[Skip to Content]
[Skip to Content Landing]

Diagnosis and Treatment of Lower Extremity Venous ThromboembolismA Review

Educational Objective
To review the diagnosis and treatment of deep venous thrombosis
1 Credit CME

Importance  Incidence rates for lower extremity deep vein thrombosis (DVT) range from 88 to 112 per 100 000 person-years and increase with age. Rates of recurrent VTE range from 20% to 36% during the 10 years after an initial event.

Observations  PubMed and Cochrane databases were searched for English-language studies published from January 2015 through June 2020 for randomized clinical trials, meta-analyses, systematic reviews, and observational studies. Risk factors for venous thromboembolism (VTE), such as older age, malignancy (cumulative incidence of 7.4% after a median of 19 months), inflammatory disorders (VTE risk is 4.7% in patients with rheumatoid arthritis and 2.5% in those without), and inherited thrombophilia (factor V Leiden carriers with a 10-year cumulative incidence of 10.9%), are associated with higher risk of VTE. Patients with signs or symptoms of lower extremity DVT, such as swelling (71%) or a cramping or pulling discomfort in the thigh or calf (53%), should undergo assessment of pretest probability followed by D-dimer testing and imaging with venous ultrasonography. A normal D-dimer level (ie, D-dimer <500 ng/mL) excludes acute VTE when combined with a low pretest probability (ie, Wells DVT score ≤1). In patients with a high pretest probability, the negative predictive value of a D-dimer less than 500 ng/mL is 92%. Consequently, D-dimer cannot be used to exclude DVT without an assessment of pretest probability. Postthrombotic syndrome, defined as persistent symptoms, signs of chronic venous insufficiency, or both, occurs in 25% to 50% of patients 3 to 6 months after DVT diagnosis. Catheter-directed fibrinolysis with or without mechanical thrombectomy is appropriate in those with iliofemoral obstruction, severe symptoms, and a low risk of bleeding. The efficacy of direct oral anticoagulants—rivaroxaban, apixaban, dabigatran, and edoxaban—is noninferior to warfarin (absolute rate of recurrent VTE or VTE-related death, 2.0% vs 2.2%). Major bleeding occurs in 1.1% of patients treated with direct oral anticoagulants vs 1.8% treated with warfarin.

Conclusions and Relevance  Greater recognition of VTE risk factors and advances in anticoagulation have facilitated the clinical evaluation and treatment of patients with DVT. Direct oral anticoagulants are noninferior to warfarin with regard to efficacy and are associated with lower rates of bleeding, but costs limit use for some patients.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Corresponding Author: Gregory Piazza, MD, MS, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, 75 Francis St, Boston, MA 02115 (gpiazza@partners.org).

Accepted for Publication: August 24, 2020.

Author Contributions: Drs Chopard, Albertsen, and Piazza had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: All authors.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: All authors.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Chopard, Piazza.

Administrative, technical, or material support: All authors.

Supervision: All authors.

Conflict of Interest Disclosures: Dr Albertsen reported receiving personal fees from Bayer and Bristol Myers Squibb/Pfizer outside the submitted work. Dr Piazza reported receiving grants from Bristol Myers Squibb, Janssen, Daiichi-Sankyo, Bayer, Portola, and BTG/EKOS and being on a scientific advisory panel for Pfizer outside the submitted work. No other disclosures were reported.

