Prevalence of Myopia in School-Aged Children After COVID-19 Home Confinement | Ophthalmology | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

Progression of Myopia in School-Aged Children After COVID-19 Home Confinement

Educational Objective
To investigate the refractive changes and prevalence of myopia in school-aged children during the coronavirus disease 2019 (COVID-19) home confinement.
1 Credit CME
Key Points

Question  Is home confinement due to coronavirus disease 2019 associated with the burden of myopia?

Findings  In this cross-sectional study that included 194 904 photoscreening tests conducted in 123 535 children, a substantial myopic shift (−0.3 diopters) was noted after home confinement due to coronavirus disease 2019 for children aged 6 to 8 years. The prevalence of myopia increased 1.4 to 3 times in 2020 compared with the previous 5 years.

Meaning  Home confinement due to coronavirus disease 2019 appeared to be associated with a substantial myopic shift in children; younger (aged 6-8 years) children’s refractive status may be more sensitive to environmental changes than older children, given that they are in an important period for the development of myopia.

Abstract

Importance  Time spent in outdoor activities has decreased owing to home confinement for the coronavirus disease 2019 (COVID-19) pandemic. Concerns have been raised about whether home confinement may have worsened the burden of myopia owing to substantially decreased time spent outdoors and increased screen time at home.

Objective  To investigate the refractive changes and prevalence of myopia in school-aged children during the COVID-19 home confinement.

Design, Setting, and Participants  A prospective cross-sectional study using school-based photoscreenings in 123 535 children aged 6 to 13 years from 10 elementary schools in Feicheng, China, was conducted. The study was performed during 6 consecutive years (2015-2020). Data were analyzed in July 2020.

Exposures  Noncycloplegic photorefraction was examined using a photoscreener device.

Main Outcomes and Measures  The spherical equivalent refraction was recorded for each child and the prevalence of myopia for each age group during each year was calculated. The mean spherical equivalent refraction and prevalence of myopia were compared between 2020 (after home confinement) and the previous 5 years for each age group.

Results  Of the 123 535 children included in the study, 64 335 (52.1%) were boys. A total of 194 904 test results (389 808 eyes) were included in the analysis. A substantial myopic shift (approximately −0.3 diopters [D]) was found in the 2020 school-based photoscreenings compared with previous years (2015-2019) for younger children aged 6 (−0.32 D), 7 (−0.28 D), and 8 (−0.29 D) years. The prevalence of myopia in the 2020 photoscreenings was higher than the highest prevalence of myopia within 2015-2019 for children aged 6 (21.5% vs 5.7%), 7 (26.2% vs 16.2%), and 8 (37.2% vs 27.7%) years. The differences in spherical equivalent refraction and the prevalence of myopia between 2020 and previous years were minimal in children aged 9 to 13 years.

Conclusions and Relevance  Home confinement during the COVID-19 pandemic appeared to be associated with a significant myopic shift for children aged 6 to 8 years according to 2020 school-based photoscreenings. However, numerous limitations warrant caution in the interpretation of these associations, including use of noncycloplegic refractions and lack of orthokeratology history or ocular biometry data. Younger children’s refractive status may be more sensitive to environmental changes than older ages, given the younger children are in a critical period for the development of myopia.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Accepted for Publication: November 12, 2020.

Published Online: January 14, 2021. doi:10.1001/jamaophthalmol.2020.6239

Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2021 Wang J et al. JAMA Ophthalmology.

Corresponding Author: Xuehan Qian, MD, PhD, Department of Strabismus and Pediatric Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin 300384, China (qianxuehan@yahoo.com).

Author Contributions: Drs Wang and Qian had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Drs Wang and Y. Li contributed equally to this work.

Concept and design: Wang, Qian.

Acquisition, analysis, or interpretation of data: Wang, Y. Li, Musch, Wei, Qi, Ding, X. Li, J. Li, Song, Ning, Zhang, Zeng, Hua, S. Li, Qian.

Drafting of the manuscript: Wang, Y. Li.

Critical revision of the manuscript for important intellectual content: Musch, Wei, Qi, Ding, X. Li, J. Li, Song, Ning, Zhang, Zeng, Hua, S. Li, Qian.

