Household Transmission of SARS-CoV-2 | Global Health | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

Household Transmission of SARS-CoV-2A Systematic Review and Meta-analysis

Educational Objective
To identify the key insights or developments described in this article
1 Credit CME
Key Points

Question  What is the household secondary attack rate for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)?

Findings  In this meta-analysis of 54 studies with 77 758 participants, the estimated overall household secondary attack rate was 16.6%, higher than observed secondary attack rates for SARS-CoV and Middle East respiratory syndrome coronavirus. Controlling for differences across studies, secondary attack rates were higher in households from symptomatic index cases than asymptomatic index cases, to adult contacts than to child contacts, to spouses than to other family contacts, and in households with 1 contact than households with 3 or more contacts.

Meaning  These findings suggest that households are and will continue to be important venues for transmission, even in areas where community transmission is reduced.

Abstract

Importance  Crowded indoor environments, such as households, are high-risk settings for the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

Objectives  To examine evidence for household transmission of SARS-CoV-2, disaggregated by several covariates, and to compare it with other coronaviruses.

Data Source  PubMed, searched through October 19, 2020. Search terms included SARS-CoV-2 or COVID-19 with secondary attack rate, household, close contacts, contact transmission, contact attack rate, or family transmission.

Study Selection  All articles with original data for estimating household secondary attack rate were included. Case reports focusing on individual households and studies of close contacts that did not report secondary attack rates for household members were excluded.

Data Extraction and Synthesis  Meta-analyses were done using a restricted maximum-likelihood estimator model to yield a point estimate and 95% CI for secondary attack rate for each subgroup analyzed, with a random effect for each study. To make comparisons across exposure types, study was treated as a random effect, and exposure type was a fixed moderator. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline was followed.

Main Outcomes and Measures  Secondary attack rate for SARS-CoV-2, disaggregated by covariates (ie, household or family contact, index case symptom status, adult or child contacts, contact sex, relationship to index case, adult or child index cases, index case sex, number of contacts in household) and for other coronaviruses.

Results  A total of 54 relevant studies with 77 758 participants reporting household secondary transmission were identified. Estimated household secondary attack rate was 16.6% (95% CI, 14.0%-19.3%), higher than secondary attack rates for SARS-CoV (7.5%; 95% CI, 4.8%-10.7%) and MERS-CoV (4.7%; 95% CI, 0.9%-10.7%). Household secondary attack rates were increased from symptomatic index cases (18.0%; 95% CI, 14.2%-22.1%) than from asymptomatic index cases (0.7%; 95% CI, 0%-4.9%), to adult contacts (28.3%; 95% CI, 20.2%-37.1%) than to child contacts (16.8%; 95% CI, 12.3%-21.7%), to spouses (37.8%; 95% CI, 25.8%-50.5%) than to other family contacts (17.8%; 95% CI, 11.7%-24.8%), and in households with 1 contact (41.5%; 95% CI, 31.7%-51.7%) than in households with 3 or more contacts (22.8%; 95% CI, 13.6%-33.5%).

Conclusions and Relevance  The findings of this study suggest that given that individuals with suspected or confirmed infections are being referred to isolate at home, households will continue to be a significant venue for transmission of SARS-CoV-2.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: November 6, 2020.

Published: December 14, 2020. doi:10.1001/jamanetworkopen.2020.31756

Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2020 Madewell ZJ et al. JAMA Network Open.

Corresponding Author: Zachary J. Madewell, Department of Biostatistics, University of Florida, PO Box 117450, Gainesville, FL 32611 (zmadewell@ufl.edu).

Author Contributions: Drs Madewell and Dean had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Madewell, Longini, Dean.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Madewell, Longini, Dean.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: All authors.

Obtained funding: Dean.

Administrative, technical, or material support: Dean.

Supervision: Dean.

Conflict of Interest Disclosures: None reported.

Funding/Support: This work was supported by grant R01-AI139761 from the National Institutes of Health.

Role of the Funder/Sponsor: The funder had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

