Association of Cardiorespiratory Fitness Levels During Youth With Health Risk Later in Life | Adolescent Medicine | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

Association of Cardiorespiratory Fitness Levels During Youth With Health Risk Later in LifeA Systematic Review and Meta-analysis

Educational Objective To examine the prospective association between cardiorespiratory fitness in childhood and adolescence and future health status and to assess whether changes in cardiorespiratory fitness are associated with future health status at least 1 year later.
1 Credit CME
Key Points

Question  Is cardiorespiratory fitness associated with future health benefits in children and adolescents?

Findings  This systematic review and meta-analysis of 55 studies that included 37 563 youths revealed that cardiorespiratory fitness levels and change over approximately 1 year during youth were associated with lower risk of developing obesity and cardiometabolic disease later in life. These early associations detected from baseline to follow-up dissipated over time.

Meaning  The study suggests that prevention strategies that target youth cardiorespiratory fitness may be associated with improved health parameters in later life.

Abstract

Importance  Although the associations between cardiorespiratory fitness (CRF) and health in adults are well understood, to date, no systematic review has quantitatively examined the association between CRF during youth and health parameters later in life.

Objectives  To examine the prospective association between CRF in childhood and adolescence and future health status and to assess whether changes in CRF are associated with future health status at least 1 year later.

Data Sources  For this systematic review and meta-analysis, MEDLINE, Embase, and SPORTDiscus electronic databases were searched for relevant articles published from database inception to January 30, 2020.

Study Selection  The following inclusion criteria were used: CRF measured using a validated test and assessed at baseline and/or its change from baseline to the end of follow-up, healthy population with a mean age of 3 to 18 years at baseline, and prospective cohort design with a follow-up period of at least 1 year.

Data Extraction and Synthesis  Data were processed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Random-effects models were used to estimate the pooled effect size.

Main Outcomes and Measures  Anthropometric and adiposity measurements and cardiometabolic health parameters.

Results  Fifty-five studies were included with a total of 37 563 youths (46% female). Weak-moderate associations were found between CRF at baseline and body mass index (r = –0.11; 95% CI, –0.18 to –0.04; I2 = 59.03), waist circumference (r = –0.29; 95% CI, –0.42 to –0.14; I2 = 69.42), skinfold thickness (r = –0.34; 95% CI, –0.41 to –0.26; I2 = 83.87), obesity (r = –0.15; 95% CI, –0.23 to –0.06; I2 = 86.75), total cholesterol level (r = –0.12; 95% CI, –0.19 to –0.05; I2 = 75.81), high-density lipoprotein cholesterol (HDL-C) level (r = 0.11; 95% CI, 0.05-0.18; I2 = 69.06), total cholesterol to HDL-C ratio (r = –0.19; 95% CI, –0.26 to –0.13; I2 = 67.07), triglyceride levels (r = –0.10; 95% CI, –0.18 to –0.02; I2 = 73.43), homeostasis model assessment for insulin resistance (r = –0.12; 95% CI, –0.18 to –0.06; I2 = 68.26), fasting insulin level (r = –0.07; 95% CI, –0.11 to –0.03; I2 = 0), and cardiometabolic risk (r = –0.18; 95% CI, –0.29 to –0.07; I2 = 90.61) at follow-up. Meta-regression analyses found that early associations in waist circumference (β = 0.014; 95% CI, 0.002-0.026), skinfold thickness (β = 0.006; 95% CI, 0.002-0.011), HDL-C level (β = −0.006; 95% CI, −0.011 to −0.001), triglyceride levels (β = 0.009; 95% CI, 0.004-0.014), and cardiometabolic risk (β = 0.007; 95% CI, 0.003-0.011) from baseline to follow-up dissipated over time. Weak-moderate associations were found between change in CRF and body mass index (r = –0.17; 95% CI, –0.24 to –0.11; I2 = 39.65), skinfold thickness (r = –0.36; 95% CI, –0.58 to –0.09; I2 = 96.84), obesity (r = –0.21; 95% CI, –0.35 to –0.06; I2 = 91.08), HDL-C level (r = 0.05; 95% CI, 0.02-0.08; I2 = 0), low-density lipoprotein cholesterol level (r = –0.06; 95% CI, –0.11 to –0.01; I2 = 58.94), and cardiometabolic risk (r = –0.08; 95% CI, –0.15 to –0.02; I2 = 69.53) later in life.