Statistical analysis: Wang, Y. Li.

Obtained funding: Qian.

Administrative, technical, or material support: Wei, Qi, Ding, X. Li, J. Li, Song, Ning, Zhang, Zeng, Hua, S. Li, Qian.

Supervision: Qian.

Conflict of Interest Disclosures: None reported.

Funding/Support: This work was supported by grant 17ZXHLSY00020 from the Tianjin Municipal Science and Technology Commission and grant YDYYRCXM-B2018-02LC from Tianjin Medical University Eye Hospital High-Level Innovative Talent Program for Distinguished Scholar (Dr Qian).

Role of the Funder/Sponsor: The funding organizations had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Additional Contributions: Chris Andrews, PhD (Department of Ophthalmology and Visual Sciences, and Department of Epidemiology, University of Michigan), provided advice on statistical analysis. Lingling Wang, MD (Shandong First Medical University, Feicheng Hospital), contributed to the photoscreening work in Feicheng, China. No compensation was provided for these contributions.

References
1.
Morgan  IG , Ohno-Matsui  K , Saw  SM .  Myopia.   Lancet. 2012;379(9827):1739-1748. doi:10.1016/S0140-6736(12)60272-4 PubMedGoogle ScholarCrossref
2.
Holden  B , Mariotti  S , Kocur  I ,  et al The impact of myopia and high myopia: report of the Joint WHO–Brien Holden Vision Institute, Global Scientific Meeting on Myopia. 2015.
3.
He  M , Xiang  F , Zeng  Y ,  et al.  Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial.   JAMA. 2015;314(11):1142-1148. doi:10.1001/jama.2015.10803 PubMedGoogle ScholarCrossref
4.
Lingham  G , Mackey  DA , Lucas  R , Yazar  S .  How does spending time outdoors protect against myopia? a review.   Br J Ophthalmol. 2020;104(5):593-599. doi:10.1136/bjophthalmol-2019-314675 PubMedGoogle ScholarCrossref
5.
Wen  L , Cao  Y , Cheng  Q ,  et al.  Objectively measured near work, outdoor exposure and myopia in children.   Br J Ophthalmol. 2020;104(11):1542-1547. doi:10.1136/bjophthalmol-2019-315258 PubMedGoogle Scholar
6.
Wang  G , Zhang  Y , Zhao  J , Zhang  J , Jiang  F .  Mitigate the effects of home confinement on children during the COVID-19 outbreak.   Lancet. 2020;395(10228):945-947. doi:10.1016/S0140-6736(20)30547-X PubMedGoogle ScholarCrossref
7.
Sumitha  M , Sanjay  S , Kemmanu  V , Bhanumathi  MR , Shetty  R .  Will COVID-19 pandemic–associated lockdown increase myopia in Indian children?   Indian J Ophthalmol. 2020;68(7):1496. doi:10.4103/ijo.IJO_1443_20 PubMedGoogle Scholar
8.
Pellegrini  M , Bernabei  F , Scorcia  V , Giannaccare  G .  May home confinement during the COVID-19 outbreak worsen the global burden of myopia?   Graefes Arch Clin Exp Ophthalmol. 2020;258(9):2069-2070. doi:10.1007/s00417-020-04728-2 PubMedGoogle ScholarCrossref
9.
Navel  V , Beze  S , Dutheil  F .  COVID-19, sweat, tears… and myopia?   Clin Exp Optom. 2020;103(4):555. doi:10.1111/cxo.13086 PubMedGoogle ScholarCrossref
10.
World Medical Association.  World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects.   JAMA. 2013;310(20):2191-2194. doi:10.1001/jama.2013.281053 PubMedGoogle ScholarCrossref
11.
Wang  J , Li  Y , Zhao  Z ,  et al.  School-based epidemiology study of myopia in Tianjin, China.   Int Ophthalmol. 2020;40(9):2213-2222. doi:10.1007/s10792-020-01400-w PubMedGoogle ScholarCrossref
12.