References
1.
World Health Organization. Transmission of SARS-CoV-2: implications for infection prevention precautions. Published July 9, 2020. Accessed November 11, 2020. https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions
2.
Oran  DP , Topol  EJ .  Prevalence of asymptomatic SARS-CoV-2 infection : a narrative review.   Ann Intern Med. 2020;173(5):362-367. doi:10.7326/M20-3012PubMedGoogle ScholarCrossref
3.
Nishiura  H , Oshitani  H , Kobayashi  T ,  et al.  Closed environments facilitate secondary transmission of coronavirus disease 2019 (COVID-19).   medRxiv. Preprint published online April 16, 2020. doi:10.1101/2020.02.28.20029272Google Scholar
4.
World Health Organization. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). February 16-24, 2020. Accessed November 11, 2020. https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
5.
Badr  HS , Du  H , Marshall  M , Dong  E , Squire  MM , Gardner  LM .  Association between mobility patterns and COVID-19 transmission in the USA: a mathematical modelling study.   Lancet Infect Dis. 2020;20(11):1247-1254. doi:10.1016/S1473-3099(20)30553-3PubMedGoogle ScholarCrossref
6.
Drake  TM , Docherty  AB , Weiser  TG , Yule  S , Sheikh  A , Harrison  EM .  The effects of physical distancing on population mobility during the COVID-19 pandemic in the UK.   Lancet Digit Health. 2020;2(8):e385-e387. doi:10.1016/S2589-7500(20)30134-5PubMedGoogle ScholarCrossref
7.
Fang  H , Wang  L , Yang  Y . Human mobility restrictions and the spread of the novel coronavirus (2019-nCoV) in China. National Bureau of Economic Research. Published March 2020. Accessed November 11, 2020. https://www.nber.org/papers/w26906
8.
Curmei  M , Ilyas  A , Evans  O , Steinhardt  J.   Estimating household transmission of SARS-CoV-2.   medRxiv. Preprint published online June 27, 2020. doi:10.1101/2020.05.23.20111559Google Scholar
9.
US Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19): how to protect yourself and others. Updated November 4, 2020. Accessed November 11, 2020. https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/prevention.html
10.
Wells  G. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analysis. Accessed November 11, 2020. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
11.
Fung  HF , Martinez  L , Alarid-Escudero  F ,  et al; SC-COSMO Modeling Group.  The household secondary attack rate of SARS-CoV-2: a rapid review.   Clin Infect Dis. Published online October 12, 2020:ciaa1558. doi:10.1093/cid/ciaa1558PubMedGoogle Scholar
12.
Freeman  MF , Tukey  JW .  Transformations related to the angular and the square root.   Annals Math Stat. 1950;21(4):607-611. doi:10.1214/aoms/1177729756Google ScholarCrossref
13.
Higgins  JP , Thompson  SG , Deeks  JJ , Altman  DG .  Measuring inconsistency in meta-analyses.   BMJ. 2003;327(7414):557-560. doi:10.1136/bmj.327.7414.557PubMedGoogle ScholarCrossref
14.
Viechtbauer  W .  Conducting meta-analyses in R with the metafor package.   J Stat Software. 2010;36(3):1-48. doi:10.18637/jss.v036.i03Google ScholarCrossref
15.
R Core Team. R: a language and environment for statistical computing. Accessed November 13, 2020. https://www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing
16.
Begg  CB , Mazumdar  M .  Operating characteristics of a rank correlation test for publication bias.   Biometrics. 1994;50(4):1088-1101. doi:10.2307/2533446PubMedGoogle ScholarCrossref
17.
Egger  M , Davey Smith  G , Schneider  M , Minder  C .  Bias in meta-analysis detected by a simple, graphical test.   BMJ. 1997;315(7109):629-634. doi:10.1136/bmj.315.7109.629PubMedGoogle ScholarCrossref
18.
Duval  S , Tweedie  R .  Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis.   Biometrics. 2000;56(2):455-463. doi:10.1111/j.0006-341X.2000.00455.xPubMedGoogle ScholarCrossref
19.
