Hearing Loss in Children | Otolaryngology | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

Hearing Loss in ChildrenA Review

Educational Objective
To review the clinical management of children with hearing loss.
1 Credit CME
Abstract

Importance  Hearing loss in children is common and by age 18 years, affects nearly 1 of every 5 children. Without hearing rehabilitation, hearing loss can cause detrimental effects on speech, language, developmental, educational, and cognitive outcomes in children.

Observations  Consequences of hearing loss in children include worse outcomes in speech, language, education, social functioning, cognitive abilities, and quality of life. Hearing loss can be congenital, delayed onset, or acquired with possible etiologies including congenital infections, genetic causes including syndromic and nonsyndromic etiologies, and trauma, among others. Evaluation of hearing loss must be based on suspected diagnosis, type, laterality and degree of hearing loss, age of onset, and additional variables such as exposure to cranial irradiation. Hearing rehabilitation for children with hearing loss may include use of hearing aids, cochlear implants, bone anchored devices, or use of assistive devices such as frequency modulating systems.

Conclusions and Relevance  Hearing loss in children is common, and there has been substantial progress in diagnosis and management of these cases. Early identification of hearing loss and understanding its etiology can assist with prognosis and counseling of families. In addition, awareness of treatment strategies including the many hearing device options, cochlear implant, and assistive devices can help direct management of the patient to optimize outcomes.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Corresponding Author: Judith E. C. Lieu, MD, MSPH, 660 S Euclid Ave, Campus Box 8115, St Louis, MO 63110 (lieujudithe@wustl.edu).

Accepted for Publication: August 27, 2020.

Author Contributions: Dr Lieu had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: All authors.

Acquisition, analysis, or interpretation of data: Lieu, Kenna.

Drafting of the manuscript: All authors.

Critical revision of the manuscript for important intellectual content: All authors.

Administrative, technical, or material support: All authors.

Supervision: Lieu.

Conflict of Interest Disclosures: Dr Lieu reported receiving personal fees from OSSEO 2019, the 7th International Congress on Bone Conduction Hearing and Related Technologies and being the coinventor of the HEAR-QL, a hearing-related quality of life survey copyrighted by Washington University, for which she occasionally receives royalties. Dr Kenna reported receiving grant support from the National Institutes of Health. Dr Davidson reported receiving grants from the National Institute on Deafness and Other Communication Disorders, and receiving support from Oticon Research. Drs Lieu, Kenna, and Davidson all reported being coeditors of Pediatric Sensorineural Hearing Loss: Clinical Diagnosis and Management. No other disclosures were reported.

References
1.
 Early identification of hearing impairment in infants and young children.   NIH Consens Statement. 1993;11(1):1-24.PubMedGoogle Scholar
2.
Joint Committee on Infant Hearing.  Year 2019 position statement: principles and guidelines for early hearing detection and intervention programs.   J Early Hear Detect Interven. 2019; 4(2):1-44.Google Scholar
3.
Liu  CC , Anne  S , Horn  DL .  Advances in management of pediatric sensorineural hearing loss.   Otolaryngol Clin North Am. 2019;52(5):847-861. doi:10.1016/j.otc.2019.05.004 PubMedGoogle ScholarCrossref
4.
Antia  SD , Jones  PB , Reed  S , Kreimeyer  KH .  Academic status and progress of deaf and hard-of-hearing students in general education classrooms.   J Deaf Stud Deaf Educ. 2009;14(3):293-311. doi:10.1093/deafed/enp009 PubMedGoogle ScholarCrossref
5.
Butcher  E , Dezateux  C , Cortina-Borja  M , Knowles  RL .  Prevalence of permanent childhood hearing loss detected at the universal newborn hearing screen: systematic review and meta-analysis.   PLoS One. 2019;14(7):e0219600. doi:10.1371/journal.pone.0219600 PubMedGoogle Scholar
6.