Conclusions and Relevance  This study suggests that early intervention and prevention strategies that target youth CRF may be associated with maintaining health parameters in later life.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: May 6, 2020.

Corresponding Author: Antonio García-Hermoso, PhD, Navarrabiomed, Complejo Hospitalario de Navarra, Universidad Pública de Navarra, Instituto de Investigación Sanitaria de Navarra, Calle Irunlarrea 3, 31008 Pamplona, Spain (antonio.garciah@unavarra.es).

Published Online: August 31, 2020. doi:10.1001/jamapediatrics.2020.2400

Author Contributions: Dr García-Hermoso had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: García Hermoso, Ramírez-Vélez, Izquierdo.

Acquisition, analysis, or interpretation of data: García Hermoso, Ramírez-Vélez, García-Alonso, Alonso-Martínez.

Drafting of the manuscript: García Hermoso, Izquierdo.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: García Hermoso.

Obtained funding: Alonso-Martínez.

Administrative, technical, or material support: García-Alonso.

Supervision: Ramírez-Vélez, Izquierdo.

Conflict of Interest Disclosures: None reported.

Funding/Support: This study was funded by grant CENEDUCA1/2019 from the Department of Education of the Government of Navarra (Spain). Dr García-Hermoso is a Miguel Servet Fellow (Instituto de Salud Carlos III – CP18/0150). Dr Ramírez-Vélez is funded in part by Postdoctoral Fellowship Resolution ID 420/2019 of the Universidad Pública de Navarra.

Role of the Funder/Sponsor: The funding source had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and the decision to submit the manuscript for publication.

