[Skip to Content]
[Skip to Content Landing]

Benefits and Risks of Bariatric Surgery in AdultsA Review

Educational Objective
To review the benefits and risks of bariatric surgery.
1 Credit CME
Abstract

Importance  Severe obesity and its related diseases, such as type 2 diabetes, hypertension, dyslipidemia, and sleep apnea, are very common in the United States, but currently very few patients with these conditions choose to undergo bariatric surgery. Summaries of the expanding evidence for both the benefits and risks of bariatric surgery are needed to better guide shared decision-making conversations.

Observations  There are approximately 252 000 bariatric procedures (per 2018 numbers) performed each year in the US, of which an estimated 15% are revisions. The 1991 National Institutes of Health guidelines recommended consideration of bariatric surgery in patients with a body mass index (calculated as weight in kilograms divided by height in meters squared) of 40 or higher or 35 or higher with serious obesity-related comorbidities. These guidelines are still widely used; however, there is increasing evidence that bariatric procedures should also be considered for patients with type 2 diabetes and a body mass index of 30 to 35 if hyperglycemia is inadequately controlled despite optimal medical treatment for type 2 diabetes. Substantial evidence indicates that surgery results in greater improvements in weight loss and type 2 diabetes outcomes, compared with nonsurgical interventions, regardless of the type of procedures used. The 2 most common procedures used currently, the sleeve gastrectomy and gastric bypass, have similar effects on weight loss and diabetes outcomes and similar safety through at least 5-year follow-up. However, emerging evidence suggests that the sleeve procedure is associated with fewer reoperations, and the bypass procedure may lead to more durable weight loss and glycemic control. Although safety is a concern, current data indicate that the perioperative mortality rates range from 0.03% to 0.2%, which has substantially improved since early 2000s. More long-term randomized studies are needed to assess the effect of bariatric procedures on cardiovascular disease, cancer, and other health outcomes and to evaluate emerging newer procedures.

Conclusions and Relevance  Modern bariatric procedures have strong evidence of efficacy and safety. All patients with severe obesity—and especially those with type 2 diabetes—should be engaged in a shared decision-making conversation about the risks and benefits of surgery compared with continuing usual medical and lifestyle treatment, and the decision about surgery should be driven primarily by informed patient preferences.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: June 26, 2020.

Corresponding Author: David Arterburn, MD, MPH, Kaiser Permanente Washington Health Research Institute, 1730 Minor Ave, Ste 1600, Seattle, WA 98101 (david.e.arterburn@kp.org).

Author Contributions: Dr Arterburn had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Arterburn.

Acquisition, analysis, or interpretation of data: Telem, Kushner, Courcoulas.

Drafting of the manuscript: Arterburn, Telem, Kushner.

Critical revision of the manuscript for important intellectual content: Telem, Courcoulas.

Administrative, technical, or material support: Courcoulas.

Supervision: Arterburn, Telem.

Conflict of Interest Disclosures: Dr Arterburn reported grants from the National Institutes of Health during the conduct of the study; and grants from the Patient-Centered Outcomes Research Institute and nonfinancial support from International Federation for the Surgery of Obesity and Metabolic Disorders Latin American Chapter outside the submitted work. Dr Telem reported grants from the National Institutes of Health during the conduct of the study; and grants from the Agency for Healthcare Research and Quality and from Medtronic outside the submitted work. Dr Courcoulas reported grants from Allurion and Covidien/Ethicon outside the submitted work. No other disclosures were reported.

Funding/Support: Drs Arterburn and Courcoulas were funded by a grant from the National Institute for Diabetes and Digestive and Kidney Diseases (R01 DK105960). Drs Telem and Arterburn were funded by a grant from the National Institute for Diabetes and Digestive and Kidney Diseases (R01 DK115408).