2017 type and severity summary of identified cases of hearing loss (by ear): ASHA classification. Created August 2019. Accessed June 30, 2020. https://www.cdc.gov/ncbddd/hearingloss/2017-data/documents/2017-HSFS_Type-and-Severity-Table.pdf
7.
Bamford  J , Uus  K , Davis  A .  Screening for hearing loss in childhood: issues, evidence and current approaches in the UK.   J Med Screen. 2005;12(3):119-124. doi:10.1258/0969141054855256 PubMedGoogle ScholarCrossref
8.
Wang  J , Sung  V , Carew  P ,  et al.  Prevalence of childhood hearing loss and secular trends: a systematic review and meta-analysis.   Acad Pediatr. 2019;19(5):504-514. doi:10.1016/j.acap.2019.01.010 PubMedGoogle ScholarCrossref
9.
Geers  A , Brenner  C .  Background and educational characteristics of prelingually deaf children implanted by five years of age.   Ear Hear. 2003;24(1)(suppl):2S-14S. doi:10.1097/01.AUD.0000051685.19171.BD PubMedGoogle ScholarCrossref
10.
Walker  EA , Holte  L , McCreery  RW , Spratford  M , Page  T , Moeller  MP .  The influence of hearing aid use on outcomes of children with mild hearing loss.   J Speech Lang Hear Res. 2015;58(5):1611-1625. doi:10.1044/2015_JSLHR-H-15-0043 PubMedGoogle ScholarCrossref
11.
Tomblin  JB , Harrison  M , Ambrose  SE , Walker  EA , Oleson  JJ , Moeller  MP .  Language outcomes in young children with mild to severe hearing loss.   Ear Hear. 2015;36(suppl 1):76S-91S. doi:10.1097/AUD.0000000000000219 PubMedGoogle ScholarCrossref
12.
Yoshinaga-Itano  C , Baca  RL , Sedey  AL .  Describing the trajectory of language development in the presence of severe-to-profound hearing loss: a closer look at children with cochlear implants versus hearing aids.   Otol Neurotol. 2010;31(8):1268-1274. doi:10.1097/MAO.0b013e3181f1ce07 PubMedGoogle ScholarCrossref
13.
Niparko  JK , Tobey  EA , Thal  DJ ,  et al; CDaCI Investigative Team.  Spoken language development in children following cochlear implantation.   JAMA. 2010;303(15):1498-1506. doi:10.1001/jama.2010.451 PubMedGoogle ScholarCrossref
14.
Pisoni  D , Kronenberger  W , Roman  A , Geers  A .  Measures of digit span and verbal rehearsal speed in deaf children following more than 10 years of cochlear implantation.   Ear Hear. 2011;32(1)(suppl):60S-74S. doi:10.1097/AUD.0b013e3181ffd58e PubMedGoogle ScholarCrossref
15.
Beer  J , Kronenberger  WG , Pisoni  DB .  Executive function in everyday life: implications for young cochlear implant users.   Cochlear Implants Int. 2011;12(suppl 1):S89-S91. doi:10.1179/146701011X13001035752570PubMedGoogle ScholarCrossref
16.
Kronenberger  WG , Pisoni  DB , Harris  MS , Hoen  HM , Xu  H , Miyamoto  RT .  Profiles of verbal working memory growth predict speech and language development in children with cochlear implants.   J Speech Lang Hear Res. 2013;56(3):805-825. doi:10.1044/1092-4388(2012/11-0356) PubMedGoogle ScholarCrossref
17.
Cejas  I , Mitchell  CM , Hoffman  M , Quittner  AL ; CDaCI Investigative Team.  Comparisons of IQ in children with and without cochlear implants: longitudinal findings and associations with language.   Ear Hear. 2018;39(6):1187-1198. doi:10.1097/AUD.0000000000000578 PubMedGoogle ScholarCrossref
18.
AuBuchon  AM , Pisoni  DB , Kronenberger  WG .  Short-term and working memory impairments in early-implanted, long-term cochlear implant users are independent of audibility and speech production.   Ear Hear. 2015;36(6):733-737. doi:10.1097/AUD.0000000000000189 PubMedGoogle ScholarCrossref
19.