Adamik  B , Bawiec  M , Bezborodov  V ,  et al. Bounds on the total number of SARS-CoV-2 infections: the link between severeness rate, household attack rate and the number of undetected cases. Published August 15, 2020. Accessed November 11, 2020. https://docisolation.prod.fire.glass/?guid=8579b2af-bdb0-4d1f-f538-bc52f86d984e
20.
Arnedo-Pena  A , Sabater-Vidal  S , Meseguer-Ferrer  N ,  et al.  COVID-19 secondary attack rate and risk factors in household contacts in Castellon (Spain): preliminary report.   Enfermedades Emergentes. 2020;19(2):64-70. Accessed November 11, 2020. https://docisolation.prod.fire.glass/?guid=45f61a53-bdcc-40ab-ded8-dd9646aa077cGoogle Scholar
21.
Bae  S , Kim  H , Jung  T-Y ,  et al.  Epidemiological characteristics of COVID-19 outbreak at fitness centers in Cheonan, Korea.   J Korean Med Sci. 2020;35(31):e288. doi:10.3346/jkms.2020.35.e288PubMedGoogle Scholar
22.
Bi  Q , Wu  Y , Mei  S ,  et al.  Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study.   Lancet Infect Dis. 2020;20(8):911-919. doi:10.1016/S1473-3099(20)30287-5PubMedGoogle ScholarCrossref
23.
Böhmer  MM , Buchholz  U , Corman  VM ,  et al.  Investigation of a COVID-19 outbreak in Germany resulting from a single travel-associated primary case: a case series.   Lancet Infect Dis. 2020;20(8):920-928. doi:10.1016/S1473-3099(20)30314-5PubMedGoogle ScholarCrossref
24.
Boscolo-Rizzo  P , Borsetto  D , Spinato  G ,  et al.  New onset of loss of smell or taste in household contacts of home-isolated SARS-CoV-2-positive subjects.   Eur Arch Otorhinolaryngol. 2020;277(9):2637-2640. doi:10.1007/s00405-020-06066-9PubMedGoogle ScholarCrossref
25.
Burke  RM .  Active monitoring of persons exposed to patients with confirmed COVID-19—United States, January-February 2020.   MMWR Morb Mortal Wkly Rep. 2020;69:245-246. doi:10.15585/mmwr.mm6909e1Google ScholarCrossref
26.
Chaw  L , Koh  WC , Jamaludin  SA , Naing  L , Alikhan  MF , Wong  J .  SARS-CoV-2 transmission in different settings: analysis of cases and close contacts from the Tablighi cluster in Brunei Darussalam.   Emerg Infect Dis. 2020;26(11):2598-2606. doi:10.3201/eid2611.202263Google ScholarCrossref
27.
Chen  Y , Wang  AH , Yi  B ,  et al.  [Epidemiological characteristics of infection in COVID-19 close contacts in Ningbo city].   Zhonghua Liu Xing Bing Xue Za Zhi. 2020;41(5):667-671. doi:10.3760/cma.j.cn112338-20200304-00251PubMedGoogle Scholar
28.
Cheng  HY , Jian  SW , Liu  DP , Ng  TC , Huang  WT , Lin  HH ; Taiwan COVID-19 Outbreak Investigation Team.  Contact tracing assessment of COVID-19 transmission dynamics in Taiwan and risk at different exposure periods before and after symptom onset.   JAMA Intern Med. 2020;180(9):1156-1163. doi:10.1001/jamainternmed.2020.2020PubMedGoogle ScholarCrossref
29.
Dattner  I , Goldberg  Y , Katriel  G ,  et al.  The role of children in the spread of COVID-19: Using household data from Bnei Brak, Israel, to estimate the relative susceptibility and infectivity of children.   medRxiv. Preprint published online October 11, 2020. doi:10.1101/2020.06.03.20121145Google Scholar
30.
Dawson  P , Rabold  EM , Laws  RL ,  et al.  Loss of taste and smell as distinguishing symptoms of COVID-19.   Clin Infect Dis. 2020;ciaa799. doi:10.1093/cid/ciaa799PubMedGoogle Scholar
31.
Dong  XC , Li  JM , Bai  JY ,  et al.  [Epidemiological characteristics of confirmed COVID-19 cases in Tianjin].   Zhonghua Liu Xing Bing Xue Za Zhi. 2020;41(5):638-641. doi:10.3760/cma.j.cn112338-20200221-00146PubMedGoogle Scholar
32.
Doung-ngern  P , Suphanchaimat  R , Panjagampatthana  A ,  et al.  Case-control study of use of personal protective measures and risk for SARS-CoV 2 infection, Thailand.   Emerg Infect Dis. 2020;26(11):2607-2616. doi:10.3201/eid2611.203003PubMedGoogle ScholarCrossref
33.
Draper  AD , Dempsey  KE , Boyd  RH ,  et al.  The first 2 months of COVID-19 contact tracing in the Northern Territory of Australia, March-April 2020.   Commun Dis Intell (2018). 2020;44:44.PubMedGoogle Scholar
34.