Role of the Funder/Sponsor: The National Institute for Diabetes and Digestive and Kidney Diseases had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

References
1.
Horecki Lopez  EK , Helm  MC , Gould  JC , Lak  KL .  Primary care providers’ attitudes and knowledge of bariatric surgery.   Surg Endosc. 2020;34(5):2273-2278. doi:10.1007/s00464-019-07018-zPubMedGoogle ScholarCrossref
2.
American Society for Metablolic and Bariatric Surgery.  Estimate of bariatric surgery numbers, 2011-2018. Accessed August 10, 2020. https://asmbs.org/resources/estimate-of-bariatric-surgery-numbers
3.
Campos  GM , Khoraki  J , Browning  MG , Pessoa  BM , Mazzini  GS , Wolfe  L .  Changes in utilization of bariatric surgery in the United States from 1993 to 2016.   Ann Surg. 2020;271(2):201-209. doi:10.1097/SLA.0000000000003554PubMedGoogle ScholarCrossref
4.
Consensus Development Conference Panel.  NIH conference: gastrointestinal surgery for severe obesity.   Ann Intern Med. 1991;115(12):956-961. doi:10.7326/0003-4819-115-12-956PubMedGoogle ScholarCrossref
5.
Rubino  F , Nathan  DM , Eckel  RH ,  et al; Delegates of the 2nd Diabetes Surgery Summit.  Metabolic surgery in the treatment algorithm for type 2 diabetes: a joint statement by international diabetes organizations.   Diabetes Care. 2016;39(6):861-877. doi:10.2337/dc16-0236PubMedGoogle ScholarCrossref
6.
Society of American Gastrointestinal and Endoscopic Surgeons.  Guidelines for clinical application of laparoscopic bariatric surgery. June 2008. Accessed August 8, 2020. https://www.sages.org/publications/guidelines/guidelines-for-clinical-application-of-laparoscopic-bariatric-surgery/
7.
Dixon  JB , O’Brien  PE , Playfair  J ,  et al.  Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial.   JAMA. 2008;299(3):316-323. doi:10.1001/jama.299.3.316PubMedGoogle ScholarCrossref
8.
Wentworth  JM , Playfair  J , Laurie  C ,  et al.  Multidisciplinary diabetes care with and without bariatric surgery in overweight people: a randomised controlled trial.   Lancet Diabetes Endocrinol. 2014;2(7):545-552. doi:10.1016/S2213-8587(14)70066-XPubMedGoogle ScholarCrossref
9.
Ding  SA , Simonson  DC , Wewalka  M ,  et al.  Adjustable gastric band surgery or medical management in patients with type 2 diabetes: a randomized clinical trial.   J Clin Endocrinol Metab. 2015;100(7):2546-2556. doi:10.1210/jc.2015-1443PubMedGoogle ScholarCrossref
10.
Ikramuddin  S , Korner  J , Lee  WJ ,  et al.  Lifestyle intervention and medical management with vs without Roux-en-Y gastric bypass and control of hemoglobin A1c, LDL cholesterol, and systolic blood pressure at 5 years in the Diabetes Surgery Study.   JAMA. 2018;319(3):266-278. doi:10.1001/jama.2017.20813PubMedGoogle ScholarCrossref
11.
Liang  Z , Wu  Q , Chen  B , Yu  P , Zhao  H , Ouyang  X .  Effect of laparoscopic Roux-en-Y gastric bypass surgery on type 2 diabetes mellitus with hypertension: a randomized controlled trial.   Diabetes Res Clin Pract. 2013;101(1):50-56. doi:10.1016/j.diabres.2013.04.005PubMedGoogle ScholarCrossref
12.
Simonson  DC , Halperin  F , Foster  K , Vernon  A , Goldfine  AB .  Clinical and patient-centered outcomes in obese patients with type 2 diabetes 3 years after randomization to Roux-en-Y gastric bypass surgery versus intensive lifestyle management: the SLIMM-T2D Study.   Diabetes Care. 2018;41(4):670-679. doi:10.2337/dc17-0487PubMedGoogle ScholarCrossref
13.
Cummings  DE , Arterburn  DE , Westbrook  EO ,  et al.  Gastric bypass surgery vs intensive lifestyle and medical intervention for type 2 diabetes: the CROSSROADS randomised controlled trial.   Diabetologia. 2016;59(5):945-953. doi:10.1007/s00125-016-3903-xPubMedGoogle ScholarCrossref