Teasdale  TW , Sorensen  MH .  Hearing loss in relation to educational attainment and cognitive abilities: a population study.   Int J Audiol. 2007;46(4):172-175. doi:10.1080/14992020601089484 PubMedGoogle ScholarCrossref
20.
Idstad  M , Engdahl  B .  Childhood sensorineural hearing loss and educational attainment in adulthood: results from the HUNT study.   Ear Hear. 2019;40(6):1359-1367. doi:10.1097/AUD.0000000000000716 PubMedGoogle ScholarCrossref
21.
Haukedal  CL , Lyxell  B , Wie  OB .  Health-related quality of life with cochlear implants: the children’s perspective.   Ear Hear. 2020;41(2):330-343. doi:10.1097/AUD.0000000000000761 PubMedGoogle ScholarCrossref
22.
Wong  CL , Ching  TYC , Cupples  L ,  et al.  Psychosocial development in 5-year-old children with hearing loss using hearing aids or cochlear implants.   Trends Hear. 2017;21:2331216517710373. doi:10.1177/2331216517710373 PubMedGoogle Scholar
23.
Bigler  D , Burke  K , Laureano  N , Alfonso  K , Jacobs  J , Bush  ML .  Assessment and treatment of behavioral disorders in children with hearing loss: a systematic review.   Otolaryngol Head Neck Surg. 2019;160(1):36-48. doi:10.1177/0194599818797598 PubMedGoogle ScholarCrossref
24.
Hindley  PA , Hill  PD , McGuigan  S , Kitson  N .  Psychiatric disorder in deaf and hearing impaired children and young people: a prevalence study.   J Child Psychol Psychiatry. 1994;35(5):917-934. doi:10.1111/j.1469-7610.1994.tb02302.x PubMedGoogle ScholarCrossref
25.
Hall  WC , Li  D , Dye  TDV .  Influence of hearing loss on child behavioral and home experiences.   Am J Public Health. 2018;108(8):1079-1081. doi:10.2105/AJPH.2018.304498 PubMedGoogle ScholarCrossref
26.
Cushing  SL , Papsin  BC .  Cochlear implants and children with vestibular impairments.   Semin Hear. 2018;39(3):305-320. doi:10.1055/s-0038-1666820 PubMedGoogle ScholarCrossref
27.
Idstad  M , Tambs  K , Aarhus  L , Engdahl  BL .  Childhood sensorineural hearing loss and adult mental health up to 43 years later: results from the HUNT study.   BMC Public Health. 2019;19(1):168. doi:10.1186/s12889-019-6449-2 PubMedGoogle ScholarCrossref
28.
Korver  AMH , Smith  RJH , Van Camp  G ,  et al.  Congenital hearing loss.   Nat Rev Dis Primers. 2017;3:16094. doi:10.1038/nrdp.2016.94 PubMedGoogle ScholarCrossref
29.
Prosser  JD , Cohen  AP , Greinwald  JH .  Diagnostic evaluation of children with sensorineural hearing loss.   Otolaryngol Clin North Am. 2015;48(6):975-982. doi:10.1016/j.otc.2015.07.004 PubMedGoogle ScholarCrossref
30.
Chari  DA , Chan  DK .  Diagnosis and treatment of congenital sensorineural hearing loss.   Curr Otorhinolaryngol Rep. 2017;5(4):251-258. doi:10.1007/s40136-017-0163-3 PubMedGoogle ScholarCrossref
31.
Weng  W , Reid  A , Thompson  A , Kuthubutheen  J .  Evaluating the success of a newly introduced feed and wrap protocol in magnetic resonance imaging scanning of the temporal bone for the evaluation of congenital sensorineural hearing loss.   Int J Pediatr Otorhinolaryngol. 2020;132:109910-109910. doi:10.1016/j.ijporl.2020.109910 PubMedGoogle ScholarCrossref
32.
