness?   Lancet. 2015;386(9994):628-630. doi:10.1016/S0140-6736(15)61478-7 PubMedGoogle ScholarCrossref
20.
Hsieh  MT , Tseng  PT , Wu  YC ,  et al.  Effects of different pharmacologic smoking cessation treatments on body weight changes and success rates in patients with nicotine dependence: a network meta-analysis.   Obes Rev. 2019;20(6):895-905. doi:10.1111/obr.12835 PubMedGoogle ScholarCrossref
21.
Tu  YK , Faggion  CM  Jr .  A primer on network meta-analysis for dental research.   ISRN Dent. 2012;2012:276520. doi:10.5402/2012/276520 PubMedGoogle Scholar
22.
Wu  YC , Tseng  PT , Tu  YK ,  et al.  Association of delirium response and safety of pharmacological interventions for the management and prevention of delirium: a network meta-analysis.   JAMA Psychiatry. 2019;76(5):526-535. doi:10.1001/jamapsychiatry.2018.4365 PubMedGoogle ScholarCrossref
23.
Zeng  BS , Lin  SY , Tu  YK ,  et al.  Prevention of postdental procedure bacteremia: a network meta-analysis.   J Dent Res. 2019;98(11):1204-1210. doi:10.1177/0022034519870466 PubMedGoogle ScholarCrossref
24.
Huang  SW , Tsai  CY , Tseng  CS ,  et al.  Comparative efficacy and safety of new surgical treatments for benign prostatic hyperplasia: systematic review and network meta-analysis.   BMJ. 2019;367:5919. doi:10.1136/bmj.l5919 PubMedGoogle ScholarCrossref
25.
Yang  CP , Tseng  PT , Pei-Chen Chang  J , Su  H , Satyanarayanan  SK , Su  KP .  Melatonergic agents in the prevention of delirium: a network meta-analysis of randomized controlled trials.   Sleep Med Rev. 2020;50:101235. doi:10.1016/j.smrv.2019.101235 PubMedGoogle Scholar
26.
Tseng  PT , Yang  CP , Su  KP ,  et al.  The association between melatonin and episodic migraine: a pilot network meta-analysis of randomized controlled trials to compare the prophylactic effects with exogenous melatonin supplementation and pharmacotherapy.   J Pineal Res. Published online April 29, 2020.PubMedGoogle Scholar
27.
Higgins  JGS .  Cochrane Handbook for Systematic Reviews of Interventions Version 5.0.2. The Cochrane Collaboration; 2009.
28.
Tu  YK .  Use of generalized linear mixed models for network meta-analysis.   Med Decis Making. 2014;34(7):911-918. doi:10.1177/0272989X14545789 PubMedGoogle ScholarCrossref
29.
Liu  Y , Wang  W , Zhang  AB , Bai  X , Zhang  S .  Epley and Semont maneuvers for posterior canal benign paroxysmal positional vertigo: A network meta-analysis.   Laryngoscope. 2016;126(4):951-955. doi:10.1002/lary.25688PubMedGoogle ScholarCrossref
30.
Salanti  G , Ades  AE , Ioannidis  JP .  Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial.   J Clin Epidemiol. 2011;64(2):163-171. doi:10.1016/j.jclinepi.2010.03.016 PubMedGoogle ScholarCrossref
31.
Higgins  JP , Del Giovane  C , Chaimani  A , Caldwell  DM , Salanti  G .  Evaluating the quality of evidence from a network meta-analysis.   Value Health. 2014;17(7):A324. doi:10.1016/j.jval.2014.08.572 PubMedGoogle ScholarCrossref
32.
Anders  M , Dvorakova  J , Rathova  L ,  et al.  Efficacy of repetitive transcranial magnetic stimulation for the treatment of refractory chronic tinnitus: a randomized, placebo controlled study.   Neuro Endocrinol Lett. 2010;31(2):238-249.PubMedGoogle Scholar
33.