Wendelboe  AM , Raskob  GE .  Global burden of thrombosis: epidemiologic aspects.   Circ Res. 2016;118(9):1340-1347. doi:10.1161/CIRCRESAHA.115.306841PubMedGoogle ScholarCrossref
Arshad  N , Isaksen  T , Hansen  JB , Brækkan  SK .  Time trends in incidence rates of venous thromboembolism in a large cohort recruited from the general population.   Eur J Epidemiol. 2017;32(4):299-305. doi:10.1007/s10654-017-0238-yPubMedGoogle ScholarCrossref
Khan  F , Rahman  A , Carrier  M ,  et al; MARVELOUS Collaborators.  Long term risk of symptomatic recurrent venous thromboembolism after discontinuation of anticoagulant treatment for first unprovoked venous thromboembolism event: systematic review and meta-analysis.   BMJ. 2019;366:l4363. doi:10.1136/bmj.l4363PubMedGoogle ScholarCrossref
Albertsen  IE , Nielsen  PB , Sogaard  M ,  et al.  Risk of recurrent venous thromboembolism: a Danish nationwide cohort study.   Am J Med. 2018;131(9):1067-1074. doi:10.1016/j.amjmed.2018.04.042PubMedGoogle ScholarCrossref
Schellong  SM , Goldhaber  SZ , Weitz  JI ,  et al.  Isolated distal deep vein thrombosis: perspectives from the GARFIELD-VTE registry.   Thromb Haemost. 2019;119(10):1675-1685. doi:10.1055/s-0039-1693461PubMedGoogle ScholarCrossref
Heit  JA , Sobell  JL , Li  H , Sommer  SS .  The incidence of venous thromboembolism among Factor V Leiden carriers: a community-based cohort study.   J Thromb Haemost. 2005;3(2):305-311. doi:10.1111/j.1538-7836.2004.01117.xPubMedGoogle ScholarCrossref
Brunson  A , Lei  A , Rosenberg  AS , White  RH , Keegan  T , Wun  T .  Increased incidence of VTE in sickle cell disease patients: risk factors, recurrence and impact on mortality.   Br J Haematol. 2017;178(2):319-326. doi:10.1111/bjh.14655PubMedGoogle ScholarCrossref
Ay  C , Pabinger  I , Cohen  AT .  Cancer-associated venous thromboembolism: burden, mechanisms, and management.   Thromb Haemost. 2017;117(2):219-230. doi:10.1160/TH16-08-0615PubMedGoogle ScholarCrossref
Cohoon  KP , Ashrani  AA , Crusan  DJ , Petterson  TM , Bailey  KR , Heit  JA .  Is infection an independent risk factor for venous thromboembolism? a population-based, case-control study.   Am J Med. 2018;131(3):307-316. doi:10.1016/j.amjmed.2017.05.026PubMedGoogle ScholarCrossref
Cavallari  I , Morrow  DA , Creager  MA ,  et al.  Frequency, predictors, and impact of combined antiplatelet therapy on venous thromboembolism in patients with symptomatic atherosclerosis.   Circulation. 2018;137(7):684-692. doi:10.1161/CIRCULATIONAHA.117.031062PubMedGoogle ScholarCrossref
Peng  YH , Lin  YS , Chen  CH ,  et al.  Type 1 diabetes is associated with an increased risk of venous thromboembolism: a retrospective population-based cohort study.   PLoS One. 2020;15(1):e0226997. doi:10.1371/journal.pone.0226997PubMedGoogle Scholar
Melgaard  L , Nielsen  PB , Overvad  TF , Skjøth  F , Lip  GYH , Larsen  TB .  Sex differences in risk of incident venous thromboembolism in heart failure patients.   Clin Res Cardiol. 2019;108(1):101-109. doi:10.1007/s00392-018-1329-9PubMedGoogle ScholarCrossref
Chen  CY , Liao  KM .  The incidence of deep vein thrombosis in Asian patients with chronic obstructive pulmonary disease.   Medicine (Baltimore). 2015;94(44):e1741. doi:10.1097/MD.0000000000001741PubMedGoogle Scholar
Meng  K , Hu  X , Peng  X , Zhang  Z .  Incidence of venous thromboembolism during pregnancy and the puerperium: a systematic review and meta-analysis.   J Matern Fetal Neonatal Med. 2015;28(3):245-253. doi:10.3109/14767058.2014.913130PubMedGoogle ScholarCrossref