14.
Shah  SS , Todkar  JS , Phadake  U . Gastric bypass vs medical/lifestyle care for type 2 diabetes in South Asians with BMI 25-40kg/m2: the COSMID randomized trial. Presented at the American Diabetes Association's 76th Scientific Session; June 10-14, 2016; New Orleans, LA.
15.
Schauer  PR , Bhatt  DL , Kirwan  JP ,  et al; STAMPEDE Investigators.  Bariatric surgery versus intensive medical therapy for diabetes—5-year outcomes.   N Engl J Med. 2017;376(7):641-651. doi:10.1056/NEJMoa1600869PubMedGoogle ScholarCrossref
16.
Mingrone  G , Panunzi  S , De Gaetano  A ,  et al.  Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial.   Lancet. 2015;386(9997):964-973. doi:10.1016/S0140-6736(15)00075-6PubMedGoogle ScholarCrossref
17.
Courcoulas  AP , Gallagher  JW , Neiberg  RH ,  et al.  Bariatric surgery vs lifestyle intervention for diabetes treatment: 5-year outcomes from a randomized trial.   J Clin Endocrinol Metab. 2020;105(3):dgaa006. doi:10.1210/clinem/dgaa006PubMedGoogle Scholar
18.
Courcoulas  AP , Belle  SH , Neiberg  RH ,  et al.  Three-year outcomes of bariatric surgery vs lifestyle intervention for type 2 diabetes mellitus treatment: a randomized clinical trial.   JAMA Surg. 2015;150(10):931-940. doi:10.1001/jamasurg.2015.1534PubMedGoogle ScholarCrossref
19.
Parikh  M , Chung  M , Sheth  S ,  et al.  Randomized pilot trial of bariatric surgery versus intensive medical weight management on diabetes remission in type 2 diabetic patients who do not meet NIH criteria for surgery and the role of soluble RAGE as a novel biomarker of success.   Ann Surg. 2014;260(4):617-622. doi:10.1097/SLA.0000000000000919PubMedGoogle ScholarCrossref
20.
Müller-Stich  BP , Senft  JD , Warschkow  R ,  et al.  Surgical versus medical treatment of type 2 diabetes mellitus in nonseverely obese patients: a systematic review and meta-analysis.   Ann Surg. 2015;261(3):421-429. doi:10.1097/SLA.0000000000001014PubMedGoogle ScholarCrossref
21.
Ikramuddin  S , Billington  CJ , Lee  WJ ,  et al.  Roux-en-Y gastric bypass for diabetes (the Diabetes Surgery Study): 2-year outcomes of a 5-year, randomised, controlled trial.   Lancet Diabetes Endocrinol. 2015;3(6):413-422. doi:10.1016/S2213-8587(15)00089-3PubMedGoogle ScholarCrossref
22.
Billeter  AT , Scheurlen  KM , Probst  P ,  et al.  Meta-analysis of metabolic surgery versus medical treatment for microvascular complications in patients with type 2 diabetes mellitus.   Br J Surg. 2018;105(3):168-181. doi:10.1002/bjs.10724PubMedGoogle ScholarCrossref
23.
Sheng  B , Truong  K , Spitler  H , Zhang  L , Tong  X , Chen  L .  The long-term effects of bariatric surgery on type 2 diabetes remission, microvascular and macrovascular complications, and mortality: a systematic review and meta-analysis.   Obes Surg. 2017;27(10):2724-2732. doi:10.1007/s11695-017-2866-4PubMedGoogle ScholarCrossref
24.
O’Brien  R , Johnson  E , Haneuse  S ,  et al.  Microvascular outcomes in patients with diabetes after bariatric surgery versus usual care: a matched cohort study.   Ann Intern Med. 2018;169(5):300-310. doi:10.7326/M17-2383PubMedGoogle ScholarCrossref
25.
Fisher  DP , Johnson  E , Haneuse  S ,  et al.  Association between bariatric surgery and macrovascular disease outcomes in patients with type 2 diabetes and severe obesity.   JAMA. 2018;320(15):1570-1582. doi:10.1001/jama.2018.14619PubMedGoogle ScholarCrossref
26.