Fateh-Moghadam  P , Battisti  L , Molinaro  S ,  et al.  Contact tracing during phase I of the COVID-19 pandemic in the Province of Trento, Italy: key findings and recommendations.   medRxiv. Preprint published online July 29, 2020. doi:10.1101/2020.07.16.20127357Google Scholar
35.
Han  T .  Outbreak investigation: transmission of COVID-19 started from a spa facility in a local community in Korea.   Epidemiol Health. 2020;42(0):e2020056-e2020050. doi:10.4178/epih.e2020056PubMedGoogle ScholarCrossref
36.
Hu  S , Wang  W , Wang  Y ,  et al.  Infectivity, susceptibility, and risk factors associated with SARS-CoV-2 transmission under intensive contact tracing in Hunan, China.   medRxiv. Preprint published online November 3, 2020. doi:10.1101/2020.07.23.20160317Google Scholar
37.
Hua  CZ , Miao  ZP , Zheng  JS ,  et al.  Epidemiological features and viral shedding in children with SARS-CoV-2 infection.   J Med Virol. Published online June 15, 2020. doi:10.1002/jmv.26180PubMedGoogle Scholar
38.
Islam  SS , Noman  ASM . Transmission dynamics and contact tracing assessment of COVID-19 in Chattogram, Bangladesh and potential risk of close contacts at different exposure settings. Published October 12, 2020. Accessed November 11, 2020. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3677863
39.
Jing  Q-L , Liu  M-J , Zhang  ZB ,  et al.  Household secondary attack rate of COVID-19 and associated determinants in Guangzhou, China: a retrospective cohort study.   Lancet Infect Dis. 2020;20(10):1141-1150. doi:10.1016/S1473-3099(20)30471-0PubMedGoogle ScholarCrossref
40.
Kim  J , Choe  YJ , Lee  J ,  et al.  Role of children in household transmission of COVID-19.   Arch Dis Child. 2020;archdischild-2020-319910. doi:10.1136/archdischild-2020-319910PubMedGoogle Scholar
41.
COVID-19 National Emergency Response Center, Epidemiology and Case Management Team, Korea Centers for Disease Control and Prevention.  Coronavirus disease-19: summary of 2,370 contact investigations of the first 30 cases in the Republic of Korea.   Osong Public Health Res Perspect. 2020;11(2):81-84. doi:10.24171/j.phrp.2020.11.2.04PubMedGoogle ScholarCrossref
42.
Laxminarayan  R , Wahl  B , Dudala  SR ,  et al.  Epidemiology and transmission dynamics of COVID-19 in two Indian states.   Science. 2020;370(6517):691-697. doi:10.1126/science.abd7672PubMedGoogle ScholarCrossref
43.
Lee  M , Eun  Y , Park  K , Heo  J , Son  H .  Follow-up investigation of asymptomatic COVID-19 cases at diagnosis in Busan, Korea.   Epidemiol Health. 2020;42:e2020046. doi:10.4178/epih.e2020046PubMedGoogle Scholar
44.
Lewis  NM , Chu  VT , Ye  D ,  et al.  Household transmission of SARS-CoV-2 in the United States.   Clin Infect Dis. Published online August 16, 2020. doi:10.1093/cid/ciaa1166Google Scholar
45.
Li  W , Zhang  B , Lu  J ,  et al.  Characteristics of household transmission of COVID-19.   Clin Infect Dis. 2020;71(8):1943-1946. doi:10.1093/cid/ciaa450PubMedGoogle ScholarCrossref
46.
Liu  T , Liang  W , Zhong  H ,  et al.  Risk factors associated with COVID-19 infection: a retrospective cohort study based on contacts tracing.   Emerg Microbes Infect. 2020;9(1):1546-1553. doi:10.1080/22221751.2020.1787799PubMedGoogle ScholarCrossref
47.
Lopez Bernal  J , Panagiotopoulos  N , Byers  C ,  et al.  Transmission dynamics of COVID-19 in household and community settings in the United Kingdom.   medRxiv. Preprint published online August 22, 2020. doi:10.1101/2020.08.19.20177188Google Scholar
48.
Luo  L , Liu  D , Liao  X ,  et al.  Contact settings and risk for transmission in 3410 close contacts of patients with COVID-19 in Guangzhou, China: a prospective cohort study.   Ann Intern Med. Published August 13, 2020. doi:10.7326/M20-2671PubMedGoogle Scholar
49.
Lyngse  FP , Kirkeby  CT , Halasa  T ,  et al.  COVID-19 transmission within Danish households: a nationwide study from lockdown to reopening.   medRxiv. Preprint published online September 9, 2020. doi:10.1101/2020.09.09.20191239Google Scholar