Pengo  V , Ruffatti  A , Legnani  C ,  et al.  Incidence of a first thromboembolic event in asymptomatic carriers of high-risk antiphospholipid antibody profile: a multicenter prospective study.   Blood. 2011;118(17):4714-4718. doi:10.1182/blood-2011-03-340232PubMedGoogle ScholarCrossref
Croles  FN , Nasserinejad  K , Duvekot  JJ , Kruip  MJ , Meijer  K , Leebeek  FW .  Pregnancy, thrombophilia, and the risk of a first venous thrombosis: systematic review and bayesian meta-analysis.   BMJ. 2017;359:j4452. doi:10.1136/bmj.j4452PubMedGoogle ScholarCrossref
Crous-Bou  M , De Vivo  I , Camargo  CA  Jr ,  et al.  Interactions of established risk factors and a GWAS-based genetic risk score on the risk of venous thromboembolism.   Thromb Haemost. 2016;116(4):705-713. doi:10.1160/TH16-02-0172PubMedGoogle ScholarCrossref
Heit  JA , Ashrani  A , Crusan  DJ , McBane  RD , Petterson  TM , Bailey  KR .  Reasons for the persistent incidence of venous thromboembolism.   Thromb Haemost. 2017;117(2):390-400. doi:10.1160/TH16-07-0509PubMedGoogle ScholarCrossref
Mean  M , Limacher  A , Stalder  O ,  et al.  Do Factor V Leiden and prothrombin G20210A mutations predict recurrent venous thromboembolism in older patients?   Am J Med. 2017;130(10):1220.e17-1220.e22. doi:10.1016/j.amjmed.2017.05.026PubMedGoogle ScholarCrossref
Gregson  J , Kaptoge  S , Bolton  T ,  et al; Emerging Risk Factors Collaboration.  Cardiovascular risk factors associated with venous thromboembolism.   JAMA Cardiol. 2019;4(2):163-173. doi:10.1001/jamacardio.2018.4537PubMedGoogle ScholarCrossref
Silverstein  MD , Heit  JA , Mohr  DN , Petterson  TM , O’Fallon  WM , Melton  LJ  III .  Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study.   Arch Intern Med. 1998;158(6):585-593. doi:10.1001/archinte.158.6.585PubMedGoogle ScholarCrossref
Goldhaber  SZ , Tapson  VF ; DVT FREE Steering Committee.  A prospective registry of 5,451 patients with ultrasound-confirmed deep vein thrombosis.   Am J Cardiol. 2004;93(2):259-262. doi:10.1016/j.amjcard.2003.09.057PubMedGoogle ScholarCrossref
Sundbøll  J , Ängquist  L , Adelborg  K ,  et al.  Changes in childhood body-mass index and risk of venous thromboembolism in adulthood.   J Am Heart Assoc. 2019;8(6):e011407. doi:10.1161/JAHA.118.011407PubMedGoogle Scholar
Ianotto  JC , Chauveau  A , Mottier  D ,  et al.  JAK2V617F and calreticulin mutations in recurrent venous thromboembolism: results from the EDITH prospective cohort.   Ann Hematol. 2017;96(3):383-386. doi:10.1007/s00277-016-2853-1PubMedGoogle ScholarCrossref
Rogers  MA , Levine  DA , Blumberg  N , Flanders  SA , Chopra  V , Langa  KM .  Triggers of hospitalization for venous thromboembolism.   Circulation. 2012;125(17):2092-2099. doi:10.1161/CIRCULATIONAHA.111.084467PubMedGoogle ScholarCrossref
Sejrup  JK , Børvik  T , Grimnes  G ,  et al.  Myocardial infarction as a transient risk factor for incident venous thromboembolism: results from a population-based case-crossover study.   Thromb Haemost. 2019;119(8):1358-1364. doi:10.1055/s-0039-1692176PubMedGoogle ScholarCrossref
Timp  JF , Cannegieter  SC , Tichelaar  V ,  et al.  Antibiotic use as a marker of acute infection and risk of first and recurrent venous thrombosis.   Br J Haematol. 2017;176(6):961-970. doi:10.1111/bjh.14551PubMedGoogle ScholarCrossref
Riva  N , Donadini  MP , Ageno  W .  Epidemiology and pathophysiology of venous thromboembolism: similarities with atherothrombosis and the role of inflammation.   Thromb Haemost. 2015;113(6):1176-1183. doi:10.1160/TH14-06-0563PubMedGoogle ScholarCrossref