Bilici  S , Yigit  O , Taskin  U , Gor  AP , Yilmaz  ED .  Medium-term results of combined treatment with transcranial magnetic stimulation and antidepressant drug for chronic tinnitus.   Eur Arch Otorhinolaryngol. 2015;272(2):337-343. doi:10.1007/s00405-013-2851-zPubMedGoogle ScholarCrossref
34.
Chung  HK , Tsai  CH , Lin  YC ,  et al.  Effectiveness of theta-burst repetitive transcranial magnetic stimulation for treating chronic tinnitus.   Audiol Neurootol. 2012;17(2):112-120. doi:10.1159/000330882PubMedGoogle ScholarCrossref
35.
Folmer  RL , Theodoroff  SM , Casiana  L , Shi  Y , Griest  S , Vachhani  J .  Repetitive transcranial magnetic stimulation treatment for chronic tinnitus: a randomized clinical trial.   JAMA Otolaryngol Head Neck Surg. 2015;141(8):716-722. doi:10.1001/jamaoto.2015.1219PubMedGoogle ScholarCrossref
36.
Forogh  B , Mirshaki  Z , Raissi  GR , Shirazi  A , Mansoori  K , Ahadi  T .  Repeated sessions of transcranial direct current stimulation for treatment of chronic subjective tinnitus: a pilot randomized controlled trial.   Neurol Sci. 2016;37(2):253-259. doi:10.1007/s10072-015-2393-9PubMedGoogle ScholarCrossref
37.
Hoekstra  CE , Versnel  H , Neggers  SF , Niesten  ME , van Zanten  GA .  Bilateral low-frequency repetitive transcranial magnetic stimulation of the auditory cortex in tinnitus patients is not effective: a randomised controlled trial.   Audiol Neurootol. 2013;18(6):362-373. doi:10.1159/000354977PubMedGoogle ScholarCrossref
38.
James  GA , Thostenson  JD , Brown  G ,  et al.  Neural activity during attentional conflict predicts reduction in tinnitus perception following rTMS.   Brain Stimul. 2017;10(5):934-943. doi:10.1016/j.brs.2017.05.009PubMedGoogle ScholarCrossref
39.
Khedr  EM , Rothwell  JC , Ahmed  MA , El-Atar  A .  Effect of daily repetitive transcranial magnetic stimulation for treatment of tinnitus: comparison of different stimulus frequencies.   J Neurol Neurosurg Psychiatry. 2008;79(2):212-215. doi:10.1136/jnnp.2007.127712PubMedGoogle ScholarCrossref
40.
Kreuzer  PM , Landgrebe  M , Schecklmann  M ,  et al.  Can temporal repetitive transcranial magnetic stimulation be enhanced by targeting affective components of tinnitus with frontal rTMS? a randomized controlled pilot trial.   Front Syst Neurosci. 2011;5:88. doi:10.3389/fnsys.2011.00088PubMedGoogle ScholarCrossref
41.
Kyong  JS , Noh  TS , Park  MK , Oh  SH , Lee  JH , Suh  MW .  Phantom perception of sound and the abnormal cortical inhibition system: an electroencephalography (EEG) study.   Ann Otol Rhinol Laryngol. 2019;128(6_suppl):84S-95S. doi:10.1177/0003489419837990Google Scholar
42.
Landgrebe  M , Hajak  G , Wolf  S ,  et al.  1-Hz rTMS in the treatment of tinnitus: A sham-controlled, randomized multicenter trial.   Brain Stimul. 2017;10(6):1112-1120. doi:10.1016/j.brs.2017.08.001PubMedGoogle ScholarCrossref
43.
Langguth  B , Kleinjung  T , Frank  E ,  et al.  High-frequency priming stimulation does not enhance the effect of low-frequency rTMS in the treatment of tinnitus.   Exp Brain Res. 2008;184(4):587-591. doi:10.1007/s00221-007-1228-1PubMedGoogle ScholarCrossref
44.