50.
Malheiro  R , Figueiredo  AL , Magalhães  JP ,  et al.  Effectiveness of contact tracing and quarantine on reducing COVID-19 transmission: a retrospective cohort study.   Public Health. 2020;189:54-59. doi:10.1016/j.puhe.2020.09.012PubMedGoogle ScholarCrossref
51.
Park  YJ , Choe  YJ , Park  O ,  et al; COVID-19 National Emergency Response Center, Epidemiology and Case Management Team.  Contact tracing during coronavirus disease outbreak, South Korea, 2020.   Emerg Infect Dis. 2020;26(10):2465-2468. doi:10.3201/eid2610.201315PubMedGoogle ScholarCrossref
52.
Park  SY , Kim  Y-M , Yi  S ,  et al.  Coronavirus disease outbreak in call center, South Korea.   Emerg Infect Dis. 2020;26(8):1666-1670. doi:10.3201/eid2608.201274PubMedGoogle ScholarCrossref
53.
Patel  A , Charani  E , Ariyanayagam  D ,  et al.  New-onset anosmia and ageusia in adult patients diagnosed with SARS-CoV-2 infection.   Clin Microbiol Infect. Published online June 2 2020.PubMedGoogle Scholar
54.
Phiriyasart  F , Chantutanon  S , Salaeh  F ,  et al. Outbreak investigation of coronavirus disease (COVID-19) among Islamic missionaries in southern Thailand, April 2020. Outbreak, Surveillance, Investigation, and Response (OSIR) Journal. 2020;13(2). Accessed November 11, 2020. http://www.osirjournal.net/index.php/osir/article/view/195
55.
Rosenberg  ES , Dufort  EM , Blog  DS ,  et al; New York State Coronavirus 2019 Response Team.  COVID-19 testing, epidemic features, hospital outcomes, and household prevalence, New York State—March 2020.   Clin Infect Dis. 2020;71(8):1953-1959. doi:10.1093/cid/ciaa549PubMedGoogle ScholarCrossref
56.
Shah  K , Desai  N , Saxena  D , Mavalankar  D , Mishra  U , Patel  GC .  Household secondary attack rate in Gandhinagar district of Gujarat state from Western India.   medRxiv. Preprint published online September 5, 2020. doi:10.1101/2020.09.03.20187336Google Scholar
57.
Son  H , Lee  H , Lee  M ,  et al.  Epidemiological characteristics of and containment measures for COVID-19 in Busan, South Korea.   Epidemiology and Health. 2020;42:e2020035. doi:10.4178/epih.e2020035PubMedGoogle Scholar
58.
Sun  WW , Ling  F , Pan  JR ,  et al.  [Epidemiological characteristics of COVID-19 family clustering in Zhejiang Province].   Zhonghua Yu Fang Yi Xue Za Zhi. 2020;54(6):625-629. doi:10.3760/cma.j.cn112150-20200227-00199PubMedGoogle Scholar
59.
Teherani  MF , Kao  CM , Camacho-Gonzalez  A ,  et al.  Burden of illness in households with SARS-CoV-2 infected children.   J Pediatric Infect Dis Soc. 2020;9(5):613-616. doi:10.1093/jpids/piaa097PubMedGoogle ScholarCrossref
60.
van der Hoek  W , Backer  JA , Bodewes  R ,  et al.  [The role of children in the transmission of SARS-CoV-2].   Ned Tijdschr Geneeskd. 2020;164:D5140.PubMedGoogle Scholar
61.
Wang  Z , Ma  W , Zheng  X , Wu  G , Zhang  R .  Household transmission of SARS-CoV-2.   J Infect. 2020;81(1):179-182. doi:10.1016/j.jinf.2020.03.040PubMedGoogle ScholarCrossref
62.
Wang  X , Pan  Y , Zhang  D ,  et al.  Basic epidemiological parameter values from data of real-world in mega-cities: the characteristics of COVID-19 in Beijing, China.   BMC Infect Dis. 2020;20(1):526. doi:10.1186/s12879-020-05251-9PubMedGoogle ScholarCrossref
63.
Wang  Y , Tian  H , Zhang  L ,  et al.  Reduction of secondary transmission of SARS-CoV-2 in households by face mask use, disinfection and social distancing: a cohort study in Beijing, China.   BMJ Glob Health. 2020;5(5):e002794. doi:10.1136/bmjgh-2020-002794PubMedGoogle Scholar
64.
Wang  X , Zhou  Q , He  Y ,  et al.  Nosocomial outbreak of COVID-19 pneumonia in Wuhan, China.   Eur Respir J. 2020;55(6):2000544. doi:10.1183/13993003.00544-2020PubMedGoogle Scholar
65.
Wu  J , Huang  Y , Tu  C ,  et al.  Household transmission of SARS-CoV-2, Zhuhai, China, 2020.   Clin Infect Dis. Published online May 11, 2020;ciaa557. doi:10.1093/cid/ciaa557PubMedGoogle Scholar
66.
