[Skip to Content]
[Skip to Content Landing]

Return to Play for Athletes After Coronavirus Disease 2019 Infection—Making High-Stakes Recommendations as Data Evolve

Educational Objective
To identify the key insights or developments described in this article
1 Credit CME

As the coronavirus disease 2019 (COVID-19) pandemic began to evolve, case reports suggested that a clinical syndrome consistent with inflammatory myocarditis could occur as the underlying mechanism for the oft-seen elevations in biomarkers of myocardial injury and stress.1 However, as data have progressed, a picture has emerged from autopsy studies of myocardial involvement with viral infection and a cytokine response, but less often inflammatory cell infiltrate consistent with myocarditis.2 In July, a high-profile report3 emerged from Germany showing that more than 2 months after COVID-19 diagnosis, in a group of patients who had clinically recovered after a broad spectrum of disease severity (ranging from asymptomatic to severe illness with intubation), cardiac magnetic resonance (CMR) imaging and biomarker findings in the recovery phase were consistent with active ongoing myocardial involvement and inflammation in 60% of patients.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Corresponding Author: James E. Udelson, MD, The CardioVascular Center, Division of Cardiology, Tufts Medical Center, 800 Washington St, PO Box 70, Boston, MA 02111 (judelson@tuftsmedicalcenter.org).

Published Online: October 26, 2020. doi:10.1001/jamacardio.2020.5896

Conflict of Interest Disclosures: None reported.

References
1.
Inciardi  RM , Lupi  L , Zaccone  G ,  et al.  Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19).   JAMA Cardiol. 2020;5(7):819-824. doi:10.1001/jamacardio.2020.1096 PubMedGoogle ScholarCrossref
2.
Lindner  D , Fitzek  A , Bräuninger  H ,  et al.  Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases.   JAMA Cardiol. Published July 27, 2020. doi:10.1001/jamacardio.2020.3551 PubMedGoogle Scholar
3.
Puntmann  VO , Carerj  ML , Wieters  I ,  et al.  Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19).   JAMA Cardiol. 2020. doi:10.1001/jamacardio.2020.3557 PubMedGoogle Scholar
4.
Lavigne  P , Schlabach  M . Heart condition linked with COVID-19 fuels Power 5 concern about season's viability. Published August 10, 2020. Accessed October 5, 2020. https://www.espn.com/college-football/story/_/id/29633697/heart-condition-linked-covid-19-fuels-power-5-concern-season-viability
5.
Phelan  D , Kim  JH , Chung  EH .  A game plan for the resumption of sport and exercise after coronavirus disease 2019 (COVID-19) infection.   JAMA Cardiol. Published May 13, 2020. doi:10.1001/jamacardio.2020.2136 PubMedGoogle Scholar
6.
Maron  BJ , Udelson  JE , Bonow  RO ,  et al; American Heart Association Electrocardiography and Arrhythmias Committee of Council on Clinical Cardiology, Council on Cardiovascular Disease in Young, Council on Cardiovascular and Stroke Nursing, Council on Functional Genomics and Translational Biology, and American College of Cardiology.  Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 3: hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and other cardiomyopathies, and myocarditis: a scientific statement from the American Heart Association and American College of Cardiology.   Circulation. 2015;132(22):e273-e280.PubMedGoogle Scholar
7.
Rajpal  S , Tong  MS , Borchers  J ,  et al.  Cardiovascular magnetic resonance findings in competitive athletes recovering from COVID-19 infection.   JAMA Cardiol. Published September 11, 2020. doi:10.1001/jamacardio.2020.4916 PubMedGoogle Scholar
8.
Kim  JH , Levine  BD , Phelan  D ,  et al.  COVID-19 and the athletic heart: emerging perspectives on pathology, risks and return to play.   JAMA Cardiol. Published October 26, 2020. doi:10.1001/jamacardio.2020.5890Google Scholar
9.
Ferreira  VM , Schulz-Menger  J , Holmvang  G ,  et al.  Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations.   J Am Coll Cardiol. 2018;72(24):3158-3176. doi:10.1016/j.jacc.2018.09.072 PubMedGoogle ScholarCrossref
10.
Biesbroek  PS , Hirsch  A , Zweerink  A ,  et al.  Additional diagnostic value of CMR to the European Society of Cardiology (ESC) position statement criteria in a large clinical population of patients with suspected myocarditis.   Eur Heart J Cardiovasc Imaging. 2018;19(12):1397-1407. doi:10.1093/ehjci/jex308 PubMedGoogle ScholarCrossref
11.
Wilson  MG , Hull  JH , Rogers  J ,  et al.  Cardiorespiratory considerations for return-to-play in elite athletes after COVID-19 infection: a practical guide for sport and exercise medicine physicians.   Br J Sports Med. 2020;54(19):1157-1161. doi:10.1136/bjsports-2020-102710 PubMedGoogle ScholarCrossref
AMA CME Accreditation Information

Credit Designation Statement: The American Medical Association designates this Journal-based CME activity activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to:

  • 1.00 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program;;
  • 1.00 Self-Assessment points in the American Board of Otolaryngology – Head and Neck Surgery’s (ABOHNS) Continuing Certification program;
  • 1.00 MOC points in the American Board of Pediatrics’ (ABP) Maintenance of Certification (MOC) program;
  • 1.00 Lifelong Learning points in the American Board of Pathology’s (ABPath) Continuing Certification program; and
  • 1.00 credit toward the CME [and Self-Assessment requirements] of the American Board of Surgery’s Continuous Certification program

It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting MOC credit.

Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close