D’Aguillo  C , Bressler  S , Yan  D ,  et al.  Genetic screening as an adjunct to universal newborn hearing screening: literature review and implications for non-congenital pre-lingual hearing loss.   Int J Audiol. 2019;58(12):834-850. doi:10.1080/14992027.2019.1632499 PubMedGoogle ScholarCrossref
33.
Billings  KR , Kenna  MA .  Causes of pediatric sensorineural hearing loss: yesterday and today.   Arch Otolaryngol Head Neck Surg. 1999;125(5):517-521. doi:10.1001/archotol.125.5.517 PubMedGoogle ScholarCrossref
34.
Cuffe  KM , Kang  JDY , Dorji  T ,  et al.  Identification of United States counties at elevated risk for congenital syphilis using predictive modeling and a risk scoring system.   Sex Transm Dis. 2020. doi:10.1097/OLQ.0000000000001142 PubMedGoogle Scholar
35.
Hereditary hearing loss homepage. Posted January 25, 2020. Updated September 20, 2020. Accessed March 6, 2020. https://hereditaryhearingloss.org
36.
Online mendelian inheritance in man: an online catalog of human gens and genetic disorders. Updated October 29, 2020. Accessed July 5, 2020. https://www.omim.org/
37.
DiStefano  MT , Hemphill  SE , Oza  AM ,  et al; ClinGen Hearing Loss Clinical Domain Working Group.  ClinGen expert clinical validity curation of 164 hearing loss gene-disease pairs.   Genet Med. 2019;21(10):2239-2247. doi:10.1038/s41436-019-0487-0PubMedGoogle ScholarCrossref
38.
Liming  BJ , Carter  J , Cheng  A ,  et al.  International Pediatric Otolaryngology Group (IPOG) consensus recommendations: hearing loss in the pediatric patient.   Int J Pediatr Otorhinolaryngol. 2016;90:251-258. doi:10.1016/j.ijporl.2016.09.016 PubMedGoogle ScholarCrossref
39.
Shearer  AE , Shen  J , Amr  S , Morton  CC , Smith  RJ ; Newborn Hearing Screening Working Group of the National Coordinating Center for the Regional Genetics Networks.  A proposal for comprehensive newborn hearing screening to improve identification of deaf and hard-of-hearing children.   Genet Med. 2019;21(11):2614-2630. doi:10.1038/s41436-019-0563-5PubMedGoogle ScholarCrossref
40.
Sloan-Heggen  CM , Bierer  AO , Shearer  AE ,  et al.  Comprehensive genetic testing in the clinical evaluation of 1119 patients with hearing loss.   Hum Genet. 2016;135(4):441-450. doi:10.1007/s00439-016-1648-8 PubMedGoogle ScholarCrossref
41.
Koffler  T , Ushakov  K , Avraham  KB .  Genetics of hearing loss: syndromic.   Otolaryngol Clin North Am. 2015;48(6):1041-1061. doi:10.1016/j.otc.2015.07.007 PubMedGoogle ScholarCrossref
42.
Savige  J , Ariani  F , Mari  F ,  et al.  Expert consensus guidelines for the genetic diagnosis of Alport syndrome.   Pediatr Nephrol. 2019;34(7):1175-1189. doi:10.1007/s00467-018-3985-4 PubMedGoogle ScholarCrossref
43.
Fowler  KB , McCollister  FP , Sabo  DL ,  et al; CHIMES Study.  A targeted approach for congenital cytomegalovirus screening within newborn hearing screening.   Pediatrics. 2017;139(2):e20162128. doi:10.1542/peds.2016-2128 PubMedGoogle Scholar
44.
Ficenec  SC , Schieffelin  JS , Emmett  SD .  A review of hearing loss associated with Zika, Ebola, and Lassa fever.   Am J Trop Med Hyg. 2019;101(3):484-490. doi:10.4269/ajtmh.18-0934 PubMedGoogle ScholarCrossref
45.