Wu  Y , Song  S , Kao  Q , Kong  Q , Sun  Z , Wang  B .  Risk of SARS-CoV-2 infection among contacts of individuals with COVID-19 in Hangzhou, China.   Public Health. 2020;185:57-59. doi:10.1016/j.puhe.2020.05.016PubMedGoogle ScholarCrossref
67.
Xin  H , Jiang  F , Xue  A ,  et al.  Risk factors associated with occurrence of COVID-19 among household persons exposed to patients with confirmed COVID-19 in Qingdao Municipal, China.   Transbound Emerg Dis. 2020. doi:10.1111/tbed.13743PubMedGoogle Scholar
68.
Yu  HJ , Hu  YF , Liu  XX ,  et al.  Household infection: the predominant risk factor for close contacts of patients with COVID-19.   Travel Med Infect Dis. 2020;36:101809. doi:10.1016/j.tmaid.2020.101809PubMedGoogle Scholar
69.
Yung  CF , Kam  KQ , Chong  CY ,  et al.  Household transmission of SARS-CoV-2 from adults to children.   J Ped. 2020;225:249-251. doi:10.1016/j.jpeds.2020.07.009Google ScholarCrossref
70.
Zhang  W , Cheng  W , Luo  L ,  et al.  Secondary transmission of coronavirus disease from presymptomatic persons, China.   Emerg Infect Dis. 2020;26(8):1924-1926. doi:10.3201/eid2608.201142PubMedGoogle ScholarCrossref
71.
Zhang  JZ , Zhou  P , Han  DB ,  et al.  [Investigation on a cluster epidemic of COVID-19 in a supermarket in Liaocheng, Shandong province].   Zhonghua Liu Xing Bing Xue Za Zhi. Published April 27, 2020.PubMedGoogle Scholar
72.
Zhuang  YL , Zhang  YT , Li  M ,  et al.  [Analysis on the cluster epidemic of coronavirus disease 2019 in Guangdong Province].   Zhonghua Yu Fang Yi Xue Za Zhi. 2020;54(7):720-725.PubMedGoogle Scholar
73.
Stringhini  S , Wisniak  A , Piumatti  G ,  et al.  Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP): a population-based study.   Lancet. 2020;396(10247):313-319. doi:10.1016/S0140-6736(20)31304-0PubMedGoogle ScholarCrossref
74.
Yang  K , Wang  L , Li  F ,  et al.  Analysis of epidemiological characteristics of coronavirus 2019 infection and preventive measures in Shenzhen China: a heavy population city.   medRxiv. Preprint published online March 3, 2020. doi:10.1101/2020.02.28.20028555Google Scholar
75.
Fontanet  A , Grant  R , Tondeur  L ,  et al.  SARS-CoV-2 infection in primary schools in northern France: A retrospective cohort study in an area of high transmission.   medRxiv. Preprint published online June 29, 2020. doi:10.1101/2020.06.25.20140178Google Scholar
76.
Chan  LY , Wong  JT , Li  PK , Lui  SF , Fung  H , Sung  J .  Risk of transmission of severe acute respiratory syndrome to household contacts by infected health care workers and patients.   Am J Med. 2004;116(8):559-560. doi:10.1016/j.amjmed.2003.11.011PubMedGoogle ScholarCrossref
77.
Goh  DL , Lee  BW , Chia  KS ,  et al.  Secondary household transmission of SARS, Singapore.   Emerg Infect Dis. 2004;10(2):232-234. doi:10.3201/eid1002.030676PubMedGoogle ScholarCrossref
78.
Lau  JT , Lau  M , Kim  JH , Tsui  HY , Tsang  T , Wong  TW .  Probable secondary infections in households of SARS patients in Hong Kong.   Emerg Infect Dis. 2004;10(2):235-243. doi:10.3201/eid1002.030626PubMedGoogle Scholar
79.
Wilson-Clark  SD , Deeks  SL , Gournis  E ,  et al.  Household transmission of SARS, 2003.   CMAJ. 2006;175(10):1219-1223. doi:10.1503/cmaj.050876PubMedGoogle ScholarCrossref
80.
Ou  J , Li  Q , Zeng  G , Dun  Z ; Centers for Disease Control and Prevention (CDC).  Efficiency of quarantine during an epidemic of severe acute respiratory syndrome—Beijing, China, 2003.   MMWR Morb Mortal Wkly Rep. 2003;52(43):1037-1040.PubMedGoogle Scholar
81.
Tuan  PA , Horby  P , Dinh  PN ,  et al; WHO SARS Investigation Team in Vietnam.  SARS transmission in Vietnam outside of the health-care setting.   Epidemiol Infect. 2007;135(3):392-401. doi:10.1017/S0950268806006996PubMedGoogle ScholarCrossref
82.
Pang  X , Zhu  Z , Xu  F ,  et al.  Evaluation of control measures implemented in the severe acute respiratory syndrome outbreak in Beijing, 2003.   JAMA. 2003;290(24):3215-3221. doi:10.1001/jama.290.24.3215PubMedGoogle ScholarCrossref