Aminian  A , Zajichek  A , Arterburn  DE ,  et al.  Association of metabolic surgery with major adverse cardiovascular outcomes in patients with type 2 diabetes and obesity.   JAMA. 2019. doi:10.1001/jama.2019.14231PubMedGoogle Scholar
27.
 Cardiovascular benefits of SGLT2 inhibitors and GLP-1 receptor agonists in type 2 diabetes.   JAMA. 2019;321(17):1720-1721. doi:10.1001/jama.2019.2702PubMedGoogle ScholarCrossref
28.
Salminen  P , Helmiö  M , Ovaska  J ,  et al.  Effect of laparoscopic sleeve gastrectomy vs laparoscopic Roux-en-Y gastric bypass on weight loss at 5 years among patients with morbid obesity: the SLEEVEPASS randomized clinical trial.   JAMA. 2018;319(3):241-254. doi:10.1001/jama.2017.20313PubMedGoogle ScholarCrossref
29.
Peterli  R , Wölnerhanssen  BK , Peters  T ,  et al.  Effect of laparoscopic sleeve gastrectomy vs laparoscopic Roux-en-Y gastric bypass on weight loss in patients with morbid obesity: the SM-BOSS randomized clinical trial.   JAMA. 2018;319(3):255-265. doi:10.1001/jama.2017.20897PubMedGoogle ScholarCrossref
30.
Park  CH , Nam  SJ , Choi  HS ,  et al; Korean Research Group for Endoscopic Management of Metabolic Disorder and Obesity.  Comparative efficacy of bariatric surgery in the treatment of morbid obesity and diabetes mellitus: a systematic review and network meta-analysis.   Obes Surg. 2019;29(7):2180-2190. doi:10.1007/s11695-019-03831-6PubMedGoogle ScholarCrossref
31.
McTigue  KM , Wellman  R , Nauman  E ,  et al; PCORnet Bariatric Study Collaborative.  Comparing the 5-year diabetes outcomes of sleeve gastrectomy and gastric bypass: the national Patient-Centered Clinical Research Network (PCORNet) bariatric study.   JAMA Surg. 2020;e200087. doi:10.1001/jamasurg.2020.0087PubMedGoogle Scholar
32.
Arterburn  DE , Bogart  A , Sherwood  NE ,  et al.  A multisite study of long-term remission and relapse of type 2 diabetes mellitus following gastric bypass.   Obes Surg. 2013;23(1):93-102. doi:10.1007/s11695-012-0802-1PubMedGoogle ScholarCrossref
33.
Still  CD , Wood  GC , Benotti  P ,  et al.  Preoperative prediction of type 2 diabetes remission after Roux-en-Y gastric bypass surgery: a retrospective cohort study.   Lancet Diabetes Endocrinol. 2014;2(1):38-45. doi:10.1016/S2213-8587(13)70070-6PubMedGoogle ScholarCrossref
34.
Aminian  A , Brethauer  SA , Andalib  A ,  et al.  Individualized metabolic surgery score: procedure selection based on diabetes severity.   Ann Surg. 2017;266(4):650-657. doi:10.1097/SLA.0000000000002407PubMedGoogle ScholarCrossref
35.
Shen  SC , Wang  W , Tam  KW ,  et al.  Validating risk prediction models of diabetes remission after sleeve gastrectomy.   Obes Surg. 2019;29(1):221-229. doi:10.1007/s11695-018-3510-7PubMedGoogle ScholarCrossref
36.
Courcoulas  AP , King  WC , Belle  SH ,  et al.  Seven-year weight trajectories and health outcomes in the Longitudinal Assessment of Bariatric Surgery (LABS) study.   JAMA Surg. 2018;153(5):427-434. doi:10.1001/jamasurg.2017.5025PubMedGoogle ScholarCrossref
37.
Puzziferri  N , Roshek  TB  III , Mayo  HG , Gallagher  R , Belle  SH , Livingston  EH .  Long-term follow-up after bariatric surgery: a systematic review.   JAMA. 2014;312(9):934-942. doi:10.1001/jama.2014.10706PubMedGoogle ScholarCrossref
38.
Lee  Y , Doumouras  AG , Yu  J ,  et al.  Laparoscopic sleeve gastrectomy versus laparoscopic Roux-en-Y gastric bypass: a systematic review and meta-analysis of weight loss, comorbidities, and biochemical outcomes from randomized controlled trials.   Ann Surg. 2019. doi:10.1097/SLA.0000000000003671PubMedGoogle Scholar
39.