McAuley  JB .  Congenital toxoplasmosis.   J Pediatric Infect Dis Soc. 2014;3(suppl 1):S30-S35. doi:10.1093/jpids/piu077 PubMedGoogle ScholarCrossref
46.
Centers for Disease Control and Prevention. Sexually transmitted disease surveillance 2018. Published October 1, 2019. Accessed June 30, 2020. https://stacks.cdc.gov/view/cdc
47.
World Health Organization. Childhood hearing loss: strategies for prevention and care. Published 2016. Accessed July 5, 2020. https://apps.who.int/iris/handle/10665/204632
48.
Kenna  MA .  Acquired hearing loss in children.   Otolaryngol Clin North Am. 2015;48(6):933-953. doi:10.1016/j.otc.2015.07.011 PubMedGoogle ScholarCrossref
49.
Ishman  SL , Friedland  DR .  Temporal bone fractures: traditional classification and clinical relevance.   Laryngoscope. 2004;114(10):1734-1741. doi:10.1097/00005537-200410000-00011 PubMedGoogle ScholarCrossref
50.
Chen  JX , Lindeborg  M , Herman  SD ,  et al.  Systematic review of hearing loss after traumatic brain injury without associated temporal bone fracture.   Am J Otolaryngol. 2018;39(3):338-344. doi:10.1016/j.amjoto.2018.01.018 PubMedGoogle ScholarCrossref
51.
Cohen  BE , Durstenfeld  A , Roehm  PC .  Viral causes of hearing loss: a review for hearing health professionals.   Trends Hear. 2014;18:18. doi:10.1177/2331216514541361 PubMedGoogle Scholar
52.
Nguyen  T , Jeyakumar  A .  Genetic susceptibility to aminoglycoside ototoxicity.   Int J Pediatr Otorhinolaryngol. 2019;120:15-19. doi:10.1016/j.ijporl.2019.02.002 PubMedGoogle ScholarCrossref
53.
Maiolino  L , Cocuzza  S , Conti  A , Licciardello  L , Serra  A , Gallina  S .  Autoimmune ear disease: clinical and diagnostic relevance in Cogan’s syndrome.   Audiol Res. 2017;7(1):162. doi:10.4081/audiores.2017.162 PubMedGoogle ScholarCrossref
54.
Nakanishi  H , Prakash  P , Ito  T ,  et al.  Genetic hearing loss associated with autoinflammation.   Front Neurol. 2020;11:141. doi:10.3389/fneur.2020.00141 PubMedGoogle ScholarCrossref
55.
Litovsky  RY , Gordon  K .  Bilateral cochlear implants in children: effects of auditory experience and deprivation on auditory perception.   Hear Res. 2016;338:76-87. doi:10.1016/j.heares.2016.01.003 PubMedGoogle ScholarCrossref
56.
Sarant  J , Harris  D , Bennet  L , Bant  S .  Bilateral versus unilateral cochlear implants in children: a study of spoken language outcomes.   Ear Hear. 2014;35(4):396-409. doi:10.1097/AUD.0000000000000022 PubMedGoogle ScholarCrossref
57.
Leigh  J , Dettman  S , Dowell  R , Sarant  J .  Evidence-based approach for making cochlear implant recommendations for infants with residual hearing.   Ear Hear. 2011;32(3):313-322. doi:10.1097/AUD.0b013e3182008b1c PubMedGoogle ScholarCrossref
58.
Leigh  JR , Dettman  SJ , Dowell  RC .  Evidence-based guidelines for recommending cochlear implantation for young children: audiological criteria and optimizing age at implantation.   Int J Audiol. 2016;55(suppl 2):S9-S18. doi:10.3109/14992027.2016.1157268 PubMedGoogle ScholarCrossref
59.