Qian  X , Li  Y , Ding  G ,  et al.  Compared performance of Spot and SW800 photoscreeners on Chinese children.   Br J Ophthalmol. 2019;103(4):517-522. doi:10.1136/bjophthalmol-2018-311885 PubMedGoogle ScholarCrossref
13.
Wang  J , Ding  G , Li  Y ,  et al.  Refractive status and amblyopia risk factors in Chinese children with autism spectrum disorder.   J Autism Dev Disord. 2018;48(5):1530-1536. doi:10.1007/s10803-017-3387-7 PubMedGoogle ScholarCrossref
14.
Sivasubramanian  H , Ee  G , Srinivasaiah  MG , De  SD , Sing  AM .  “Not Always a Baker’s Cyst”— an unusual presentation of a central voluminous postero-medial meniscal cyst.   Open Orthop J. 2012;6:424-428. doi:10.2174/1874325001206010424 PubMedGoogle ScholarCrossref
15.
Ee  G , Lehming  N .  How the ubiquitin proteasome system regulates the regulators of transcription.   Transcription. 2012;3(5):235-239. doi:10.4161/trns.21249 PubMedGoogle ScholarCrossref
16.
Zhang  X , Wang  J , Li  Y , Jiang  B .  Diagnostic test accuracy of Spot and Plusoptix photoscreeners in detecting amblyogenic risk factors in children: a systemic review and meta-analysis.   Ophthalmic Physiol Opt. 2019;39(4):260-271. doi:10.1111/opo.12628 PubMedGoogle ScholarCrossref
17.
Srinivasan  G , Russo  D , Taylor  C , Guarino  A , Tattersall  P , Moore  B .  Validity of the Spot Vision Screener in detecting vision disorders in children 6 months to 36 months of age.   J AAPOS. 2019;23(5):278.e1-278.e6. doi:10.1016/j.jaapos.2019.06.008 PubMedGoogle ScholarCrossref
18.
Dikkaya  F , Erdur  SK .  Comparison of the PlusOptix S09 and Spot Vision photorefractor to cycloretinoscopy.   Int Ophthalmol. 2019;39(8):1671-1678. doi:10.1007/s10792-018-1026-8 PubMedGoogle ScholarCrossref
19.
Mu  Y , Bi  H , Ekure  E ,  et al.  Performance of Spot photoscreener in detecting amblyopia risk factors in Chinese pre-school and school age children attending an eye clinic.   PLoS One. 2016;11(2):e0149561. doi:10.1371/journal.pone.0149561 PubMedGoogle Scholar
20.
Yakar  K .  Clinical performance of the Spot Vision Photo Screener before and after induction of cycloplegia in children.   J Ophthalmol. 2019;2019:5329121.PubMedGoogle Scholar
21.
Panda  L , Barik  U , Nayak  S ,  et al.  Performance of photoscreener in detection of refractive error in all age groups and amblyopia risk factors in children in a tribal district of Odisha: the Tribal Odisha Eye Disease Study (TOES) # 3.   Transl Vis Sci Technol. 2018;7(3):12. doi:10.1167/tvst.7.3.12 PubMedGoogle ScholarCrossref
22.
Lin  M , Lucas  HC  Jr , Shmueli  G .  Too big to fail: large samples and the P value problem.   Inf Syst Res. 2013;24(4):1-12. doi:10.1287/isre.2013.0480Google ScholarCrossref
23.
VanderVeen  DK , Kraker  RT , Pineles  SL ,  et al.  Use of orthokeratology for the prevention of myopic progression in children: a report by the American Academy of Ophthalmology.   Ophthalmology. 2019;126(4):623-636. doi:10.1016/j.ophtha.2018.11.026 PubMedGoogle ScholarCrossref
24.
Willis  JR , Vitale  S , Morse  L ,  et al.  The prevalence of myopic choroidal neovascularization in the United States: analysis of the IRIS data registry and NHANES.   Ophthalmology. 2016;123(8):1771-1782. doi:10.1016/j.ophtha.2016.04.021 PubMedGoogle ScholarCrossref
25.