References
1.
Ross  R , Blair  SN , Arena  R ,  et al; American Heart Association Physical Activity Committee of the Council on Lifestyle and Cardiometabolic Health; Council on Clinical Cardiology; Council on Epidemiology and Prevention; Council on Cardiovascular and Stroke Nursing; Council on Functional Genomics and Translational Biology; Stroke Council.  Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the American Heart Association.   Circulation. 2016;134(24):e653-e699. doi:10.1161/CIR.0000000000000461 PubMedGoogle ScholarCrossref
2.
Harber  MP , Kaminsky  LA , Arena  R ,  et al.  Impact of cardiorespiratory fitness on all-cause and disease-specific mortality: advances since 2009.   Prog Cardiovasc Dis. 2017;60(1):11-20. doi:10.1016/j.pcad.2017.03.001 PubMedGoogle ScholarCrossref
3.
Ramírez-Vélez  R , Correa-Bautista  JE , Mota  J , Garcia-Hermoso  A .  Comparison of different maximal oxygen uptake equations to discriminate the cardiometabolic risk in children and adolescents.   J Pediatr. 2018;194:152-157.e1. doi:10.1016/j.jpeds.2017.11.007 PubMedGoogle ScholarCrossref
4.
Mintjens  S , Menting  MD , Daams  JG , van Poppel  MNM , Roseboom  TJ , Gemke  RJBJ .  Cardiorespiratory fitness in childhood and adolescence affects future cardiovascular risk factors: a systematic review of longitudinal studies.   Sports Med. 2018;48(11):2577-2605. doi:10.1007/s40279-018-0974-5 PubMedGoogle ScholarCrossref
5.
Hamer  M , O’Donovan  G , Batty  GD , Stamatakis  E .  Estimated cardiorespiratory fitness in childhood and cardiometabolic health in adulthood: 1970 British Cohort Study.   Scand J Med Sci Sports. 2020;30(5):932-938. doi:10.1111/sms.13637 PubMedGoogle ScholarCrossref
6.
Ruiz  JR , Castro-Piñero  J , Artero  EG ,  et al.  Predictive validity of health-related fitness in youth: a systematic review.   Br J Sports Med. 2009;43(12):909-923. doi:10.1136/bjsm.2008.056499 PubMedGoogle ScholarCrossref
7.
Wells  G , Shea  B , O’Connell  D , Ottawa  JP . Newcastle-Ottawa quality assessment scale cohort studies. Accessed February 10, 2020. https://www.ncbi.nlm.nih.gov/books/NBK99082/bin/appb-fm4.pdf
8.
García-Hermoso  A , Ramírez-Campillo  R , Izquierdo  M .  Is muscular fitness associated with future health benefits in children and adolescents? a systematic review and meta-analysis of longitudinal studies.   Sports Med. 2019;49(7):1079-1094. doi:10.1007/s40279-019-01098-6 PubMedGoogle ScholarCrossref
9.
Nieminen  P , Lehtiniemi  H , Vähäkangas  K , Huusko  A , Rautio  A .  Standardised regression coefficient as an effect size index in summarising findings in epidemiological studies.   Epidemiol Biostat Public Health. 2013;10(4):e8854.Google Scholar
10.
Peterson  RA , Brown  SP .  On the use of beta coefficients in meta-analysis.   J Appl Psychol. 2005;90(1):175-181. doi:10.1037/0021-9010.90.1.175 PubMedGoogle ScholarCrossref
11.
Bring  J .  How to standardize regression coefficients.   Am Stat. 1994;48(3):209-213. doi:10.1080/00031305.1994.10476059Google Scholar
12.
Hardy  RJ , Thompson  SG .  A likelihood approach to meta-analysis with random effects.   Stat Med. 1996;15(6):619-629. doi:10.1002/(SICI)1097-0258(19960330)15:6<619::AID-SIM188>3.0.CO;2-A PubMedGoogle ScholarCrossref
13.
McGrath  RE , Meyer  GJ .  When effect sizes disagree: the case of r and d.   Psychol Methods. 2006;11(4):386-401. doi:10.1037/1082-989X.11.4.386 PubMedGoogle ScholarCrossref
14.
Higgins  JP , Thompson  SG , Deeks  JJ , Altman  DG .  Measuring inconsistency in meta-analyses.   BMJ. 2003;327(7414):557-560. doi:10.1136/bmj.327.7414.557PubMedGoogle ScholarCrossref
15.
Higgins  JPT , Thompson  SG .  Quantifying heterogeneity in a meta-analysis.   Stat Med. 2002;21(11):1539-1558. doi:10.1002/sim.1186 PubMedGoogle ScholarCrossref
16.
Egger  M , Davey Smith  G , Schneider  M , Minder  C .  Bias in meta-analysis detected by a simple, graphical test.   BMJ. 1997;315(7109):629-634. doi:10.1136/bmj.315.7109.629PubMedGoogle ScholarCrossref