83.
Al Hosani  FI , Kim  L , Khudhair  A ,  et al.  Serologic follow-up of Middle East respiratory syndrome coronavirus cases and contacts—Abu Dhabi, United Arab Emirates.   Clin Infect Dis. 2019;68(3):409-418. doi:10.1093/cid/ciy503PubMedGoogle ScholarCrossref
84.
Arwady  MA , Alraddadi  B , Basler  C ,  et al.  Middle East respiratory syndrome coronavirus transmission in extended family, Saudi Arabia, 2014.   Emerg Infect Dis. 2016;22(8):1395-1402. doi:10.3201/eid2208.152015PubMedGoogle ScholarCrossref
85.
Assiri  A , McGeer  A , Perl  TM ,  et al; KSA MERS-CoV Investigation Team.  Hospital outbreak of Middle East respiratory syndrome coronavirus.   N Engl J Med. 2013;369(5):407-416. doi:10.1056/NEJMoa1306742PubMedGoogle ScholarCrossref
86.
Drosten  C , Meyer  B , Müller  MA ,  et al.  Transmission of MERS-coronavirus in household contacts.   N Engl J Med. 2014;371(9):828-835. doi:10.1056/NEJMoa1405858PubMedGoogle ScholarCrossref
87.
Memish  ZA , Al-Tawfiq  JA , Alhakeem  RF ,  et al.  Middle East respiratory syndrome coronavirus (MERS-CoV): a cluster analysis with implications for global management of suspected cases.   Travel Med Infect Dis. 2015;13(4):311-314. doi:10.1016/j.tmaid.2015.06.012PubMedGoogle ScholarCrossref
88.
Payne  DC , Biggs  HM , Al-Abdallat  MM ,  et al.  Multihospital outbreak of a Middle East respiratory syndrome coronavirus deletion variant, Jordan: a molecular, serologic, and epidemiologic investigation.   Open Forum Infect Dis. 2018;5(5):ofy095. doi:10.1093/ofid/ofy095PubMedGoogle Scholar
89.
Van Kerkhove  MD , Alaswad  S , Assiri  A ,  et al.  Transmissibility of MERS-CoV infection in closed setting, Riyadh, Saudi Arabia, 2015.   Emerg Infect Dis. 2019;25(10):1802-1809. doi:10.3201/eid2510.190130PubMedGoogle ScholarCrossref
90.
Esposito  S , Bosis  S , Niesters  HG ,  et al.  Impact of human coronavirus infections in otherwise healthy children who attended an emergency department.   J Med Virol. 2006;78(12):1609-1615. doi:10.1002/jmv.20745PubMedGoogle ScholarCrossref
91.
Monto  AS , DeJonge  PM , Callear  AP ,  et al.  Coronavirus occurrence and transmission over 8 years in the HIVE cohort of households in Michigan.   J Infect Dis. 2020;222(1):9-16. doi:10.1093/infdis/jiaa161PubMedGoogle ScholarCrossref
92.
Beale  S , Lewer  D , Aldridge  RW ,  et al.  Household transmission of seasonal coronavirus infections: results from the Flu Watch cohort study.   Wellcome Open Research. 2020;5(145):145. doi:10.12688/wellcomeopenres.16055.1Google ScholarCrossref
93.
Tsang  TK , Lau  LLH , Cauchemez  S , Cowling  BJ .  Household transmission of influenza virus.   Trends Microbiol. 2016;24(2):123-133. doi:10.1016/j.tim.2015.10.012PubMedGoogle ScholarCrossref
94.
Ministry of Health, Labour, and Welfare. Avoid the “Three Cs”! Accessed August 5, 2020. https://www.mhlw.go.jp/content/10900000/000619576.pdf
95.
Pang  X , Yang  P , Li  S ,  et al.  Pandemic (H1N1) 2009 among quarantined close contacts, Beijing, People’s Republic of China.   Emerg Infect Dis. 2011;17(10):1824-1830. doi:10.3201/eid1710.101344PubMedGoogle ScholarCrossref
96.
Tam  K , Yousey-Hindes  K , Hadler  JL .  Influenza-related hospitalization of adults associated with low census tract socioeconomic status and female sex in New Haven County, Connecticut, 2007-2011.   Influenza Other Respir Viruses. 2014;8(3):274-281. doi:10.1111/irv.12231PubMedGoogle ScholarCrossref
97.
Chandrasekhar  R , Sloan  C , Mitchel  E ,  et al.  Social determinants of influenza hospitalization in the United States.   Influenza Other Respir Viruses. 2017;11(6):479-488. doi:10.1111/irv.12483PubMedGoogle ScholarCrossref
98.
Sloan  C , Chandrasekhar  R , Mitchel  E , Schaffner  W , Lindegren  ML .  Socioeconomic disparities and influenza hospitalizations, Tennessee, USA.   Emerg Infect Dis. 2015;21(9):1602-1610. doi:10.3201/eid2109.141861PubMedGoogle ScholarCrossref