Lovett  RES , Vickers  DA , Summerfield  AQ .  Bilateral cochlear implantation for hearing-impaired children: criterion of candidacy derived from an observational study.   Ear Hear. 2015;36(1):14-23. doi:10.1097/AUD.0000000000000087 PubMedGoogle ScholarCrossref
60.
de Kleijn  JL , van Kalmthout  LWM , van der Vossen  MJB , Vonck  BMD , Topsakal  V , Bruijnzeel  H .  Identification of pure-tone audiologic thresholds for pediatric cochlear implant candidacy: a systematic review.   JAMA Otolaryngol Head Neck Surg. 2018;144(7):630-638. doi:10.1001/jamaoto.2018.0652 PubMedGoogle ScholarCrossref
61.
Dettman  SJ , Dowell  RC , Choo  D ,  et al.  Long-term communication outcomes for children receiving cochlear implants younger than 12 months: a multicenter study.   Otol Neurotol. 2016;37(2):e82-e95. doi:10.1097/MAO.0000000000000915 PubMedGoogle ScholarCrossref
62.
Nicholas  JG , Geers  AE .  Will they catch up? the role of age at cochlear implantation in the spoken language development of children with severe to profound hearing loss.   J Speech Lang Hear Res. 2007;50(4):1048-1062. doi:10.1044/1092-4388(2007/073) PubMedGoogle ScholarCrossref
63.
Svirsky  MA , Teoh  S-W , Neuburger  H .  Development of language and speech perception in congenitally, profoundly deaf children as a function of age at cochlear implantation.   Audiol Neurootol. 2004;9(4):224-233. doi:10.1159/000078392 PubMedGoogle ScholarCrossref
64.
Cosetti  M , Roland  JT  Jr .  Cochlear implantation in the very young child: issues unique to the under-1 population.   Trends Amplif. 2010;14(1):46-57. doi:10.1177/1084713810370039 PubMedGoogle ScholarCrossref
65.
Bruijnzeel  H , Ziylan  F , Stegeman  I , Topsakal  V , Grolman  W .  A systematic review to define the speech and language benefit of early (<12 months) pediatric cochlear implantation.   Audiol Neurootol. 2016;21(2):113-126. doi:10.1159/000443363 PubMedGoogle ScholarCrossref
66.
Farinetti  A , Ben Gharbia  D , Mancini  J , Roman  S , Nicollas  R , Triglia  JM .  Cochlear implant complications in 403 patients: comparative study of adults and children and review of the literature.   Eur Ann Otorhinolaryngol Head Neck Dis. 2014;131(3):177-182. doi:10.1016/j.anorl.2013.05.005 PubMedGoogle ScholarCrossref
67.
Bhatia  K , Gibbin  KP , Nikolopoulos  TP , O’Donoghue  GM .  Surgical complications and their management in a series of 300 consecutive pediatric cochlear implantations.   Otol Neurotol. 2004;25(5):730-739. doi:10.1097/00129492-200409000-00015 PubMedGoogle ScholarCrossref
68.
Yeung  J , Griffin  A , Newton  S , Kenna  M , Licameli  GR .  Revision cochlear implant surgery in children: surgical and audiological outcomes.   Laryngoscope. 2018;128(11):2619-2624. doi:10.1002/lary.27198 PubMedGoogle ScholarCrossref
69.
Cupples  L , Ching  TYC , Button  L ,  et al.  Language and speech outcomes of children with hearing loss and additional disabilities: identifying the variables that influence performance at five years of age.   Int J Audiol. 2018;57(sup2):S93-S104. doi:10.1080/14992027.2016.1228127 PubMedGoogle ScholarCrossref
70.
Boothroyd  A , Geers  AE , Moog  JS .  Practical implications of cochlear implants in children.   Ear Hear. 1991;12(4)(suppl):81S-89S. doi:10.1097/00003446-199108001-00010 PubMedGoogle ScholarCrossref
71.
Geers  AE , Nicholas  J , Tobey  E , Davidson  L .  Persistent language delay versus late language emergence in children with early cochlear implantation.   J Speech Lang Hear Res. 2016;59(1):155-170. doi:10.1044/2015_JSLHR-H-14-0173 PubMedGoogle ScholarCrossref
72.