17.
Agostinis-Sobrinho  C , Ruiz  JR , Moreira  C ,  et al.  Cardiorespiratory fitness and blood pressure: a longitudinal analysis.   J Pediatr. 2018;192:130-135. doi:10.1016/j.jpeds.2017.09.055 PubMedGoogle ScholarCrossref
18.
Aires  L , Mendonça  D , Silva  G ,  et al.  A 3-year longitudinal analysis of changes in body mass index.   Int J Sports Med. 2010;31(2):133-137. doi:10.1055/s-0029-1243255 PubMedGoogle ScholarCrossref
19.
Barnekow-Bergkvist  M , Hedberg  G , Pettersson  U , Lorentzon  R .  Relationships between physical activity and physical capacity in adolescent females and bone mass in adulthood.   Scand J Med Sci Sports. 2006;16(6):447-455. doi:10.1111/j.1600-0838.2005.00500.x PubMedGoogle ScholarCrossref
20.
Boreham  C , Twisk  J , Neville  C , Savage  M , Murray  L , Gallagher  A .  Associations between physical fitness and activity patterns during adolescence and cardiovascular risk factors in young adulthood: the Northern Ireland Young Hearts Project.   Int J Sports Med. 2002;23(1)(suppl 1):S22-S26. doi:10.1055/s-2002-28457 PubMedGoogle ScholarCrossref
21.
Byrd-Williams  CE , Shaibi  GQ , Sun  P ,  et al.  Cardiorespiratory fitness predicts changes in adiposity in overweight Hispanic boys.   Obesity (Silver Spring). 2008;16(5):1072-1077. doi:10.1038/oby.2008.16 PubMedGoogle ScholarCrossref
22.
Castro-Piñero  J , Perez-Bey  A , Segura-Jiménez  V ,  et al; UP&DOWN Study Group.  Cardiorespiratory fitness cutoff points for early detection of present and future cardiovascular risk in children: a 2-year follow-up study.   Mayo Clin Proc. 2017;92(12):1753-1762. doi:10.1016/j.mayocp.2017.09.003 PubMedGoogle ScholarCrossref
23.
Dwyer  T , Magnussen  CG , Schmidt  MD ,  et al.  Decline in physical fitness from childhood to adulthood associated with increased obesity and insulin resistance in adults.   Diabetes Care. 2009;32(4):683-687. doi:10.2337/dc08-1638 PubMedGoogle ScholarCrossref
24.
Eisenmann  JC , Wickel  EE , Welk  GJ , Blair  SN .  Relationship between adolescent fitness and fatness and cardiovascular disease risk factors in adulthood: the Aerobics Center Longitudinal Study (ACLS).   Am Heart J. 2005;149(1):46-53. doi:10.1016/j.ahj.2004.07.016 PubMedGoogle ScholarCrossref
25.
Ekblom  OB , Bak  EAME , Ekblom  BT .  Trends in body mass in Swedish adolescents between 2001 and 2007.   Acta Paediatr. 2009;98(3):519-522. doi:10.1111/j.1651-2227.2008.01154.x PubMedGoogle ScholarCrossref
26.
Ferreira  I , Twisk  JWR , Van Mechelen  W , Kemper  HCG , Stehouwer  CDA ; Amsterdam Growth and Health Longitudinal Study.  Current and adolescent levels of cardiopulmonary fitness are related to large artery properties at age 36: the Amsterdam Growth and Health Longitudinal Study.   Eur J Clin Invest. 2002;32(10):723-731. doi:10.1046/j.1365-2362.2002.01066.x PubMedGoogle ScholarCrossref
27.
Ferreira  I , Twisk  JWR , van Mechelen  W , Kemper  HCG , Stehouwer  CDA .  Development of fatness, fitness, and lifestyle from adolescence to the age of 36 years: determinants of the metabolic syndrome in young adults: the amsterdam growth and health longitudinal study.   Arch Intern Med. 2005;165(1):42-48. doi:10.1001/archinte.165.1.42 PubMedGoogle ScholarCrossref
28.
Foley  S , Quinn  S , Dwyer  T , Venn  A , Jones  G .  Measures of childhood fitness and body mass index are associated with bone mass in adulthood: a 20-year prospective study.   J Bone Miner Res. 2008;23(7):994-1001. doi:10.1359/jbmr.080223 PubMedGoogle ScholarCrossref
29.
Fraser  BJ , Blizzard  L , Schmidt  MD ,  et al.  Childhood cardiorespiratory fitness, muscular fitness and adult measures of glucose homeostasis.   J Sci Med Sport. 2018;21(9):935-940. doi:10.1016/j.jsams.2018.02.002 PubMedGoogle ScholarCrossref
30.