99.
Viner  RM , Mytton  OT , Bonell  C ,  et al.  Susceptibility to SARS-CoV-2 infection among children and adolescents compared with adults: a systematic review and meta-analysis.   JAMA Pediatr. Published September 25, 2020. doi:10.1001/jamapediatrics.2020.4573PubMedGoogle Scholar
100.
Davies  NG , Klepac  P , Liu  Y , Prem  K , Jit  M , Eggo  RM ; CMMID COVID-19 working group.  Age-dependent effects in the transmission and control of COVID-19 epidemics.   Nat Med. 2020;26(8):1205-1211. doi:10.1038/s41591-020-0962-9PubMedGoogle ScholarCrossref
101.
Huang  AT , Garcia-Carreras  B , Hitchings  MDT ,  et al.  A systematic review of antibody mediated immunity to coronaviruses: kinetics, correlates of protection, and association with severity.   Nat Commun. 2020;11(1):4704. doi:10.1038/s41467-020-18450-4PubMedGoogle ScholarCrossref
102.
Mehta  NS , Mytton  OT , Mullins  EWS ,  et al.  SARS-CoV-2 (COVID-19): what do we know about children? a systematic review.   Clin Infect Dis. Published May 11, 2020;ciaa556. doi:10.1093/cid/ciaa556PubMedGoogle Scholar
103.
Posfay-Barbe  KM , Wagner  N , Gauthey  M ,  et al.  COVID-19 in children and the dynamics of infection in families.   Pediatrics. 2020;146(2):e20201576. doi:10.1542/peds.2020-1576PubMedGoogle Scholar
104.
Lee  B , Raszka  WV  Jr .  COVID-19 transmission and children: the child is not to blame.   Pediatrics. 2020;146(2):e2020004879. doi:10.1542/peds.2020-004879PubMedGoogle Scholar
105.
Zhu  Y , Bloxham  CJ , Hulme  KD ,  et al.  Children are unlikely to have been the primary source of household SARS-CoV-2 infections.   medRxiv. Preprint published online March 30, 2020. doi:10.1101/2020.03.26.20044826Google Scholar
106.
L'Huillier  AG , Torriani  G , Pigny  F , Kaiser  L , Eckerle  I .  Culture-competent SARS-CoV-2 in nasopharynx of symptomatic neonates, children, and adolescents.   Emerg Infect Dis. 2020;26(10):2494-2497. doi:10.3201/eid2610.202403Google ScholarCrossref
107.
World Health Organization. Gender and COVID-19. Published May 14, 2020. Accessed November 11, 2020. https://www.who.int/publications/i/item/gender-and-covid-19
108.
Walsh  KA , Jordan  K , Clyne  B ,  et al.  SARS-CoV-2 detection, viral load and infectivity over the course of an infection.   J Infect. 2020;81(3):357-371. doi:10.1016/j.jinf.2020.06.067PubMedGoogle ScholarCrossref
109.
He  X , Lau  EHY , Wu  P ,  et al.  Temporal dynamics in viral shedding and transmissibility of COVID-19.   Nat Med. 2020;26(5):672-675. doi:10.1038/s41591-020-0869-5PubMedGoogle ScholarCrossref
110.
Ali  ST , Wang  L , Lau  EHY ,  et al.  Serial interval of SARS-CoV-2 was shortened over time by nonpharmaceutical interventions.   Science. 2020;369(6507):1106-1109. doi:10.1126/science.abc9004PubMedGoogle ScholarCrossref
111.
Rabaan  AA , Al-Ahmed  SH , Haque  S ,  et al.  SARS-CoV-2, SARS-CoV, and MERS-COV: a comparative overview.   Infez Med. 2020;28(2):174-184.PubMedGoogle Scholar
112.
Petersen  E , Koopmans  M , Go  U ,  et al.  Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics.   Lancet Infect Dis. 2020;20(9):e238-e244. doi:10.1016/S1473-3099(20)30484-9PubMedGoogle ScholarCrossref
113.
Petrosillo  N , Viceconte  G , Ergonul  O , Ippolito  G , Petersen  E .  COVID-19, SARS and MERS: are they closely related?   Clin Microbiol Infect. 2020;26(6):729-734. doi:10.1016/j.cmi.2020.03.026PubMedGoogle ScholarCrossref
114.
Fraser  C , Riley  S , Anderson  RM , Ferguson  NM .  Factors that make an infectious disease outbreak controllable.   Proc Natl Acad Sci U S A. 2004;101(16):6146-6151. doi:10.1073/pnas.0307506101PubMedGoogle ScholarCrossref
115.
Cowling  BJ , Park  M , Fang  VJ , Wu  P , Leung  GM , Wu  JT .  Preliminary epidemiological assessment of MERS-CoV outbreak in South Korea, May to June 2015.   Euro Surveill. 2015;20(25):7-13. doi:10.2807/1560-7917.ES2015.20.25.21163PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close