Hu  Z , Sun  J , Li  R ,  et al.  A comprehensive comparison of LRYGB and LSG in obese patients including the effects on QoL, comorbidities, weight loss, and complications: a systematic review and meta-analysis.   Obes Surg. 2020;30(3):819-827. doi:10.1007/s11695-019-04306-4PubMedGoogle ScholarCrossref
40.
Climent  E , Goday  A , Pedro-Botet  J ,  et al.  Laparoscopic Roux-en-Y gastric bypass versus laparoscopic sleeve gastrectomy for 5-year hypertension remission in obese patients: a systematic review and meta-analysis.   J Hypertens. 2020;38(2):185-195. doi:10.1097/HJH.0000000000002255PubMedGoogle ScholarCrossref
41.
Pareek  M , Bhatt  DL , Schiavon  CA , Schauer  PR .  Metabolic surgery for hypertension in patients with obesity.   Circ Res. 2019;124(7):1009-1024. doi:10.1161/CIRCRESAHA.118.313320PubMedGoogle ScholarCrossref
42.
Sjöström  L , Lindroos  AK , Peltonen  M ,  et al; Swedish Obese Subjects Study Scientific Group.  Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery.   N Engl J Med. 2004;351(26):2683-2693. doi:10.1056/NEJMoa035622PubMedGoogle ScholarCrossref
43.
Gottlieb  DJ , Punjabi  NM .  Diagnosis and management of obstructive sleep apnea: a review.   JAMA. 2020;323(14):1389-1400. doi:10.1001/jama.2020.3514PubMedGoogle ScholarCrossref
44.
Wong  AM , Barnes  HN , Joosten  SA ,  et al.  The effect of surgical weight loss on obstructive sleep apnoea: a systematic review and meta-analysis.   Sleep Med Rev. 2018;42:85-99. doi:10.1016/j.smrv.2018.06.001PubMedGoogle ScholarCrossref
45.
Greenburg  DL , Lettieri  CJ , Eliasson  AH .  Effects of surgical weight loss on measures of obstructive sleep apnea: a meta-analysis.   Am J Med. 2009;122(6):535-542. doi:10.1016/j.amjmed.2008.10.037PubMedGoogle ScholarCrossref
46.
Groen  VA , van de Graaf  VA , Scholtes  VA , Sprague  S , van Wagensveld  BA , Poolman  RW .  Effects of bariatric surgery for knee complaints in (morbidly) obese adult patients: a systematic review.   Obes Rev. 2015;16(2):161-170. doi:10.1111/obr.12236PubMedGoogle ScholarCrossref
47.
Li  S , Luo  X , Sun  H , Wang  K , Zhang  K , Sun  X .  Does prior bariatric surgery improve outcomes following total joint arthroplasty in the morbidly obese? a meta-analysis.   J Arthroplasty. 2019;34(3):577-585. doi:10.1016/j.arth.2018.11.018PubMedGoogle ScholarCrossref
48.
Subak  LL , King  WC , Belle  SH ,  et al.  Urinary incontinence before and after bariatric surgery.   JAMA Intern Med. 2015;175(8):1378-1387. doi:10.1001/jamainternmed.2015.2609PubMedGoogle ScholarCrossref
49.
Wiggins  T , Antonowicz  SS , Markar  SR .  Cancer risk following bariatric surgery-systematic review and meta-analysis of national population-based cohort studies.   Obes Surg. 2019;29(3):1031-1039. doi:10.1007/s11695-018-3501-8PubMedGoogle ScholarCrossref
50.
Schauer  DP , Feigelson  HS , Koebnick  C ,  et al.  Bariatric surgery and the risk of cancer in a large multisite cohort.   Ann Surg. 2019;269(1):95-101. doi:10.1097/SLA.0000000000002525PubMedGoogle ScholarCrossref
51.
Feigelson  HS , Caan  B , Weinmann  S ,  et al.  Bariatric surgery is associated with reduced risk of breast cancer in both premenopausal and postmenopausal women.   Ann Surg. 2019. doi:10.1097/SLA.0000000000003331PubMedGoogle Scholar
52.
Panagiotou  OA , Markozannes  G , Adam  GP ,  et al.  Comparative effectiveness and safety of bariatric procedures in Medicare-eligible patients: a systematic review.   JAMA Surg. 2018;153(11):e183326. doi:10.1001/jamasurg.2018.3326PubMedGoogle Scholar
53.
Colquitt  JL , Pickett  K , Loveman  E , Frampton  GK .  Surgery for weight loss in adults.   Cochrane Database Syst Rev. 2014;(8):CD003641.PubMedGoogle Scholar
54.