Freitas  D , Beunen  G , Maia  J ,  et al.  Tracking of fatness during childhood, adolescence and young adulthood: a 7-year follow-up study in Madeira Island, Portugal.   Ann Hum Biol. 2012;39(1):59-67. doi:10.3109/03014460.2011.638322 PubMedGoogle ScholarCrossref
31.
Grøntved  A , Ried-Larsen  M , Ekelund  U , Froberg  K , Brage  S , Andersen  LB .  Independent and combined association of muscle strength and cardiorespiratory fitness in youth with insulin resistance and β-cell function in young adulthood: the European Youth Heart Study.   Diabetes Care. 2013;36(9):2575-2581. doi:10.2337/dc12-2252 PubMedGoogle ScholarCrossref
32.
Hasselstrøm  H , Hansen  SE , Froberg  K , Andersen  LB . Physical fitness and physical activity during adolescence as predictors of cardiovascular disease risk in young adulthood: Danish Youth and Sports Study: an eight-year follow-up study. Int J Sports Med. 2002;23(suppl 1)(1):S27-31. doi:10.1055/s-2002-28458
33.
Henderson  M , Benedetti  A , Barnett  TA , Mathieu  ME , Deladoëy  J , Gray-Donald  K .  Influence of adiposity, physical activity, fitness, and screen time on insulin dynamics over 2 years in children.   JAMA Pediatr. 2016;170(3):227-235. doi:10.1001/jamapediatrics.2015.3909 PubMedGoogle ScholarCrossref
34.
Henriksson  P , Leppänen  MH , Henriksson  H ,  et al.  Physical fitness in relation to later body composition in pre-school children.   J Sci Med Sport. 2019;22(5):574-579. doi:10.1016/j.jsams.2018.11.024 PubMedGoogle ScholarCrossref
35.
Janz  KF , Dawson  JD , Mahoney  LT .  Changes in physical fitness and physical activity during puberty do not predict lipoprotein profile changes: The muscatine study.   Pediatr Exerc Sci. 2000;12(3):232-243. doi:10.1123/pes.12.3.232Google ScholarCrossref
36.
Janz  KF , Dawson  JD , Mahoney  LT .  Increases in physical fitness during childhood improve cardiovascular health during adolescence: the Muscatine Study.   Int J Sports Med. 2002;23(suppl 1):S15-S21. doi:10.1055/s-2002-28456 PubMedGoogle ScholarCrossref
37.
Johnson  MS , Figueroa-Colon  R , Herd  SL ,  et al.  Aerobic fitness, not energy expenditure, influences subsequent increase in adiposity in black and white children.   Pediatrics. 2000;106(4):E50. doi:10.1542/peds.106.4.e50 PubMedGoogle Scholar
38.
Kelly  RK , Thomson  R , Smith  KJ , Dwyer  T , Venn  A , Magnussen  CG .  Factors affecting tracking of blood pressure from childhood to adulthood: the Childhood Determinants of Adult Health Study.   J Pediatr. 2015;167(6):1422-8.e2. doi:10.1016/j.jpeds.2015.07.055 PubMedGoogle ScholarCrossref
39.
Kim  J , Must  A , Fitzmaurice  GM ,  et al.  Relationship of physical fitness to prevalence and incidence of overweight among schoolchildren.   Obes Res. 2005;13(7):1246-1254. doi:10.1038/oby.2005.148 PubMedGoogle ScholarCrossref
40.
Klakk  H , Grøntved  A , Møller  NC , Heidemann  M , Andersen  LB , Wedderkopp  N .  Prospective association of adiposity and cardiorespiratory fitness with cardiovascular risk factors in healthy children.   Scand J Med Sci Sports. 2014;24(4):e275-e282. doi:10.1111/sms.12163 PubMedGoogle ScholarCrossref
41.
Lambrechtsen  J , Rasmussen  F , Hansen  HS , Jacobsen  IA .  Tracking and factors predicting rising in ‘tracking quartile’ in blood pressure from childhood to adulthood: Odense Schoolchild Study.   J Hum Hypertens. 1999;13(6):385-391. doi:10.1038/sj.jhh.1000836 PubMedGoogle ScholarCrossref
42.
Lätt  E , Mäestu  J , Rääsk  T , Jürimäe  T , Jürimäe  J .  Cardiovascular fitness, physical activity, and metabolic syndrome risk factors among adolescent estonian boys: a longitudinal study.   Am J Hum Biol. 2016;28(6):782-788. doi:10.1002/ajhb.22866 PubMedGoogle ScholarCrossref
43.
Lima  RA , Pfeiffer  KA , Bugge  A , Møller  NC , Andersen  LB , Stodden  DF .  Motor competence and cardiorespiratory fitness have greater influence on body fatness than physical activity across time.   Scand J Med Sci Sports. 2017;27(12):1638-1647. doi:10.1111/sms.12850 PubMedGoogle ScholarCrossref
44.