Ogdie  A , Kay McGill  N , Shin  DB ,  et al.  Risk of venous thromboembolism in patients with psoriatic arthritis, psoriasis and rheumatoid arthritis: a general population-based cohort study.   Eur Heart J. 2018;39(39):3608-3614. doi:10.1093/eurheartj/ehx145PubMedGoogle ScholarCrossref
Savchenko  AS , Martinod  K , Seidman  MA ,  et al.  Neutrophil extracellular traps form predominantly during the organizing stage of human venous thromboembolism development.   J Thromb Haemost. 2014;12(6):860-870. doi:10.1111/jth.12571PubMedGoogle ScholarCrossref
Cheung  KL , Zakai  NA , Folsom  AR ,  et al.  Measures of kidney disease and the risk of venous thromboembolism in the REGARDS (reasons for geographic and racial differences in stroke) study.   Am J Kidney Dis. 2017;70(2):182-190. doi:10.1053/j.ajkd.2016.10.039PubMedGoogle ScholarCrossref
Ocak  G , Vossen  CY , Verduijn  M ,  et al.  Risk of venous thrombosis in patients with major illnesses: results from the MEGA study.   J Thromb Haemost. 2013;11(1):116-123. doi:10.1111/jth.12043PubMedGoogle ScholarCrossref
Kearon  C , Parpia  S , Spencer  FA ,  et al.  Antiphospholipid antibodies and recurrent thrombosis after a first unprovoked venous thromboembolism.   Blood. 2018;131(19):2151-2160. doi:10.1182/blood-2017-09-805689PubMedGoogle ScholarCrossref
Practice Committee of the American Society for Reproductive Medicine.  Combined hormonal contraception and the risk of venous thromboembolism: a guideline.   Fertil Steril. 2017;107(1):43-51. doi:10.1016/j.fertnstert.2016.09.027PubMedGoogle ScholarCrossref
Piazza  G , Seddighzadeh  A , Goldhaber  SZ .  Double trouble for 2,609 hospitalized medical patients who developed deep vein thrombosis: prophylaxis omitted more often and pulmonary embolism more frequent.   Chest. 2007;132(2):554-561. doi:10.1378/chest.07-0430PubMedGoogle ScholarCrossref
Linkins  LA , Bates  SM , Lang  E ,  et al.  Selective D-dimer testing for diagnosis of a first suspected episode of deep venous thrombosis: a randomized trial.   Ann Intern Med. 2013;158(2):93-100. doi:10.7326/0003-4819-158-2-201301150-00003PubMedGoogle ScholarCrossref
Mazzolai  L , Aboyans  V , Ageno  W ,  et al.  Diagnosis and management of acute deep vein thrombosis: a joint consensus document from the European Society of Cardiology working groups of aorta and peripheral vascular diseases and pulmonary circulation and right ventricular function.   Eur Heart J. 2018;39(47):4208-4218. doi:10.1093/eurheartj/ehx003PubMedGoogle ScholarCrossref
Bates  SM , Jaeschke  R , Stevens  SM ,  et al.  Diagnosis of DVT: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines.   Chest. 2012;141(2 suppl):e351S-e418S. doi:10.1378/chest.11-2299PubMedGoogle ScholarCrossref
Geersing  GJ , Zuithoff  NP , Kearon  C ,  et al.  Exclusion of deep vein thrombosis using the Wells rule in clinically important subgroups: individual patient data meta-analysis.   BMJ. 2014;348:g1340. doi:10.1136/bmj.g1340PubMedGoogle ScholarCrossref
Silveira  PC , Ip  IK , Goldhaber  SZ , Piazza  G , Benson  CB , Khorasani  R .  Performance of wells score for deep vein thrombosis in the inpatient setting.   JAMA Intern Med. 2015;175(7):1112-1117. doi:10.1001/jamainternmed.2015.1687PubMedGoogle ScholarCrossref
van Es  N , van der Hulle  T , van Es  J ,  et al.  Wells rule and D-dimer testing to rule out pulmonary embolism: a systematic review and individual-patient data meta-analysis.   Ann Intern Med. 2016;165(4):253-261. doi:10.7326/M16-0031PubMedGoogle ScholarCrossref