Langguth  B , Landgrebe  M , Frank  E ,  et al.  Efficacy of different protocols of transcranial magnetic stimulation for the treatment of tinnitus: Pooled analysis of two randomized controlled studies.   World J Biol Psychiatry. 2014;15(4):276-285. doi:10.3109/15622975.2012.708438PubMedGoogle ScholarCrossref
45.
Lehner  A , Schecklmann  M , Greenlee  MW , Rupprecht  R , Langguth  B .  Triple-site rTMS for the treatment of chronic tinnitus: a randomized controlled trial.   Sci Rep. 2016;6:22302. doi:10.1038/srep22302 PubMedGoogle ScholarCrossref
46.
Marcondes  RA , Sanchez  TG , Kii  MA ,  et al.  Repetitive transcranial magnetic stimulation improve tinnitus in normal hearing patients: a double-blind controlled, clinical and neuroimaging outcome study.   Eur J Neurol. 2010;17(1):38-44. doi:10.1111/j.1468-1331.2009.02730.xPubMedGoogle ScholarCrossref
47.
Noh  TS , Kyong  JS , Chang  MY ,  et al.  Comparison of treatment outcomes following either prefrontal cortical-only or dual-site repetitive transcranial magnetic stimulation in chronic tinnitus patients: a double-blind randomized study.   Otol Neurotol. 2017;38(2):296-303.PubMedGoogle Scholar
48.
Pal  N , Maire  R , Stephan  MA , Herrmann  FR , Benninger  DH .  Transcranial direct current stimulation for the treatment of chronic tinnitus: a randomized controlled study.   Brain Stimul. 2015;8(6):1101-1107. doi:10.1016/j.brs.2015.06.014PubMedGoogle ScholarCrossref
49.
Piccirillo  JF , Garcia  KS , Nicklaus  J ,  et al.  Low-frequency repetitive transcranial magnetic stimulation to the temporoparietal junction for tinnitus.   Arch Otolaryngol Head Neck Surg. 2011;137(3):221-228. doi:10.1001/archoto.2011.3PubMedGoogle ScholarCrossref
50.
Piccirillo  JF , Kallogjeri  D , Nicklaus  J ,  et al.  Low-frequency repetitive transcranial magnetic stimulation to the temporoparietal junction for tinnitus: four-week stimulation trial.   JAMA Otolaryngol Head Neck Surg. 2013;139(4):388-395. doi:10.1001/jamaoto.2013.233PubMedGoogle ScholarCrossref
51.
Plewnia  C , Reimold  M , Najib  A , Reischl  G , Plontke  SK , Gerloff  C .  Moderate therapeutic efficacy of positron emission tomography-navigated repetitive transcranial magnetic stimulation for chronic tinnitus: a randomised, controlled pilot study.   J Neurol Neurosurg Psychiatry. 2007;78(2):152-156. doi:10.1136/jnnp.2006.095612PubMedGoogle ScholarCrossref
52.
Plewnia  C , Vonthein  R , Wasserka  B ,  et al.  Treatment of chronic tinnitus with θ burst stimulation: a randomized controlled trial.   Neurology. 2012;78(21):1628-1634. doi:10.1212/WNL.0b013e3182574ef9 PubMedGoogle ScholarCrossref
53.
Rossi  S , De Capua  A , Ulivelli  M ,  et al.  Effects of repetitive transcranial magnetic stimulation on chronic tinnitus: a randomised, crossover, double blind, placebo controlled study.   J Neurol Neurosurg Psychiatry. 2007;78(8):857-863. doi:10.1136/jnnp.2006.105007PubMedGoogle ScholarCrossref
54.
Sahlsten  H , Virtanen  J , Joutsa  J ,  et al.  Electric field-navigated transcranial magnetic stimulation for chronic tinnitus: a randomized, placebo-controlled study.   Int J Audiol. 2017;56(9):692-700. doi:10.1080/14992027.2017.1313461PubMedGoogle ScholarCrossref
55.