Lopes  VP , Maia  JAR , Rodrigues  LP , Malina  R .  Motor coordination, physical activity and fitness as predictors of longitudinal change in adiposity during childhood.   Eur J Sport Sci. 2012;12(4):384-391. doi:10.1080/17461391.2011.566368Google ScholarCrossref
45.
Mäestu  E , Harro  J , Veidebaum  T , Kurrikoff  T , Jürimäe  J , Mäestu  J .  Changes in cardiorespiratory fitness through adolescence predict metabolic syndrome in young adults.   Nutr Metab Cardiovasc Dis. 2020;30(4):701-708. doi:10.1016/j.numecd.2019.12.009 PubMedGoogle ScholarCrossref
46.
Martins  C , Santos  R , Gaya  A , Twisk  J , Ribeiro  J , Mota  J .  Cardiorespiratory fitness predicts later body mass index, but not other cardiovascular risk factors from childhood to adolescence.   Am J Hum Biol. 2009;21(1):121-123. doi:10.1002/ajhb.20826 PubMedGoogle ScholarCrossref
47.
McGavock  JM , Torrance  BD , McGuire  KA , Wozny  PD , Lewanczuk  RZ .  Cardiorespiratory fitness and the risk of overweight in youth: the Healthy Hearts Longitudinal Study of Cardiometabolic Health.   Obesity (Silver Spring). 2009;17(9):1802-1807. doi:10.1038/oby.2009.59 PubMedGoogle ScholarCrossref
48.
McMurray  RG , Bangdiwala  SI , Harrell  JS , Amorim  LD .  Adolescents with metabolic syndrome have a history of low aerobic fitness and physical activity levels.   Dyn Med. 2008;7(1):5. doi:10.1186/1476-5918-7-5 PubMedGoogle ScholarCrossref
49.
Mikkelsson  L , Kaprio  J , Kautiainen  H , Nupponen  H , Tikkanen  MJ , Kujala  UM .  Endurance running ability at adolescence as a predictor of blood pressure levels and hypertension in men: a 25-year follow-up study.   Int J Sports Med. 2005;26(6):448-452. doi:10.1055/s-2004-821109 PubMedGoogle ScholarCrossref
50.
Minck  MR , Ruiter  LM , Van Mechelen  W , Kemper  HCG , Twisk  JWR .  Physical fitness, body fatness, and physical activity: the Amsterdam Growth and Health Study.   Am J Hum Biol. 2000;12(5):593-599. doi:10.1002/1520-6300(200009/10)12:5<593::AID-AJHB3>3.0.CO;2-U PubMedGoogle ScholarCrossref
51.
Mota  J , Ribeiro  JC , Carvalho  J , Santos  MP , Martins  J .  Cardiorespiratory fitness status and body mass index change over time: a 2-year longitudinal study in elementary school children.   Int J Pediatr Obes. 2009;4(4):338-342. doi:10.3109/17477160902763317 PubMedGoogle ScholarCrossref
52.
Ortega  FB , Labayen  I , Ruiz  JR ,  et al.  Improvements in fitness reduce the risk of becoming overweight across puberty.   Med Sci Sports Exerc. 2011;43(10):1891-1897. doi:10.1249/MSS.0b013e3182190d71 PubMedGoogle Scholar
53.
Puder  JJ , Schindler  C , Zahner  L , Kriemler  S . Adiposity, fitness and metabolic risk in children: a cross-sectional and longitudinal study. Int J Pediatr Obes. 2011;6(2-2):e297-306. doi:10.3109/17477166.2010.533774
54.
Raine  LB , Biggan  JR , Baym  CL , Saliba  BJ , Cohen  NJ , Hillman  CH .  Adolescent changes in aerobic fitness are related to changes in academic achievement.   Pediatr Exerc Sci. 2018;30(1):106-114. doi:10.1123/pes.2015-0225 PubMedGoogle ScholarCrossref
55.
Ruggero  CJ , Petrie  T , Sheinbein  S , Greenleaf  C , Martin  S .  Cardiorespiratory fitness may help in protecting against depression among middle school adolescents.   J Adolesc Health. 2015;57(1):60-65. doi:10.1016/j.jadohealth.2015.03.016 PubMedGoogle ScholarCrossref
56.
Savva  SC , Tornaritis  MJ , Kolokotroni  O ,  et al.  High cardiorespiratory fitness is inversely associated with incidence of overweight in adolescence: a longitudinal study.   Scand J Med Sci Sports. 2014;24(6):982-989. doi:10.1111/sms.12097 PubMedGoogle ScholarCrossref
57.
Schmidt  MD , Magnussen  CG , Rees  E , Dwyer  T , Venn  AJ .  Childhood fitness reduces the long-term cardiometabolic risks associated with childhood obesity.   Int J Obes (Lond). 2016;40(7):1134-1140. doi:10.1038/ijo.2016.61 PubMedGoogle ScholarCrossref
58.