Parpia  S , Takach Lapner  S , Schutgens  R , Elf  J , Geersing  GJ , Kearon  C .  Clinical pre-test probability adjusted versus age-adjusted D-dimer interpretation strategy for DVT diagnosis: A diagnostic individual patient data meta-analysis.   J Thromb Haemost. 2020;18(3):669-675. doi:10.1111/jth.14718PubMedGoogle ScholarCrossref
Needleman  L , Cronan  JJ , Lilly  MP ,  et al.  Ultrasound for lower extremity deep venous thrombosis: multidisciplinary recommendations from the Society of Radiologists in Ultrasound Consensus Conference.   Circulation. 2018;137(14):1505-1515. doi:10.1161/CIRCULATIONAHA.117.030687PubMedGoogle ScholarCrossref
Kraaijpoel  N , Carrier  M , Le Gal  G ,  et al.  Diagnostic accuracy of three ultrasonography strategies for deep vein thrombosis of the lower extremity: a systematic review and meta-analysis.   PLoS One. 2020;15(2):e0228788. doi:10.1371/journal.pone.0228788PubMedGoogle Scholar
Birn  J , Vedantham  S .  May-Thurner syndrome and other obstructive iliac vein lesions: meaning, myth, and mystery.   Vasc Med. 2015;20(1):74-83. doi:10.1177/1358863X14560429PubMedGoogle ScholarCrossref
Kaltenmeier  CT , Erben  Y , Indes  J ,  et al.  Systematic review of May-Thurner syndrome with emphasis on gender differences.   J Vasc Surg Venous Lymphat Disord. 2018;6(3):399-407. doi:10.1016/j.jvsv.2017.11.006PubMedGoogle ScholarCrossref
Di Nisio  M , Wichers  IM , Middeldorp  S .  Treatment for superficial thrombophlebitis of the leg.   Cochrane Database Syst Rev. 2018;2:CD004982. doi:10.1002/14651858.CD004982.pub6PubMedGoogle Scholar
Decousus  H , Prandoni  P , Mismetti  P ,  et al; CALISTO Study Group.  Fondaparinux for the treatment of superficial-vein thrombosis in the legs.   N Engl J Med. 2010;363(13):1222-1232. doi:10.1056/NEJMoa0912072PubMedGoogle ScholarCrossref
Di Nisio  M , Wichers  I , Middeldorp  S .  Treatment of lower extremity superficial thrombophlebitis.   JAMA. 2018;320(22):2367-2368. doi:10.1001/jama.2018.16623PubMedGoogle ScholarCrossref
Kahn  SR , Comerota  AJ , Cushman  M ,  et al; American Heart Association Council on Peripheral Vascular Disease, Council on Clinical Cardiology, and Council on Cardiovascular and Stroke Nursing.  The postthrombotic syndrome: evidence-based prevention, diagnosis, and treatment strategies: a scientific statement from the American Heart Association.   Circulation. 2014;130(18):1636-1661. doi:10.1161/CIR.0000000000000130PubMedGoogle ScholarCrossref
Rabinovich  A , Kahn  SR .  How I treat the postthrombotic syndrome.   Blood. 2018;131(20):2215-2222. doi:10.1182/blood-2018-01-785956PubMedGoogle ScholarCrossref
Galanaud  JP , Righini  M , Le Collen  L ,  et al.  Long-term risk of postthrombotic syndrome after symptomatic distal deep vein thrombosis: the CACTUS-PTS study.   J Thromb Haemost. 2020;18(4):857-864. doi:10.1111/jth.14728PubMedGoogle ScholarCrossref
Erkens  PM , Prins  MH .  Fixed dose subcutaneous low molecular weight heparins versus adjusted dose unfractionated heparin for venous thromboembolism.   Cochrane Database Syst Rev. 2010;(9):CD001100. doi:10.1002/14651858.CD001100.pub3PubMedGoogle Scholar
Cuker  A , Arepally  GM , Chong  BH ,  et al.  American Society of Hematology 2018 guidelines for management of venous thromboembolism: heparin-induced thrombocytopenia.   Blood Adv. 2018;2(22):3360-3392. doi:10.1182/bloodadvances.2018024489PubMedGoogle ScholarCrossref
Raskob  GE , van Es  N , Verhamme  P ,  et al; Hokusai VTE Cancer Investigators.  Edoxaban for the treatment of cancer-associated venous thromboembolism.   N Engl J Med. 2018;378(7):615-624. doi:10.1056/NEJMoa1711948PubMedGoogle ScholarCrossref