Bar Dayan  Y , Levin  A , Morad  Y ,  et al.  The changing prevalence of myopia in young adults: a 13-year series of population-based prevalence surveys.   Invest Ophthalmol Vis Sci. 2005;46(8):2760-2765. doi:10.1167/iovs.04-0260 PubMedGoogle ScholarCrossref
26.
Hyman  L , Gwiazda  J , Hussein  M ,  et al.  Relationship of age, sex, and ethnicity with myopia progression and axial elongation in the correction of myopia evaluation trial.   Arch Ophthalmol. 2005;123(7):977-987. doi:10.1001/archopht.123.7.977 PubMedGoogle ScholarCrossref
27.
Sanz Diez  P , Yang  LH , Lu  MX , Wahl  S , Ohlendorf  A .  Growth curves of myopia-related parameters to clinically monitor the refractive development in Chinese schoolchildren.   Graefes Arch Clin Exp Ophthalmol. 2019;257(5):1045-1053. doi:10.1007/s00417-019-04290-6 PubMedGoogle ScholarCrossref
28.
Vision NRCUCo.  Analysis of the Prevalence Literature. Myopia: Prevalence and Progression. National Academies Press; 1989.
29.
Gong  JF , Xie  HL , Mao  XJ ,  et al.  Relevant factors of estrogen changes of myopia in adolescent females.   Chin Med J (Engl). 2015;128(5):659-663. doi:10.4103/0366-6999.151669 PubMedGoogle ScholarCrossref
30.
Afsari  S , Rose  KA , Gole  GA ,  et al.  Prevalence of anisometropia and its association with refractive error and amblyopia in preschool children.   Br J Ophthalmol. 2013;97(9):1095-1099. doi:10.1136/bjophthalmol-2012-302637 PubMedGoogle ScholarCrossref
31.
Vincent  SJ , Collins  MJ , Read  SA , Carney  LG .  Myopic anisometropia: ocular characteristics and aetiological considerations.   Clin Exp Optom. 2014;97(4):291-307. doi:10.1111/cxo.12171 PubMedGoogle ScholarCrossref
32.
Cheng  CY , Yen  MY , Lin  HY , Hsia  WW , Hsu  WM .  Association of ocular dominance and anisometropic myopia.   Invest Ophthalmol Vis Sci. 2004;45(8):2856-2860. doi:10.1167/iovs.03-0878 PubMedGoogle ScholarCrossref
33.
Jiang  F , Chen  Z , Bi  H ,  et al.  Association between ocular sensory dominance and refractive error asymmetry.   PLoS One. 2015;10(8):e0136222. doi:10.1371/journal.pone.0136222 PubMedGoogle Scholar
34.
Mansour  AM , Sbeity  ZM , Kassak  KM .  Hand dominance, eye laterality and refraction.   Acta Ophthalmol Scand. 2003;81(1):82-83. doi:10.1034/j.1600-0420.2003.00028_5.x PubMedGoogle ScholarCrossref
35.
Hiraoka  T , Kakita  T , Okamoto  F , Oshika  T .  Influence of ocular wavefront aberrations on axial length elongation in myopic children treated with overnight orthokeratology.   Ophthalmology. 2015;122(1):93-100. doi:10.1016/j.ophtha.2014.07.042 PubMedGoogle ScholarCrossref
36.
Zadnik  K , Manny  RE , Yu  JA ,  et al; Collaborative Longitudinal Evaluation of Ethnicity and Refractive Error (CLEERE) Study Group.  Ocular component data in schoolchildren as a function of age and gender.   Optom Vis Sci. 2003;80(3):226-236. doi:10.1097/00006324-200303000-00012 PubMedGoogle ScholarCrossref
37.
Tideman  JWL , Polling  JR , Vingerling  JR ,  et al.  Axial length growth and the risk of developing myopia in European children.   Acta Ophthalmol. 2018;96(3):301-309. doi:10.1111/aos.13603 PubMedGoogle ScholarCrossref
38.
Harrington  SC , O’Dwyer  V .  Ocular biometry, refraction and time spent outdoors during daylight in Irish schoolchildren.   Clin Exp Optom. 2020;103(2):167-176. doi:10.1111/cxo.12929 PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close