Sarant  JZ , Harris  DC , Bennet  LA .  Academic outcomes for school-aged children with severe-profound hearing loss and early unilateral and bilateral cochlear implants.   J Speech Lang Hear Res. 2015;58(3):1017-1032. doi:10.1044/2015_JSLHR-H-14-0075 PubMedGoogle ScholarCrossref
73.
Loy  B , Warner-Czyz  AD , Tong  L , Tobey  EA , Roland  PS .  The children speak: an examination of the quality of life of pediatric cochlear implant users.   Otolaryngol Head Neck Surg. 2010;142(2):247-253. doi:10.1016/j.otohns.2009.10.045 PubMedGoogle ScholarCrossref
74.
Illg  A , Haack  M , Lesinski-Schiedat  A , Büchner  A , Lenarz  T .  Long-term outcomes, education, and occupational level in cochlear implant recipients who were implanted in childhood.   Ear Hear. 2017;38(5):577-587. doi:10.1097/AUD.0000000000000423 PubMedGoogle ScholarCrossref
75.
Peters  BR , Wyss  J , Manrique  M .  Worldwide trends in bilateral cochlear implantation.   Laryngoscope. 2010;120(suppl 2):S17-S44. doi:10.1002/lary.20859 PubMedGoogle ScholarCrossref
76.
Gordon  K , Henkin  Y , Kral  A .  Asymmetric hearing during development: the aural preference syndrome and treatment options.   Pediatrics. 2015;136(1):141-153. doi:10.1542/peds.2014-3520 PubMedGoogle ScholarCrossref
77.
Peters  BR , Litovsky  R , Parkinson  A , Lake  J .  Importance of age and postimplantation experience on speech perception measures in children with sequential bilateral cochlear implants.   Otol Neurotol. 2007;28(5):649-657. doi:10.1097/01.mao.0000281807.89938.60 PubMedGoogle ScholarCrossref
78.
Ching  TYC , Day  J , Van Buynder  P ,  et al.  Language and speech perception of young children with bimodal fitting or bilateral cochlear implants.   Cochlear Implants Int. 2014;15(suppl 1):S43-S46. doi:10.1179/1467010014Z.000000000168 PubMedGoogle ScholarCrossref
79.
Nittrouer  S , Chapman  C .  The effects of bilateral electric and bimodal electric-acoustic stimulation on language development.   Trends Amplif. 2009;13(3):190-205. doi:10.1177/1084713809346160 PubMedGoogle ScholarCrossref
80.
Davidson  LS , Geers  AE , Uchanski  RM , Firszt  JB .  Effects of early acoustic hearing on speech perception and language for pediatric cochlear implant recipients.   J Speech Lang Hear Res. 2019;62(9):3620-3637. doi:10.1044/2019_JSLHR-H-18-0255 PubMedGoogle ScholarCrossref
81.
Anne  S , Lieu  JEC , Cohen  MS .  Speech and language consequences of unilateral hearing loss: a systematic review.   Otolaryngol Head Neck Surg. 2017;157(4):572-579. doi:10.1177/0194599817726326 PubMedGoogle ScholarCrossref
82.
Fischer  C , Lieu  JEC .  Unilateral hearing loss is associated with a negative effect on language scores in adolescents.   Int J Pediatr Otorhinolaryngol. 2014;78(10):1611-1617. doi:10.1016/j.ijporl.2014.07.005 PubMedGoogle ScholarCrossref
83.
Lieu  JE .  Speech-language and educational consequences of unilateral hearing loss in children.   Arch Otolaryngol Head Neck Surg. 2004;130(5):524-530. doi:10.1001/archotol.130.5.524 PubMedGoogle ScholarCrossref
84.
Lieu  JE , Tye-Murray  N , Karzon  RK , Piccirillo  JF .  Unilateral hearing loss is associated with worse speech-language scores in children.   Pediatrics. 2010;125(6):e1348-e1355. doi:10.1542/peds.2009-2448 PubMedGoogle ScholarCrossref
85.