Adams  TD , Davidson  LE , Litwin  SE ,  et al.  Weight and Metabolic outcomes 12 years after gastric bypass.   N Engl J Med. 2017;377(12):1143-1155. doi:10.1056/NEJMoa1700459PubMedGoogle ScholarCrossref
55.
Maciejewski  ML , Arterburn  DE , Van Scoyoc  L ,  et al.  Bariatric surgery and long-term durability of weight loss.   JAMA Surg. 2016;151(11):1046-1055. doi:10.1001/jamasurg.2016.2317PubMedGoogle ScholarCrossref
56.
Grover  BT , Morell  MC , Kothari  SN , Borgert  AJ , Kallies  KJ , Baker  MT .  Defining weight loss after bariatric surgery: a call for standardization.   Obes Surg. 2019;29(11):3493-3499. doi:10.1007/s11695-019-04022-zPubMedGoogle ScholarCrossref
57.
Kang  JH , Le  QA .  Effectiveness of bariatric surgical procedures: a systematic review and network meta-analysis of randomized controlled trials.   Medicine (Baltimore). 2017;96(46):e8632. doi:10.1097/MD.0000000000008632PubMedGoogle Scholar
58.
Arterburn  D , Wellman  R , Emiliano  A ,  et al; PCORnet Bariatric Study Collaborative.  Comparative effectiveness and safety of bariatric procedures for weight loss: a PCORnet cohort study.   Ann Intern Med. 2018;169(11):741-750. doi:10.7326/M17-2786PubMedGoogle ScholarCrossref
59.
Ahmed  B , King  WC , Gourash  W ,  et al.  Long-term weight change and health outcomes for sleeve gastrectomy (SG) and matched Roux-en-Y gastric bypass (RYGB) participants in the Longitudinal Assessment of Bariatric Surgery (LABS) study.   Surgery. 2018;164(4):774-783. doi:10.1016/j.surg.2018.06.008PubMedGoogle ScholarCrossref
60.
Sudan  R , Maciejewski  ML , Wilk  AR , Nguyen  NT , Ponce  J , Morton  JM .  Comparative effectiveness of primary bariatric operations in the United States.   Surg Obes Relat Dis. 2017;13(5):826-834. doi:10.1016/j.soard.2017.01.021PubMedGoogle ScholarCrossref
61.
O’Brien  PE , Hindle  A , Brennan  L ,  et al.  Long-term outcomes after bariatric surgery: a systematic review and meta-analysis of weight loss at 10 or more years for all bariatric procedures and a single-centre review of 20-year outcomes after adjustable gastric banding.   Obes Surg. 2019;29(1):3-14. doi:10.1007/s11695-018-3525-0PubMedGoogle ScholarCrossref
62.
Hutter  MM , Schirmer  BD , Jones  DB ,  et al.  First report from the American College of Surgeons Bariatric Surgery Center Network: laparoscopic sleeve gastrectomy has morbidity and effectiveness positioned between the band and the bypass.   Ann Surg. 2011;254(3):410-420. doi:10.1097/SLA.0b013e31822c9dacPubMedGoogle ScholarCrossref
63.
Berger  ER , Huffman  KM , Fraker  T ,  et al.  Prevalence and risk factors for bariatric surgery readmissions: findings from 130 007 admissions in the metabolic and bariatric surgery accreditation and quality improvement program.   Ann Surg. 2018;267(1):122-131. doi:10.1097/SLA.0000000000002079PubMedGoogle ScholarCrossref
64.
Maciejewski  ML , Winegar  DA , Farley  JF , Wolfe  BM , DeMaria  EJ .  Risk stratification of serious adverse events after gastric bypass in the bariatric outcomes longitudinal database.   Surg Obes Relat Dis. 2012;8(6):671-677. doi:10.1016/j.soard.2012.07.020PubMedGoogle ScholarCrossref
65.
Carlin  AM , Zeni  TM , English  WJ ,  et al; Michigan Bariatric Surgery Collaborative.  The comparative effectiveness of sleeve gastrectomy, gastric bypass, and adjustable gastric banding procedures for the treatment of morbid obesity.   Ann Surg. 2013;257(5):791-797. doi:10.1097/SLA.0b013e3182879dedPubMedGoogle ScholarCrossref
66.
Peterli  R , Wölnerhanssen  BK , Bueter  M .  Response to: “are guidelines for standardized outcome reporting in bariatric surgery responsible for missing the big picture in bariatric surgery related major complications?”.   Ann Surg. 2018;268(1):e13-e14. doi:10.1097/SLA.0000000000002317PubMedGoogle ScholarCrossref