Young  AM , Marshall  A , Thirlwall  J ,  et al.  Comparison of an oral factor Xa inhibitor with low molecular weight heparin in patients with cancer with venous thromboembolism: results of a randomized trial (SELECT-D).   J Clin Oncol. 2018;36(20):2017-2023. doi:10.1200/JCO.2018.78.8034PubMedGoogle ScholarCrossref
Agnelli  G , Becattini  C , Meyer  G ,  et al; Caravaggio Investigators.  Apixaban for the treatment of venous thromboembolism associated with cancer.   N Engl J Med. 2020;382(17):1599-1607. doi:10.1056/NEJMoa1915103PubMedGoogle ScholarCrossref
Büller  HR , Davidson  BL , Decousus  H ,  et al; Matisse Investigators.  Fondaparinux or enoxaparin for the initial treatment of symptomatic deep venous thrombosis: a randomized trial.   Ann Intern Med. 2004;140(11):867-873. doi:10.7326/0003-4819-140-11-200406010-00007PubMedGoogle ScholarCrossref
Bauersachs  R , Berkowitz  SD , Brenner  B ,  et al; EINSTEIN Investigators.  Oral rivaroxaban for symptomatic venous thromboembolism.   N Engl J Med. 2010;363(26):2499-2510. doi:10.1056/NEJMoa1007903PubMedGoogle ScholarCrossref
Kahale  LA , Hakoum  MB , Tsolakian  IG ,  et al.  Anticoagulation for the long-term treatment of venous thromboembolism in people with cancer.   Cochrane Database Syst Rev. 2018;6:CD006650.PubMedGoogle Scholar
Büller  HR , Décousus  H , Grosso  MA ,  et al; Hokusai-VTE Investigators.  Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism.   N Engl J Med. 2013;369(15):1406-1415. doi:10.1056/NEJMoa1306638PubMedGoogle ScholarCrossref
Schulman  S , Kearon  C , Kakkar  AK ,  et al; RE-COVER Study Group.  Dabigatran versus warfarin in the treatment of acute venous thromboembolism.   N Engl J Med. 2009;361(24):2342-2352. doi:10.1056/NEJMoa0906598PubMedGoogle ScholarCrossref
Agnelli  G , Buller  HR , Cohen  A ,  et al; AMPLIFY Investigators.  Oral apixaban for the treatment of acute venous thromboembolism.   N Engl J Med. 2013;369(9):799-808. doi:10.1056/NEJMoa1302507PubMedGoogle ScholarCrossref
Konstantinides  SV , Meyer  G , Becattini  C ,  et al; ESC Scientific Document Group.  2019 ESC guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS).   Eur Heart J. 2020;41(4):543-603. doi:10.1093/eurheartj/ehz405PubMedGoogle ScholarCrossref
Kearon  C , Akl  EA , Ornelas  J ,  et al.  Antithrombotic therapy for VTE disease: CHEST guideline and expert panel report.   Chest. 2016;149(2):315-352. doi:10.1016/j.chest.2015.11.026PubMedGoogle ScholarCrossref
van Es  N , Coppens  M , Schulman  S , Middeldorp  S , Büller  HR .  Direct oral anticoagulants compared with vitamin K antagonists for acute venous thromboembolism: evidence from phase 3 trials.   Blood. 2014;124(12):1968-1975. doi:10.1182/blood-2014-04-571232PubMedGoogle ScholarCrossref
Cohen  AT , Hamilton  M , Mitchell  SA ,  et al.  Comparison of the novel oral anticoagulants apixaban, dabigatran, edoxaban, and rivaroxaban in the initial and long-term treatment and prevention of venous thromboembolism: systematic review and network meta-analysis.   PLoS One. 2015;10(12):e0144856. doi:10.1371/journal.pone.0144856PubMedGoogle Scholar
Pengo  V , Denas  G , Zoppellaro  G ,  et al.  Rivaroxaban vs warfarin in high-risk patients with antiphospholipid syndrome.   Blood. 2018;132(13):1365-1371. doi:10.1182/blood-2018-04-848333PubMedGoogle ScholarCrossref
Lee  AYY , Kamphuisen  PW , Meyer  G ,  et al; CATCH Investigators.  Tinzaparin vs warfarin for treatment of acute venous thromboembolism in patients with active cancer: a randomized clinical trial.   JAMA. 2015;314(7):677-686. doi:10.1001/jama.2015.9243PubMedGoogle ScholarCrossref