Sun  C , Magnussen  CG , Ponsonby  A-L ,  et al.  The contribution of childhood cardiorespiratory fitness and adiposity to inflammation in young adults.   Obesity (Silver Spring). 2014;22(12):2598-2605. doi:10.1002/oby.20871 PubMedGoogle Scholar
59.
Telford  RD , Cunningham  RB , Waring  P ,  et al.  Sensitivity of blood lipids to changes in adiposity, exercise, and diet in children.   Med Sci Sports Exerc. 2015;47(5):974-982. doi:10.1249/MSS.0000000000000493 PubMedGoogle ScholarCrossref
60.
Toriola  OO , Monyeki  MA , Toriola  AL .  Two-year longitudinal health-related fitness, anthropometry and body composition status amongst adolescents in Tlokwe Municipality: the PAHL Study.   Afr J Prim Health Care Fam Med. 2015;7(1):896. doi:10.4102/phcfm.v7i1.896 PubMedGoogle ScholarCrossref
61.
Treuth  MS , Butte  NF , Sorkin  JD .  Predictors of body fat gain in nonobese girls with a familial predisposition to obesity.   Am J Clin Nutr. 2003;78(6):1212-1218. doi:10.1093/ajcn/78.6.1212 PubMedGoogle ScholarCrossref
62.
Twisk  JW , Boreham  C , Cran  G , Savage  JM , Strain  J , van Mechelen  W .  Clustering of biological risk factors for cardiovascular disease and the longitudinal relationship with lifestyle of an adolescent population: the Northern Ireland Young Hearts Project.   J Cardiovasc Risk. 1999;6(6):355-362. doi:10.1177/204748739900600601 PubMedGoogle ScholarCrossref
63.
Twisk  JWR , Kemper  HCG , van Mechelen  W .  The relationship between physical fitness and physical activity during adolescence and cardiovascular disease risk factors at adult age: the Amsterdam Growth and Health Longitudinal Study.   Int J Sports Med. 2002;23(suppl 1):S8-S14. doi:10.1055/s-2002-28455 PubMedGoogle ScholarCrossref
64.
Barnekow-Bergkvist  M , Hedberg  G , Janlert  U , Jansson  E .  Adolescent determinants of cardiovascular risk factors in adult men and women.   Scand J Public Health. 2001;29(3):208-217. doi:10.1177/14034948010290031001 PubMedGoogle ScholarCrossref
65.
Kvaavik  E , Klepp  K-I , Tell  GS , Meyer  HE , Batty  GD .  Physical fitness and physical activity at age 13 years as predictors of cardiovascular disease risk factors at ages 15, 25, 33, and 40 years: extended follow-up of the Oslo Youth Study.   Pediatrics. 2009;123(1):e80-e86. doi:10.1542/peds.2008-1118 PubMedGoogle ScholarCrossref
66.
Hruby  A , Chomitz  VR , Arsenault  LN ,  et al.  Predicting maintenance or achievement of healthy weight in children: the impact of changes in physical fitness.   Obesity (Silver Spring). 2012;20(8):1710-1717. doi:10.1038/oby.2012.13 PubMedGoogle ScholarCrossref
67.
Rodrigues  LP , Leitão  R , Lopes  VP .  Physical fitness predicts adiposity longitudinal changes over childhood and adolescence.   J Sci Med Sport. 2013;16(2):118-123. doi:10.1016/j.jsams.2012.06.008 PubMedGoogle ScholarCrossref
68.
Rodrigues  LP , Stodden  DF , Lopes  VP .  Developmental pathways of change in fitness and motor competence are related to overweight and obesity status at the end of primary school.   J Sci Med Sport. 2016;19(1):87-92. doi:10.1016/j.jsams.2015.01.002 PubMedGoogle ScholarCrossref
69.
Jago  R , Drews  KL , McMurray  RG ,  et al.  BMI change, fitness change and cardiometabolic risk factors among 8th grade youth.   Pediatr Exerc Sci. 2013;25(1):52-68. doi:10.1123/pes.25.1.52 PubMedGoogle ScholarCrossref
70.
Andersen  LB , Haraldsdóttir  J .  Tracking of cardiovascular disease risk factors including maximal oxygen uptake and physical activity from late teenage to adulthood: an 8-year follow-up study.   J Intern Med. 1993;234(3):309-315. doi:10.1111/j.1365-2796.1993.tb00748.x PubMedGoogle ScholarCrossref
71.
Andersen  LB , Hasselstrøm  H , Grønfeldt  V , Hansen  SE , Karsten  F .  The relationship between physical fitness and clustered risk, and tracking of clustered risk from adolescence to young adulthood: eight years follow-up in the Danish Youth and Sport Study.   Int J Behav Nutr Phys Act. 2004;1(1):6. doi:10.1186/1479-5868-1-6 PubMedGoogle ScholarCrossref