67.
Telem  DA , Yang  J , Altieri  M ,  et al.  Rates and risk factors for unplanned emergency department utilization and hospital readmission following bariatric surgery.   Ann Surg. 2016;263(5):956-960. doi:10.1097/SLA.0000000000001536PubMedGoogle ScholarCrossref
68.
Courcoulas  A , Coley  RY , Clark  JM ,  et al.  Interventions and operations 5 years after bariatric surgery in a cohort from the US National Patient-Centered Clinical Research Network Bariatric Study.   JAMA Surg. 2020;155(3):194-204. doi:10.1001/jamasurg.2019.5470PubMedGoogle ScholarCrossref
69.
Mehaffey  JH , LaPar  DJ , Clement  KC ,  et al.  10-Year outcomes after Roux-en-Y gastric bypass.   Ann Surg. 2016;264(1):121-126. doi:10.1097/SLA.0000000000001544PubMedGoogle ScholarCrossref
70.
Obeid  NR , Malick  W , Concors  SJ , Fielding  GA , Kurian  MS , Ren-Fielding  CJ .  Long-term outcomes after Roux-en-Y gastric bypass: 10- to 13-year data.   Surg Obes Relat Dis. 2016;12(1):11-20. doi:10.1016/j.soard.2015.04.011PubMedGoogle ScholarCrossref
71.
Li  RA , Liu  L , Arterburn  D ,  et al.  Five-year longitudinal cohort study of reinterventions after sleeve gastrectomy and Roux-en-Y gastric bypass.   Ann Surg. 2019. doi:10.1097/SLA.0000000000003401PubMedGoogle Scholar
72.
Lewis  KH , Arterburn  DE , Callaway  K ,  et al.  Risk of operative and nonoperative interventions up to 4 years after Roux-en-Y gastric bypass vs vertical sleeve gastrectomy in a nationwide US commercial insurance claims database.   JAMA Netw Open. 2019;2(12):e1917603. doi:10.1001/jamanetworkopen.2019.17603PubMedGoogle Scholar
73.
Adams  TD , Gress  RE , Smith  SC ,  et al.  Long-term mortality after gastric bypass surgery.   N Engl J Med. 2007;357(8):753-761. doi:10.1056/NEJMoa066603PubMedGoogle ScholarCrossref
74.
Telem  DA , Talamini  M , Shroyer  AL ,  et al.  Long-term mortality rates (>8-year) improve as compared to the general and obese population following bariatric surgery.   Surg Endosc. 2015;29(3):529-536. doi:10.1007/s00464-014-3714-4PubMedGoogle ScholarCrossref
75.
Arterburn  DE , Olsen  MK , Smith  VA ,  et al.  Association between bariatric surgery and long-term survival.   JAMA. 2015;313(1):62-70. doi:10.1001/jama.2014.16968PubMedGoogle ScholarCrossref
76.
Halperin  F , Ding  SA , Simonson  DC ,  et al.  Roux-en-Y gastric bypass surgery or lifestyle with intensive medical management in patients with type 2 diabetes: feasibility and 1-year results of a randomized clinical trial.   JAMA Surg. 2014;149(7):716-726. doi:10.1001/jamasurg.2014.514PubMedGoogle ScholarCrossref
AMA CME Accreditation Information

Credit Designation Statement: The American Medical Association designates this Journal-based CME activity activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to:

  • 1.00 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program;;
  • 1.00 Self-Assessment points in the American Board of Otolaryngology – Head and Neck Surgery’s (ABOHNS) Continuing Certification program;
  • 1.00 MOC points in the American Board of Pediatrics’ (ABP) Maintenance of Certification (MOC) program;
  • 1.00 Lifelong Learning points in the American Board of Pathology’s (ABPath) Continuing Certification program; and
  • 1.00 credit toward the CME [and Self-Assessment requirements] of the American Board of Surgery’s Continuous Certification program

It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting MOC credit.

Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close