Christensen  L , Richter  GT , Dornhoffer  JL .  Update on bone-anchored hearing aids in pediatric patients with profound unilateral sensorineural hearing loss.   Arch Otolaryngol Head Neck Surg. 2010;136(2):175-177. doi:10.1001/archoto.2009.203 PubMedGoogle ScholarCrossref
86.
de Wolf  MJ , Hol  MK , Mylanus  EA , Snik  AF , Cremers  CW .  Benefit and quality of life after bone-anchored hearing aid fitting in children with unilateral or bilateral hearing impairment.   Arch Otolaryngol Head Neck Surg. 2011;137(2):130-138. doi:10.1001/archoto.2010.252 PubMedGoogle ScholarCrossref
87.
Hol  MK , Kunst  SJ , Snik  AF , Bosman  AJ , Mylanus  EA , Cremers  CW .  Bone-anchored hearing aids in patients with acquired and congenital unilateral inner ear deafness (Baha CROS): clinical evaluation of 56 cases.   Ann Otol Rhinol Laryngol. 2010;119(7):447-454. doi:10.1177/000348941011900704 PubMedGoogle ScholarCrossref
88.
Appachi  S , Specht  JL , Raol  N ,  et al.  Auditory outcomes with hearing rehabilitation in children with unilateral hearing loss: a systematic review.   Otolaryngol Head Neck Surg. 2017;157(4):565-571. doi:10.1177/0194599817726757 PubMedGoogle ScholarCrossref
89.
Zeitler  DM , Sladen  DP , DeJong  MD , Torres  JH , Dorman  MF , Carlson  ML .  Cochlear implantation for single-sided deafness in children and adolescents.   Int J Pediatr Otorhinolaryngol. 2019;118:128-133. doi:10.1016/j.ijporl.2018.12.037 PubMedGoogle ScholarCrossref
90.
Ehrmann-Mueller  D , Kurz  A , Kuehn  H ,  et al.  Usefulness of cochlear implantation in children with single sided deafness.   Int J Pediatr Otorhinolaryngol. 2020;130:109808-109808. doi:10.1016/j.ijporl.2019.109808 PubMedGoogle ScholarCrossref
91.
Briggs  L , Davidson  L , Lieu  JE .  Outcomes of conventional amplification for pediatric unilateral hearing loss.   Ann Otol Rhinol Laryngol. 2011;120(7):448-454. doi:10.1177/000348941112000705 PubMedGoogle ScholarCrossref
92.
Johnstone  PM , Nábĕlek  AK , Robertson  VS .  Sound localization acuity in children with unilateral hearing loss who wear a hearing aid in the impaired ear.   J Am Acad Audiol. 2010;21(8):522-534. doi:10.3766/jaaa.21.8.4 PubMedGoogle ScholarCrossref
93.
Kenworthy  OT , Klee  T , Tharpe  AM .  Speech recognition ability of children with unilateral sensorineural hearing loss as a function of amplification, speech stimuli and listening condition.   Ear Hear. 1990;11(4):264-270. doi:10.1097/00003446-199008000-00003 PubMedGoogle ScholarCrossref
94.
Priwin  C , Jönsson  R , Hultcrantz  M , Granström  G .  BAHA in children and adolescents with unilateral or bilateral conductive hearing loss: a study of outcome.   Int J Pediatr Otorhinolaryngol. 2007;71(1):135-145. doi:10.1016/j.ijporl.2006.09.014 PubMedGoogle ScholarCrossref
95.
Updike  CD .  Comparison of FM auditory trainers, CROS aids, and personal amplification in unilaterally hearing impaired children.   J Am Acad Audiol. 1994;5(3):204-209.PubMedGoogle Scholar
96.
Semenov  YR , Yeh  ST , Seshamani  M ,  et al; CDaCI Investigative Team.  Age-dependent cost-utility of pediatric cochlear implantation.   Ear Hear. 2013;34(4):402-412. doi:10.1097/AUD.0b013e3182772c66 PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close