Schecklmann  M , Giani  A , Tupak  S ,  et al.  Neuronavigated left temporal continuous theta burst stimulation in chronic tinnitus.   Restor Neurol Neurosci. 2016;34(2):165-175. doi:10.3233/RNN-150518PubMedGoogle Scholar
56.
Smith  JA , Mennemeier  M , Bartel  T ,  et al.  Repetitive transcranial magnetic stimulation for tinnitus: a pilot study.   Laryngoscope. 2007;117(3):529-534. doi:10.1097/MLG.0b013e31802f4154PubMedGoogle ScholarCrossref
57.
Yilmaz  M , Yener  MH , Turgut  NF , Aydin  F , Altug  T .  Effectiveness of transcranial magnetic stimulation application in treatment of tinnitus.   J Craniofac Surg. 2014;25(4):1315-1318. doi:10.1097/SCS.0000000000000782PubMedGoogle ScholarCrossref
58.
Van Doren  J , Langguth  B , Schecklmann  M .  Electroencephalographic effects of transcranial random noise stimulation in the auditory cortex.   Brain Stimul. 2014;7(6):807-812. doi:10.1016/j.brs.2014.08.007 PubMedGoogle ScholarCrossref
59.
Vanneste  S , Fregni  F , De Ridder  D .  Head-to-head comparison of transcranial random noise stimulation, transcranial AC stimulation, and transcranial DC stimulation for tinnitus.   Front Psychiatry. 2013;4:158. doi:10.3389/fpsyt.2013.00158 PubMedGoogle ScholarCrossref
60.
Lang  N , Siebner  HR , Ernst  D ,  et al.  Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects.   Biol Psychiatry. 2004;56(9):634-639. doi:10.1016/j.biopsych.2004.07.017 PubMedGoogle ScholarCrossref
61.
Vanneste  S , De Ridder  D .  Bifrontal transcranial direct current stimulation modulates tinnitus intensity and tinnitus-distress-related brain activity.   Eur J Neurosci. 2011;34(4):605-614. doi:10.1111/j.1460-9568.2011.07778.x PubMedGoogle ScholarCrossref
62.
Meeus  O , Blaivie  C , Ost  J , De Ridder  D , Van de Heyning  P .  Influence of tonic and burst transcranial magnetic stimulation characteristics on acute inhibition of subjective tinnitus.   Otol Neurotol. 2009;30(6):697-703. doi:10.1097/MAO.0b013e3181b05023 PubMedGoogle ScholarCrossref
63.
De Ridder  D , van der Loo  E , Van der Kelen  K , Menovsky  T , van de Heyning  P , Moller  A .  Do tonic and burst TMS modulate the lemniscal and extralemniscal system differentially?   Int J Med Sci. 2007;4(5):242-246. doi:10.7150/ijms.4.242 PubMedGoogle ScholarCrossref
64.
Poreisz  C , Paulus  W , Moser  T , Lang  N .  Does a single session of theta-burst transcranial magnetic stimulation of inferior temporal cortex affect tinnitus perception?   BMC Neurosci. 2009;10:54. doi:10.1186/1471-2202-10-54 PubMedGoogle ScholarCrossref
65.
Kleinjung  T , Eichhammer  P , Landgrebe  M ,  et al.  Combined temporal and prefrontal transcranial magnetic stimulation for tinnitus treatment: a pilot study.   Otolaryngol Head Neck Surg. 2008;138(4):497-501. doi:10.1016/j.otohns.2007.12.022 PubMedGoogle ScholarCrossref
66.
Lehner  A , Schecklmann  M , Poeppl  TB ,  et al.  Multisite rTMS for the treatment of chronic tinnitus: stimulation of the cortical tinnitus network—a pilot study.   Brain Topogr. 2013;26(3):501-510. doi:10.1007/s10548-012-0268-4 PubMedGoogle ScholarCrossref
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close