Xing  Z , Tang  L , Zhu  Z , Hu  X .  Effects of thrombolysis on outcomes of patients with deep venous thrombosis: an updated meta-analysis.   PLoS One. 2018;13(9):e0204594. doi:10.1371/journal.pone.0204594PubMedGoogle Scholar
Vedantham  S , Goldhaber  SZ , Julian  JA ,  et al; ATTRACT Trial Investigators.  Pharmacomechanical catheter-directed thrombolysis for deep-vein thrombosis.   N Engl J Med. 2017;377(23):2240-2252. doi:10.1056/NEJMoa1615066PubMedGoogle ScholarCrossref
Soosainathan  A , Moore  HM , Gohel  MS , Davies  AH .  Scoring systems for the post-thrombotic syndrome.   J Vasc Surg. 2013;57(1):254-261. doi:10.1016/j.jvs.2012.09.011PubMedGoogle ScholarCrossref
Righini  M , Galanaud  JP , Guenneguez  H ,  et al.  Anticoagulant therapy for symptomatic calf deep vein thrombosis (CACTUS): a randomised, double-blind, placebo-controlled trial.   Lancet Haematol. 2016;3(12):e556-e562. doi:10.1016/S2352-3026(16)30131-4PubMedGoogle ScholarCrossref
Franco  L , Giustozzi  M , Agnelli  G , Becattini  C .  Anticoagulation in patients with isolated distal deep vein thrombosis: a meta-analysis.   J Thromb Haemost. 2017;15(6):1142-1154. doi:10.1111/jth.13677PubMedGoogle ScholarCrossref
Bikdeli  B , Chatterjee  S , Desai  NR ,  et al.  Inferior vena cava filters to prevent pulmonary embolism: systematic review and meta-analysis.   J Am Coll Cardiol. 2017;70(13):1587-1597. doi:10.1016/j.jacc.2017.07.775PubMedGoogle ScholarCrossref
Kearon  C , Ageno  W , Cannegieter  SC , Cosmi  B , Geersing  GJ , Kyrle  PA ; Subcommittees on Control of Anticoagulation, and Predictive and Diagnostic Variables in Thrombotic Disease.  Categorization of patients as having provoked or unprovoked venous thromboembolism: guidance from the SSC of ISTH.   J Thromb Haemost. 2016;14(7):1480-1483. doi:10.1111/jth.13336PubMedGoogle ScholarCrossref
Weitz  JI , Lensing  AWA , Prins  MH ,  et al; EINSTEIN CHOICE Investigators.  Rivaroxaban or aspirin for extended treatment of venous thromboembolism.   N Engl J Med. 2017;376(13):1211-1222. doi:10.1056/NEJMoa1700518PubMedGoogle ScholarCrossref
Agnelli  G , Buller  HR , Cohen  A ,  et al; AMPLIFY-EXT Investigators.  Apixaban for extended treatment of venous thromboembolism.   N Engl J Med. 2013;368(8):699-708. doi:10.1056/NEJMoa1207541PubMedGoogle ScholarCrossref
Schulman  S ; RE-MEDY; RE-SONATE Trial Investigators.  Extended anticoagulation in venous thromboembolism.   N Engl J Med. 2013;368(24):2329. doi:10.1056/NEJMc1304815PubMedGoogle Scholar
Brighton  TA , Eikelboom  JW , Mann  K ,  et al; ASPIRE Investigators.  Low-dose aspirin for preventing recurrent venous thromboembolism.   N Engl J Med. 2012;367(21):1979-1987. doi:10.1056/NEJMoa1210384PubMedGoogle ScholarCrossref
Becattini  C , Agnelli  G , Schenone  A ,  et al; WARFASA Investigators.  Aspirin for preventing the recurrence of venous thromboembolism.   N Engl J Med. 2012;366(21):1959-1967. doi:10.1056/NEJMoa1114238PubMedGoogle ScholarCrossref
Vasanthamohan  L , Boonyawat  K , Chai-Adisaksopha  C , Crowther  M .  Reduced-dose direct oral anticoagulants in the extended treatment of venous thromboembolism: a systematic review and meta-analysis.   J Thromb Haemost. 2018;16(7):1288-1295. doi:10.1111/jth.14156PubMedGoogle ScholarCrossref
Mai  V , Guay  CA , Perreault  L ,  et al.  Extended anticoagulation for VTE: a systematic review and meta-analysis.   Chest. 2019;155(6):1199-1216. doi:10.1016/j.chest.2019.02.402PubMedGoogle ScholarCrossref
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience

Lookup An Activity


My Saved Searches

You currently have no searches saved.


My Saved Courses

You currently have no courses saved.