72.
Gutin  B .  Diet vs exercise for the prevention of pediatric obesity: the role of exercise.   Int J Obes (Lond). 2011;35(1):29-32. doi:10.1038/ijo.2010.140 PubMedGoogle ScholarCrossref
73.
Carson  V , Rinaldi  RL , Torrance  B ,  et al.  Vigorous physical activity and longitudinal associations with cardiometabolic risk factors in youth.   Int J Obes (Lond). 2014;38(1):16-21. doi:10.1038/ijo.2013.135 PubMedGoogle ScholarCrossref
74.
Jaakkola  T , Yli-Piipari  S , Huhtiniemi  M ,  et al.  Longitudinal associations among cardiorespiratory and muscular fitness, motor competence and objectively measured physical activity.   J Sci Med Sport. 2019;22(11):1243-1248. doi:10.1016/j.jsams.2019.06.018 PubMedGoogle ScholarCrossref
75.
Crump  C , Sundquist  J , Winkleby  MA , Sieh  W , Sundquist  K .  Physical fitness among swedish military conscripts and long-term risk for type 2 diabetes mellitus: a cohort study.   Ann Intern Med. 2016;164(9):577-584. doi:10.7326/M15-2002 PubMedGoogle ScholarCrossref
76.
Högström  G , Nordström  A , Nordström  P .  High aerobic fitness in late adolescence is associated with a reduced risk of myocardial infarction later in life: a nationwide cohort study in men.   Eur Heart J. 2014;35(44):3133-3140. doi:10.1093/eurheartj/eht527 PubMedGoogle ScholarCrossref
77.
Högström  G , Nordström  A , Nordström  P .  Aerobic fitness in late adolescence and the risk of early death: a prospective cohort study of 1.3 million Swedish men.   Int J Epidemiol. 2016;45(4):1159-1168. doi:10.1093/ije/dyv321 PubMedGoogle ScholarCrossref
78.
Boreham  C , Riddoch  C .  The physical activity, fitness and health of children.   J Sports Sci. 2001;19(12):915-929. doi:10.1080/026404101317108426 PubMedGoogle ScholarCrossref
79.
Westerståhl  M , Jansson  E , Barnekow-Bergkvist  M , Aasa  U .  Longitudinal changes in physical capacity from adolescence to middle age in men and women.   Sci Rep. 2018;8(1):14767. doi:10.1038/s41598-018-33141-3 PubMedGoogle ScholarCrossref
80.
DiPietro  L .  Physical activity, body weight, and adiposity: an epidemiologic perspective.   Exerc Sport Sci Rev. 1995;23(1):275-303. doi:10.1249/00003677-199500230-00011 PubMedGoogle Scholar
81.
Carnethon  MR , Evans  NS , Church  TS ,  et al.  Joint associations of physical activity and aerobic fitness on the development of incident hypertension: coronary artery risk development in young adults.   Hypertension. 2010;56(1):49-55. doi:10.1161/HYPERTENSIONAHA.109.147603 PubMedGoogle ScholarCrossref
82.
Blair  SN , Cheng  Y , Holder  JS .  Is physical activity or physical fitness more important in defining health benefits?   Med Sci Sports Exerc. 2001;33(6)(suppl):S379-S399. doi:10.1097/00005768-200106001-00007 PubMedGoogle ScholarCrossref
83.
Karstoft  K , Pedersen  BK .  Exercise and type 2 diabetes: focus on metabolism and inflammation.   Immunol Cell Biol. 2016;94(2):146-150. doi:10.1038/icb.2015.101 PubMedGoogle ScholarCrossref
84.
Armstrong  N , Welsman  J .  Sex-specific longitudinal modeling of youth peak oxygen uptake.   Pediatr Exerc Sci. 2019;31(2):204-212. doi:10.1123/pes.2018-0175 PubMedGoogle ScholarCrossref
85.
Berenson  GS , Srinivasan  SR , Bao  W , Newman  WP  III , Tracy  RE , Wattigney  WA .  Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults: the Bogalusa Heart Study.   N Engl J Med. 1998;338(23):1650-1656. doi:10.1056/NEJM199806043382302 PubMedGoogle ScholarCrossref
86.
García-Hermoso  A , Alonso-Martínez  AM , Ramírez-Vélez  R , Pérez-Sousa  MÁ , Ramírez-Campillo  R , Izquierdo  M .  Association of physical education with improvement of health-related physical fitness outcomes and fundamental motor skills among youths: a systematic review and meta-analysis.   JAMA Pediatr. 2020;174(6):e200223. doi:10.1001/jamapediatrics.2020.0223 PubMedGoogle Scholar
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close